TRANSACIIONS

THE LINNEAN SOCIETY OF LONDON.

REPORT ON ENTOMOSTRACA FROM THE GULF 0 F GUINEA.

BY
THOMAS SCOTT, F.L.S., naturalist to the fisilery board for scotland

LONDON:

PRINTED FOR TUE LINNEAN SOCIETY
by taylor and francis, red lion court, fleet street.
sOLI) AT THE SOCIETY'S APARTMENTS, BURLINGTON-HOUSE, PICCADILLY, W., AND BY longmans, GREEN, AND CO., PATERNOSTER-ROW.

Jamuary 1894.

TRANSACTIONS

OF
 THE LINNEAN SOCIETY.

I. Report on Entomostraca fiom the Gulf of Guinea, collected by John Rattray, B. Se By 'Thomas Scott, F.L.S., Naturetist to the Fishery Board for Scotland.

Read 2nd Februars, 1893.
(Plates I.-XV.)
THE following Report contains a Catalogne, more or less descriptive, of all the Entomostraca obtained in the tow-net gatherings collected by Mr. John Rattray, in the Gulf of Guinea, while engaged as naturalist on board the 'Telegraph Steamer ' Buccancer.'

It is not necessary that I should enter into any explanation of the causes of the delay in the publication of the Report on the Entomostraca further than to state that the collections were handed over to me early in 1591, and since then all the leisure that could be spared has been devoted to their examination and to the preparation of the following Catalogne.

In the preparation of the Report the anthor has to acknowledge the valuable aid he has received from Professor G. S. Brady, F.R.S. He is also under great obligations to the Senatus of the University of Edinburgh for the privilege of consulting the numerous works on Natural History in the University Library, and to Wr. Webster, the Librarian, who has always been ready to help in hunting up any literature wanted.

My thanks are also due to Dr. T. Wemyss Fulton, of the Fishery Board for Scotland, for the aetive interest he has taken in the preparation of the Report; among other things he obtained for me the privilege of consulting the valuable Natural History Works in the Library of the Royal Society of Edinburgh.

The Government Grant Committee of the Royal Society of London allocated to me the sum of $£ 20$ in 1891, and again in 1892, for the purposes of this investigation ; and this emabled me to retain the services of my son, Mr. Andrew Scott, for the preparation of the drawings that accompany and illustrate the Report, which, by their acknowledged
accuracy as well as their beanty, add greatly to its ralue. My som also prepared the greater number of the dissections represented by the drawings, which were necessary for the satisfactory diagnosis of the various species recorded.

The Entomostraca described in the following Catalogue include species belonging to the orders Copepoda, Cladocera, and Ostracoda. The first is represented by one hundred and forty-eight species, the second by two species, and the third by twenty-four species.

The great tendency to, and multiplicity of, variation observed, especially in certain groups, has caused considerable difficulty in cleciding the value that should be placed on the amomnt of variation met with. Thougin care has been taken to avoid as far as possible attaching a higher value to these variations than they deserved, it has been necessary in not a few instances to give them specific and eren generic rank, in order to dispose of them in anything like a satisfactory manner.

A considerable number of more or less immature forms occurred in nearly all the townettings, and were the cause of much tronble during the examination of the material; the liability of mistaking an immature specimen of one speeies for a member of another, and a different one, is considerable, and has to be kept constantly in view during the examination of such small organisms.

Since writing this Report I have, through the kindness of Dr. T. Wemyss Fulton, of the Fishery Board for Scotland, been favoured with a perusal of Dr. Giesbrecht's excellent work on the Mediterranean Copepoda, which has cnabled me to make some alterations that will bring it more into conformity with recent views on the nomenclature of that important group of the Crustacea; while the Introductory Remarks by Mr. lattray, which follow, will add to its completeness.

Introdectory Remarks. By John Rattray, B.Sc., F.R.S.E.

For the opportmity of taking part in this expedition, of the results of which a report on the Entomostraca is now presented, I have exelusively to thank Dr. John Murray, of H.M.S. 'Challenger' Commission. J. Y. Buchanan, Esq., formerly chemist on bourd H.M.S. 'Challenger,' accompanied the expedition, and all my work was carried on mader his immediate supervision on board the S.S. 'Buccaneer' (Captain Thomson, R.N.R.), then in the service of the India Rubber, Gutta Percha, and Telegraph Works Co., Ld., of Silvertown, Essex, and at that time engaged in sounding-operations preiminary to the laying down of a telegraph-cable on the West Coast of Tropieal Africa.

Sailing from Liverpool in the S.S. 'Nubia' in the begiming of December 1885, the 'Buccaneer' was joined by Mr. Buchanan and myself at Sierra Leone on December 23, and sailed at once northwards, tonching on Dec. 24 at Bullama and Bassao, between the Isles de Los and Dakar, near Cape Verd, arriving at Dakar on the erening of the same day to complete preliminary arrangements for the sounding expedition, which started thence on December 29 .

So far as relates to the Biological collections, the equipment provided consisted of a supply of botanical paper with botanical press for the preservation of such larger plant specimens as might be proenred on any short expeditions that might be possible on shore. Such chances were found only at rare intervals: thus gatherings were made on the outward royage at Madeira, in the vieinity of Funchal (Dee. 10), at Teneriffe, in and around Santa Cruz (Dec. 12 and March 2S, 1856), at Sierra Leone (Dec. 21), at Conakoy, Isles de Los (Narch 17, 1856), at Dakar (Dec. 26-29), at Acera, North Coast of Gulf of Guinea (Jan. 16), at São Thomé, Gulf of Guinea (Jan. 25 and 31 and Feb. 1, 1886), at Prineipé Island, Gulf of Gininea (Jan. 27), and at St. Panl de Loanda, E. coast of Gulf of Guinea (19eb, 10-17). On Dec. 13 some algre and shells were procured at Las Palmas, Gram Canaria, a landing for a few hours only being possille. During the brief calls at Bullama and Bassan on Dec. 21, the time was entirely occupied in the collecting of marine specinens cither floating on the very muddy waters of these parts or ocenring. on the beach; the visits paid to Libreville, Gaboon River, on January 2 , and to Bananah Creek, Congo River, on February 7, were so briel that no landing could be effected. So far as relates to Planerogams, the best gatherings were made in and about Simta Cruz and at São Thomé ; a considerable number of 'Thatamiflore were found at both ; Papaveracese and Coniferæ especially at Santa Cruz; Malvacese especially at São Thomé. At the latter Legmminous, Rosaceous, Crassulaceous, Myrtaceons, Onagraceous, Samydaceons, and Cuenditacous Calyciflore were well represented; at the former were gathered some Ficoidea and Umbellifera not obtained at the latter. At St. Paul de Loanda, Legmminous and Myrtaceous Calyeiflore only were found, e. g. especially Intigoferc, Diulium, C'esalpinia, Crolaluriu, Tamarindus, and Psidium. Of Epigynons Monopetaloid Compositec more were obtained at Santal Crizz than at São Thomé; but, on the other hand, more hypogynous specimens at the latter than at the former, the Jasminaceix, Apoeynaceie, and Convolvulacee predominating. Again, Apetalae, Nyetaginaceæ, Amarantacea, Urticacer, Euphorliacer, and Nonocotylerlones-especially Comacer, Cyperacere, and Graminese-were found most abundantly at Sũo Thomé. Most Filices were obtained from Principe Island, including particularly species of Neplwolepis, Nephodium, Polypodium, and many young forms. At Dakar and at St. l'aul de Loanda the coast-flora was poor, owing to the rast stretches of sand ; at the former were observed species of Argemone, Urena, Tigna, Cassia, Allizzia, Sestunia, Jussieu, Heliohropium, Cherodendron, Hyptis, Scirpus, Chloris, Pennisehom, Penicilluriu, Andropoyou, Cenchrus, not obtained at the latter, which, on the other hand, yielded species ol' Sesurium, Sidu, Tribiths, Monetia, Tudigoferu, P'sidium, Pluchea, Diehoma, Ipomcu, Bocrhaucia, Bougainvillen, Centema, P'upelia, P’yllenthus, Euphorbia. I'enicum, Sporobotes, Eragrost is, Aristida, \&e., not found at Dakar.

Much difficulty was experienced in protecting specimens against the hot moist atmosphere of the tropics, and recourse was ultimately had to haring them deposited near the furnaces of the steamer. This at length proved effective, but was accompaned by the accumulation of much dust, which might, however, have been largely avoided by wrapping in fine muslin, had that been arailable.

Among Alga specially noteworthy were the exuberant growths of Coralline near Las Palmas, attached to a soft sandstone on a narrow isthmus joining the volcanic sections of the island, and of Padina (Adanson) on the beach, about 3 miles from Dakar, at the far side of the bay surrounding Goree Island.

For the preservation of zoological specimens the following means were at hand:methylated spirit, alsolute alcohol, mlycerine, benzole, ether, chloroform, acetic acid, ammonia, hydrochloric acid, sulphuric acid, nitric acid, corrosive sublimate, caustic potash, osmic acid, chromic acid, picric acid, iodine, picrocarmine, bæmatoxylin, Canada balsam; with accessories such as slides, cover-glasses, watch-glasses, porcelain dishes, spirit-lamp, camel-hair brushes, needles, spatulas, two nets of varying degrees of finencss, a tank-box, shrimp-trawls, mud-bags, and specimen bottles. Some 200 bottles of 4 -oz. capacity, in addition to several boxfuls of others of larger sizes. At the end of the work all the available bottles were filled, and as many others as could be obtained empty from the supplies of the ship.

Many micro-preparations were made of the products of the soundings, of which 411 were taken during the cruise, and of the contents of the tow-nets at various points. Larger specimens, such as species of Pisces, were procured from native fishermen at St. Panl de Loanda, and for these the tank-box proved very uscful. Larger Crustacea, of which a few were found on shorc, were preserved in spirit at once. Numerous shells of Mollusea were obtained dry; but one of the most important departments of the work was the preservation of the more delicatc Arthropoda (Copepoda, Amphipoda, Schizopoda, \&c.), Ascidia, ova, fish-larve, Sagitta, \&c., found in the tow-net gratherings. For these the methods adopted were essentially those practised at the zoological stations of Naples * and elscwherc. For delicate objects, Prof. E. R. Lankester had recommended, in a letter to Dr. John Murray, two plans: (α) corrosive sublimate followed by dilate then stronger alcohol, and $(\beta) \frac{1}{10}$ per cent. osmic acid, or this mixed with very dilute chromic acia or acetic acid, giving a short exposure of 1 to 2 minutes according to size : this to be followed by alcohols of increasing strength. The latter method was recommended for Clione and other Pteropoda; it was adopted but rarely, owing to the difficulty of prosecuting many different methods in a limited amount of space (the laboratory at command being quite small, but very compact) the combined chrom-osmic or aceto-osmic plans were not tried at all: the former method was freely used. For the Radiolaria the osmic acid process also proved of use, it had been recommended by Hartwig and by Haeckel ; but a glycerine medium to follow it was not employed because of the unsuitability of its refractive index to that of the Radiolarian skeleton.

For preserving the products of the tow-net pure alcohol was never adopted ab initio, but acidulated alcohol was tried, following the directions of Paul Mayer and Whitman, viz. 70 or 80 per cent. alcohol with a small addition of pure hydrochloric acid and a trace of picric acid. The specimens were subsequently washed with strong spirit to remove the acid, and prescrved in spirit. Again, the picrosulphuric acid method following

[^0]Kleinenberg's * formula, as adopted by Mayer \ddagger, that is, without the addition of ereosote, was often used, beeause of its reported high degree of penetrability for chitinized structures. The fixing agent was simply added to the sea-water, and this was subsequently succeeded by increasing strengths of spirit. Mayer's $\$$ piero-hydrochloric acid method was only employed a few times.

Corrosive sublimate was extensively used, and was found to be of special service on account of the rapidity of its action. Lang's § methods were simplified and accelerated by adding a little of the solid salt to the sea-water; the hot solution of the salt was never adopted, though it has been recommended for Sagitta, Copepoda, Saphirina, and other Arthropod larvie. In a few cases, following Carnoy $\|$, a trace of acetic acid was added to the corrosive solution. The mercuric salt was removed by subsequent washing -the mode of filtration was found of advantage from its speed and cleanliness-and suecessive treatment with progressive strengths of spirit. The animals were in all cases, where preservation was required, killed as rapidly as possible after capture, with a view to the obtaining of good results for structural purposes.

Tow-net collections were made throughout the whole course of the voyage; the total number of these was, however, somewhat less than the total number of soundings, hecause (1) somndings were sometimes taken with much speed in shallow depths, and the delay of the steamer was therefore brief ; (2) tow-net gatherings could not continuously be obtained by night and by day, save only at intervals. During work ouly one net was really lost through the snapping of gear belonging to the net itself, a few others, usually in deep water, were lost on account of the breaking of the cable upon which they were attached.

The majority of the gatherings were made in the upper strata of the water, or say down to 25 fathoms; but deep-sea nets were repeatedly used. The deepest were wrought at 360 and 460 fathoms on January 22, in lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\text {5 }}$ E.

Prof. Chrerstal's double-hooped net was used at a depth of 260 fms ., but the collection obtained was small. On Feb. 5, in lat. $4^{\circ} 20^{\prime} 7^{\prime \prime}$ S., long. $10^{\circ} 1^{\prime} \mathrm{s}^{\prime \prime}$ E., two nets were set adrift at 235, 185, and 85 fathoms attached to balloon hooys in a S. $\frac{1}{2}$ W. current of 0.51 knots ; and, again, similarly on Feb. 22, in lat. $5^{\circ} 59^{\prime} 44^{\prime \prime}$ S., long. $3^{\circ} 19^{\prime} 4^{\prime \prime}$ E., a series of nets were exposed at $30,40,70,100,130,160,190$, and 200 fms ., 一 the temperatures at these respective depths being $61^{\circ} 3 \mathrm{~F} ., 59^{\circ} \cdot 3 \mathrm{~F} ., 57^{\circ} 5 \mathrm{~F} .55^{\circ} \mathrm{F} ., 52^{\circ} 5 \mathrm{~F} ., 49^{\circ} \mathrm{F}$., and $46^{\circ} \cdot 7 \mathrm{~F}$; but in heaving up, after an exposure of 7 hours, the eable snapped, and all but the uppermost were lost. Three more deep-sea nets were lost by the breaking of a steel rope attached to an anchor-dredge in lat. $5^{\circ} 5 t^{\prime} \mathrm{S}$. , long. $11^{\circ} 45^{\prime} \mathrm{W}$., when, out of 1780 fms. of rope, 1675 fms . were lost together with the anchor-dredge, weighing 5 ewt. 2 qrs. 14 lbs . These accidents were specially to be regretted by reason of the opportunities

[^1]they presented for ascertaining something of life at these depths. In lat. $0^{\prime} 7^{\prime} 8^{\prime \prime} \mathrm{S}$., long. $14^{\circ} 2 S^{\prime} 6^{\prime \prime}$ W., nets were employed at intervals down to 100 fms. on Mareh 10 ; and again on Mareh 11, down to 75 fms ., in lat. $0^{\circ} 0^{\prime} 7^{\prime \prime} \mathrm{N} .$, long. $13^{\circ} 4^{\prime \prime} \mathrm{W}$.

The time of exposure of tow-nets varied with circumstances and opportunities from 20 minutes to 7 hours (the latter when sent adrift from the ship). Inshore nets taken at Conakoy, Isles de Los, Bullama, Bassao, Dakar, Accra, off Little Bassam, in the vicinity of the submarine gully known as the " bottomless pit," Porto Novo, Libreville (Gaboon River), Bananah Creek (Congo River), and St. Paul de Loanda were always at or near the surface. Of speeial interest is the series procured during soundings in the vicinity of the Congo cañon, where gyrations of the water, accompanied by the produetion of coarse bubbles of foam, were very evident on the surface of the sea.

For Aseidia, Prof. Herdman had recommended three plans, all of whieh were employed, viz. : (1) pierie acid and alcohol; (2) osmic acid and aleohol; and (3) picric acid alone, without alcohol, for Sctpae and Doliolum. Some were also preserved in glycerine, without either picrie acid or spirit to prevent opacity. For living specimens of sclerodermic corals, of which only a few were obtained, the corrosive sublimate treatment was employed. No Hydrozoa were prescrved, according to Pagenstecher's * method, by the use of sodium chloride and alum suceeeded by stronger and stronger alcohols. For the Peridinidæ, of which several were obtained, Géza Entz's \dagger recommendation of glyeerine was not followed, thongh tried, chiefly on account of refraetive eonsiderations. Porifera have been treated by Keller \ddagger with osmic and chromic acids, the former of the strength of $\frac{1}{20}$ to $\frac{1}{10}$ per cent., the latter very dilute; but of these, the only representatives obtained were found on the shore at Ascension Island, and were immediately placed in spirit.

Subjoined is a list of the positions of the $4 S$ stations of the expedition, where the best available means werc adopted for obtaining collections, with the surface temperature observed at each :-

```
Station I. Dec. 29, 1885, lat. \(196^{\circ} 48^{\prime} \mathrm{N} .\), long. \(19^{\circ} 18^{\prime} \mathrm{W} .\left(75^{\circ} \mathrm{F}.\right)\).
    II. Jan. 1, 1886, lat. \(7^{\circ} 54^{\prime}\) N., long. \(17^{\circ} 25^{\prime} \mathrm{W}\). ( \(\left.8.2^{\circ} \cdot 2 \mathrm{~F}.\right)\).
    " III. " 2, " lat. \(7^{\circ} 1^{\prime}\) N., long. \(15^{\circ} 51^{\prime} \mathrm{W} .\left(82^{\circ} 9 \mathrm{~F}.\right)\).
    , IV. , \(\mathrm{U}_{2},{ }^{\prime} \quad\) lat. \(7^{\circ} 33^{\prime} \mathrm{N} .\), long. \(15^{\circ} 18^{\prime} \mathrm{W} .\left(83^{\circ} \mathrm{F}\right.\).).
    " V. ", 4, " lat. \(7^{\circ} 20^{\prime}\) N., long. \(13^{\circ} 20^{\prime} \mathrm{W} .\left(83^{\circ} \because 2 \mathrm{~F}.\right)\).
    ", VI. ", " " lat. \(7^{\circ} 8^{\prime} \mathrm{N} .\), long. \(13^{\circ} 27^{\prime} \mathrm{W} .\left(83^{\circ} \cdot 1 \mathrm{~F}.\right)\).
    ", VII. „ 5 , , lat. \(5^{\circ} 48^{\prime} \mathrm{N}\)., long. \(14^{\circ} 20^{\prime} \mathrm{W} .\left(85^{\circ} \cdot 5 \mathrm{~F}.\right)\).
" VIII. , 9, " lat. \(3^{\circ} 57^{\prime} \mathfrak{2}^{\prime \prime}\) N., long. \(7^{\circ} 42^{\prime} 8^{\prime \prime} \mathrm{W}\). ( \(82^{\circ} \cdot 8\) F.). Here a S.E. current
    domin to 150 fms .
```

[^2]Station IX．Jan． 10,1886 ，lat． $3^{\circ} 0^{\prime} 8^{\prime \prime} \mathrm{N}$. ，long．$\pi^{\circ} 13^{\prime} \mathrm{W} .\left(83^{\circ} \mathrm{F}.\right)$ ．Station in and near outer edge of（ininea current．Wrater ultramarine．

X．，13，，
XI．，，19，＂ XII．，20，，
XIIV. " 6,
XXV. ", " "

$$
\text { XXVI. , } 9,
$$

XXVII. ,, 19, "

$$
\text { XIVIII. ,, } 20,
$$

$$
\text { XXIX. , , } 21,
$$

XXX. ", " "
XXXI. , 22, "

$$
\text { XXXII. , , } 33, ~,
$$

XIXIII. ,, ", "
XXXIV. „ 21, ,
XIXV. ,, 25, ,"
XXYVI. " ", ",

$$
\text { , XXXYII. , } 26,
$$

XXXVIII. " ", ",
XXXIX. , 27, "
XL. , 28, ,"
XLl. Mar.5, ",

$$
\text { XLII. , } 6, \quad,
$$

$$
\text { XLLIlI. ,, } 7,
$$

$$
\text { XLIV. , } 9,
$$

XLV. , 10, "
XLVI. , 11, ,
XLVII. " 12, "

$$
\text { XLVIII. , } 13,
$$

$$
\begin{aligned}
& \text { XIII. ,, , , } \\
& \text { XIV. , 21, , } \\
& \text { XV. , 22, " } \\
& \text { XVI. , 23, ", } \\
& \text { XVII. ,, 29, , } \\
& \text { XVIII. Feb. 3, „, } \\
& \text { XLX. ,, ,, ,, } \\
& \text { XX. , , " , } \\
& \text { XXI. , 4, " } \\
& \text { XXII. , , , , } \\
& \text { XXIII. , 5, , }
\end{aligned}
$$

lat． $3^{\circ} 58^{\prime}$ N．，long． $3^{\circ} \cdot 1 \mathrm{~S}^{\prime} \mathrm{W} .\left(83^{\circ} \cdot 7 \mathrm{~F}.\right)$ ．
lat． $5^{\circ} 15^{\prime} 4^{\prime \prime} \mathrm{N}$. ，long． $3^{\circ} 10^{\prime} \mathrm{E} .\left(83^{\circ} \cdot 2 \mathrm{~F}\right.$ ．）．
lat． $1^{\circ} 1 \mathfrak{2}^{\prime} 7^{\prime \prime}$ N．，loug． $3^{\circ} 55^{-1} 5^{\prime \prime}$ L．（ $82^{\circ} \cdot 7$ F．）．A strong N．N．W． current 2 to 3 fins．deep，and under it a strong eurrent in opposite direction．
lat． 3° J．＇ $3^{\prime \prime}$ N．，long． $1^{\circ} 7^{\prime} 3^{\prime \prime} \mathrm{E}$ ．（ $83^{\circ} \cdot 2 \mathrm{~F}$ F．）．
lat．$\because^{2} 0^{\prime} 2^{\prime \prime} \mathrm{N} .$, long． $5^{2} 7^{\prime} 8^{\prime \prime} \mathrm{E} \cdot\left(88^{\circ} \cdot 2 \mathrm{~F}.\right)$ ．
 0.7 ：knots．
lat．$)^{\circ} 38^{\prime} 6^{\prime \prime} \mathrm{N} .$, long． $6^{\circ} \mathrm{a}^{\prime \prime} 8^{\prime \prime} \mathrm{E} .\left(82^{\circ} \cdot 9 \mathrm{~F}.\right)$ ．
lat． $0^{\circ} 21^{\prime} 1^{\prime \prime} \mathrm{N} .$, long． $7^{\circ} 33^{\prime} \mathrm{E} .\left(83^{\circ} \mathrm{F}.\right)$ ．
lat． $1^{\circ}{ }_{20} 2^{\prime \prime} \mathrm{S} .$, long． $7^{\circ} 45^{\prime} \mathrm{E} .\left(81^{\circ} \cdot 4 \mathrm{~F}.\right)$ ．
lat． $1^{\circ} 6^{\prime} 2^{\prime \prime}$ S．，long． $8^{\circ} 10^{\prime} 4^{\prime \prime}$ E．（ 83° F．）．
lat． $1^{\circ} 1^{\prime} \mathfrak{2}^{\prime \prime}$ S．，long． $8^{\circ} 19^{\prime}$－$^{\prime \prime}$ E．（ $82^{\circ} \cdot 8$ F．）．
lat． $2^{\circ} 39^{\prime} \mathrm{S}$ ．，long． $8^{\circ} 58^{\prime} \mathrm{E} .\left(81^{\circ} \cdot 7 \mathrm{~F}\right.$ ．）．Λ floating island near this．
lat． $2^{\circ} 18^{\prime} \mathrm{S} .$, long． $8^{\circ} 16^{\prime} \mathrm{E} .\left(82^{\circ} \cdot 7 \mathrm{~F}\right.$ ．）．
lat． $1^{\circ} 9^{\prime} 6^{\prime \prime} 7^{\prime \prime}$ S．，long． $10^{\circ} 1^{\prime} 8^{\prime \prime}$ E．（ $8: 2^{\circ} \cdot 1$ F．）．Current S．$\frac{1}{2} \mathrm{~W} .=0 \cdot 54$
knots．
lat． $5^{\circ} 51^{\prime} \mathrm{S} .$, long． $11^{\circ} 33^{\prime} \mathrm{E} .\left(82^{\circ} \mathrm{F}.\right)$ ．
lat． $5^{\circ} 55^{\prime} 8^{\prime \prime}$ S．，long． $11^{\circ} 50^{\prime} 3^{\prime \prime}$ E．$\left(81^{\circ} 2 \mathrm{2}\right.$ F．）．Curent W．by S．true．
lat． $8^{\circ} \mathrm{S}^{\prime} 2^{\prime \prime} \mathrm{S} .$, long． $12^{\circ} 29^{\prime} 4^{\prime \prime}$ E．（ $79^{\circ} 8 \mathrm{~F}$ ．）．（At Loanda．）
lat． $5^{\circ} 9^{\prime}$ S．，long． 10° 13＇E．（ $8 \mathfrak{2}^{\circ} \cdot 3$ F．）．
lat． $5^{\circ} 51^{\prime} 7^{\prime \prime}$ S．，long． $8^{\circ} 36^{\prime} 5^{\prime \prime}$ E．（ $\left.83^{\circ} \cdot 3 \mathrm{~F}.\right)$ ．
lat． $5^{\circ} 47^{\prime} 7^{\prime \prime}$ S．，long． $6^{\circ} 49^{\prime} 5^{\prime \prime}$ E．（ $\left.82^{\circ} \cdot 2 \mathrm{~F}.\right)$ ．
lat． $5^{\circ} 50^{\prime} 9^{\prime \prime} \mathrm{S}$ ．，long． $5^{\circ} 1^{\prime} 4^{\prime \prime} \mathrm{E} .\left(81^{\circ} \cdot \mathrm{\sigma}\right.$ F．）．
lat． $5^{\circ} 59^{\prime} 4^{\prime \prime}$ S．，long． $3^{\circ} 49^{\prime} 4^{\prime \prime}$ E．（ 83° F．）．
lat． $6^{\circ} 2^{\prime} 2^{\prime \prime}$ S．，long． $1^{\circ} 50^{\prime} 7^{\prime \prime}$ E．（ $81^{\circ} \cdot 8$ F．）．
lat．$z^{\circ} 38^{\prime} 1^{\prime \prime}$ S．，long． $0^{\circ} 1^{\prime} 5^{\prime \prime}$ E．（ $81^{\circ} \mathrm{F}$ ．）．
lat． $5^{\circ} 58^{\prime} 5^{\prime \prime} \mathrm{S} .$, long． $1^{\circ} 24^{\prime} \mathrm{l}^{\prime \prime} \mathrm{W} .\left(81^{\circ} \mathrm{F}.\right)$ ．
lat． $5^{\circ} 59^{\prime} 5^{\prime \prime}$ S．，loug． 3° a． $\mathrm{t}^{\prime} 5^{\prime \prime} \mathrm{W} .\left(80^{\circ} \mathrm{F}.\right)$ ．
lat． $6^{\circ} 0^{\prime} 7^{\prime \prime}$ S．，long． $5^{\circ} 5^{\prime} 4^{\prime \prime} \mathrm{T} .\left(81^{\circ} \mathrm{F}.\right)$ ．
lat． $6^{\circ} 3^{\prime} 4^{\prime \prime} \mathrm{S} .$, long． $6^{\circ} 2 \sigma^{\prime} 2^{\prime \prime} \mathrm{W} .\left(85^{\circ} 5 \mathrm{~F}.\right)$ ．
lat． $3^{\circ} 58^{\prime} 6^{\prime \prime}$ S．，long． $8^{\circ} 11^{\prime} \mathrm{W}$ ．（ $79^{\circ} 8 \mathrm{P}$ 下．）．
lat． $5^{\circ} 56^{\prime} 3^{\prime \prime}$ S．，long． $9^{7} 32^{\prime \prime} 6^{\prime \prime} \mathrm{W} .\left(80^{\circ} \cdot 6 \mathrm{~N}.\right)$ ．
lat． $5^{\circ} 51^{\prime} \mathrm{S} .$, long． $11^{\circ} 48^{\prime} \mathrm{W}\left(81^{\circ} \mathrm{F}.\right)$ ．
lat． $6^{*} 0^{\prime} 3^{\prime \prime} \mathrm{S} .$, long． $13^{\prime} 24^{\prime} 9^{\prime \prime} \mathrm{W} .\left(81^{\circ} \mathrm{F}\right.$ ．）．
lat． $8^{\circ} 59^{\prime} \mathrm{S} .$, long． $13^{\circ} 28^{\prime} \mathrm{W}$ 。
lat． $2^{\circ} 12^{\prime} 2^{\prime \prime}$ S．，long． $11^{\prime} 43^{\prime} 4^{\prime \prime} \mathrm{W}$ ．（ 81 〒下．）．
lat． $0^{\circ} 1^{\prime} \mathrm{g}^{\prime \prime} \mathrm{S} .$, long． $15^{\circ} 56^{\prime} 5^{\prime \prime} \mathrm{W} .\left(81^{\circ} \mathrm{F}\right.$ ．）．
lat． $0^{\circ} 7^{\prime} 8^{\prime \prime} \mathrm{S} .$, long． $1 \mathrm{t}^{\circ} 28^{\prime} 6^{\prime \prime} \mathrm{WV} .\left(81^{\circ 0} 6 \mathrm{~F}.\right)$ ．
lat． $0^{\circ} 0^{\prime} 7^{\prime \prime} \mathrm{N} .$, long． $18^{\circ} 4^{!} \mathrm{W} .\left(80^{\circ} .8 \mathrm{~F}\right.$ ．）．
lat． $1^{\circ} 11^{-1} \mathrm{G}^{\prime \prime} \mathrm{N}$. ，long． $13^{\circ} 51^{\prime} 4^{\prime \prime} \mathrm{W}$ ．（ $82^{\circ} \cdot 3 \mathrm{~F}^{\mathrm{F}}$ ．）。
lat． $3^{\circ} 3^{\prime} 4^{\prime \prime}$ N．，long． $15^{\circ} 0^{\prime} 9^{\prime \prime} \mathrm{W} .\left(83^{\circ} \cdot 1 \mathrm{~F}.\right)$ 。

Part I.

COPEPODA.

The material from which the Copepoda noticed in this Report were obtained was collected chiefly by means of tow-nets worked at the surface and at various depths (under surface) from 2 to 460 fathoms, and a few were shore gatherings.

The material was contained in 149 bottles, which represented about as many separate gatherings.

Lists of species obtained in some of the more important gatherings are appended to these introductory remarks (vide p. 13).

Comparatively few of the species were gencrally distributed throughout the area examined, or were of frequent or common occurrence in the tow-nettings.

The following were among the most common and most widely distributed species in the collection:-Eucalanus attenuatus, Rhincalanus comutus, Undina vulyaris, Eucheta marina, Temora stylifera, Corycaus varius, Coryceus speciosus, and Oncaa obtusa. On the other hand, a considerable number of species, though obtained in gatherings from localities all over the area examined, were uncommon or rare in the collections in which they oceured-Eucalanus setiger and Plewromma aldominule may be given as examples. Other species, though observed in comparatively few gatherings, were yet moderately common in those in which they did occur--ILemicalanus longicomis is a striking example of this. This species was observed in comparatively few gatherings, but in one of these no fewer than 80 fairly perfect specimens were obtained; in contrast to this, it may be stated that scarcely lialf a dozen specimens of Hemicalani were observed in the whole of the 'Challenger' collections. Several species, as Acartio spinicomdata, Oithona minutn, Amymone Andrewi, Ilyopsyilus affinis, and some other Harpactids, were obtained in gatherings from inshore and brackish-water localities, as, for example, from a shore colleetion at Acera and at São Thomé Island, and in surface-gatherings from Bananah Creek at the mouth of the River Congo, and from Loanda Harbour. A few fish-parasites, including the pretty IIessella, were also observed, and are described iu this Report.

Many of the species oceurred more frequently in the surface tow-nettings collected druing the night than in those collectedjduring the day, while in the under-surface townettings they were of more frequent occurence in those collected during the day than in those colleeted during the night. This will be observed by referring to the classified list of species.

The following Table exhibits some points of interest respeeting the general distribution of species in surface and under－surface，and in day and nisht，collections：－

Table I．－Description of the Tow－net Gatherings．

				$\begin{aligned} & \text { an } \\ & \text { an } \\ & \text { n } \\ & 0 \end{aligned}$					$\begin{aligned} & \text { 关 } \\ & = \\ & = \\ & =0 \\ & =0 \\ & 0 \end{aligned}$							
Surface	84	14.57	32	1	46	－	－	3	－	－	11	32	1	18.7	$\because 8$	3
Under－surface．	0.5	23.3	4．3	（；	45	4（i）t	$2 \frac{1}{2}$	17	50	\because	$23 \cdot 4+$	42		$21 \cdot 8$	：3	9
Total number ．．	14！	$18 \cdot 3$			94	－	－	05		－	$17 \cdot 54+$			$15 \cdot 67+$		

It will be observed from this＇Table that the difference between the arerage number of species in each of the day and night surface tow－net gatherings is rather considerable； while as regards the average number of species in each of the day and night under－surface tow－net gatherings there is comparatively little difference，and the difference shown is the reverse of that olserved in the surface tow－nct gatherings．Further，the average number of species in the surface－gatherings is much greater in those eollected during the night，but in the under－surface gatherings the average is rather greater in those collected during the day；while in the combined surface and wuder－surface tow－nettings the arerage is，again，in farour of the night collections．

The area in which the tow－net gatherings were made may be deseribed approximately as extending from lat． $7^{\circ} 54^{\prime} \mathrm{N} .$, long． $17^{\circ} 25 \mathrm{~W}$ ．，eastward to Accre on the Gold Coast， thence southwards across the Bights of Benin and Biafra to Sio Thomé Islayd； from Sio Thome lsland eastwards tomards the mouth of the Gaboon River；then southwards to the mouth of the Cosgo and to Bavanair Creer，and thence to Loanda Hariboctr．No gatherings from mid－oceau are included in the eollection：the greatest distance from laud where tow－nettings were collected was not mueh，if at all， over 400 miles；but the greater number of them were collected much nearer land than that，and this probably explains why the＇Buccancer＇Copeporla－which exceed in number of species those obtained from the＇Challenger＇collections，extending over an immensely wider area－－differ so much in the entire alsence of some species，and in the com paratively greater ahundance of others，when eompared with the＇Challenger＇Copepoda， and also accounts for the presence of many curious and interesting species not repre－ sented in that collcetion．

Summary of the 'Buccaneer' Tow-net Collections, with the mumber of Species observed in cach separate gathering.

The surface tow-nettings are kept together, the under-surface are arranged aceording to the depth at which the tow-nets were let down, and the whole of the tow-net gatherings are arranged as near as possible in the order in which they were collected. In the Table the figures $1,2,3$, \&e. above the line represent the number of the gathering as near as possible in the order in which it was collected. " D " indieates that the collection was made between 6 A.m. (inclusive) and 6 p.m., " N " that the collection was made between 6 p.m. (inclusive) and 6 A.m., "SD" or "SN" that the collection was made inshore during the day or night. The figures under the line show the number of species observed in each separate gathering. Thus:-"Surface, $\frac{3 \mathrm{~N}}{16}$," indicates that No. 3 tow-netting was a surface gathering collected between 6 p.m. and 6 A.m., and that sixteen species of Copepoda were observed in it. "Surface, $\frac{73 \mathrm{SD}}{5}$," indicates that No. 73 was an inshore gathering collected between 6 A.m. and 6 p.m., in which five species of Copepoda were observed. " 100 fms., $\frac{8 D}{26}$," indicates that No. 8 was a gathering from 100 fathoms collected during the day, and yielded twenty-six species of Copepoda; and so on as in the Table.

Table II.-Summary of Tow-net Collections. Surface Tow-net Gatherings.

$$
\begin{aligned}
& \frac{3 \mathrm{~N}}{16}, \quad \frac{9 \mathrm{~N}}{16}, \quad \frac{12 \mathrm{D}}{7}, \quad \frac{13 \mathrm{D}}{16}, \frac{14 \mathrm{~N}}{23}, \quad \frac{16 \mathrm{D}}{16}, \quad \frac{22 \mathrm{D}}{17}, \frac{27 \mathrm{SD}}{16}, \frac{28 \mathrm{SD}}{7}, \\
& 31 \mathrm{D}, \quad \frac{32 \mathrm{D}}{15}, \quad \frac{34 \mathrm{D}}{5}, \quad \frac{36 \mathrm{~N}}{7}, \quad \frac{37 \mathrm{~N}}{7}, \quad \frac{39 \mathrm{SD}}{4}, \quad \frac{40 \mathrm{D}}{15}, \quad \frac{48 \mathrm{~N}}{24}, \quad \frac{40 \mathrm{D}}{1: 3}, \\
& \frac{73 \mathrm{SD}}{5}, \frac{74 \mathrm{D}}{11}, \frac{75 \mathrm{~N}}{4}, \frac{76 \mathrm{~N}}{23}, \frac{77 \mathrm{sD}}{9}, \frac{78 \mathrm{D}}{5}, \frac{79 \mathrm{D}}{4}, \frac{80 \mathrm{~N}}{4}, \frac{81 \mathrm{~N}}{19},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{04 \mathrm{~N}}{19}, \frac{95 \mathrm{~N}}{25}, \quad \frac{96 \mathrm{~N}}{25}, \quad \frac{97 \mathrm{~N}}{26}, \frac{98 \mathrm{~N}}{22}, \quad \frac{99 \mathrm{D}}{8}, \frac{102 \mathrm{D}}{7}, \frac{103 \mathrm{~N}}{17}, \frac{104 \mathrm{~N}}{16}, \\
& \frac{105 \mathrm{~N}}{23}, \frac{1116 \mathrm{~N}}{22}, \frac{107 \mathrm{D}}{17}, \frac{108 \mathrm{D}}{10}, \frac{110 \mathrm{~N}}{5}, \frac{111 \mathrm{~N}}{15}, \frac{112 \mathrm{~N}}{21}, \frac{120 \mathrm{~N}}{21}, \frac{121 \mathrm{~N}}{15}, \\
& \frac{122 \mathrm{~N}}{15}, \frac{123 \mathrm{D}}{14}, \frac{124 \mathrm{D}}{7}, \frac{125 \mathrm{D}}{17}, \frac{126 \mathrm{D}}{11}, \frac{127 \mathrm{D}}{1}, \frac{12 \leqslant \mathrm{D}}{11}, \frac{129 \mathrm{D}}{16}, \frac{130 \mathrm{D}}{25}, \\
& \frac{131 \mathrm{D}}{18}, \frac{132 \mathrm{D}}{19}, \frac{133 \mathrm{~N}}{21}, \frac{134 \mathrm{~N}}{23}, \frac{135 \mathrm{~N}}{20}, \frac{136 \mathrm{~N}}{3}, \frac{136 \mathrm{D}}{27}, \frac{138 \mathrm{D}}{15}, \frac{139 \mathrm{D}}{4}, \\
& \begin{array}{c}
140 \mathrm{D} \\
12
\end{array}, \frac{141 \mathrm{D}}{8}, \frac{142 \mathrm{D}}{7}, \frac{143 \mathrm{D}}{3}, \frac{144 \mathrm{D}}{6}, \frac{145 \mathrm{D}}{6}, \frac{146 \mathrm{~N}}{14}, \frac{147 \mathrm{~N}}{12}, \frac{149 \mathrm{D}}{14}, \\
& \xrightarrow[20]{149 \mathrm{D}} .
\end{aligned}
$$

Two fathoms Tow-net Gathering.

$$
\frac{19 \mathrm{~N}}{12}
$$

Two and half fathoms Tow-not Gathering.

$$
\frac{88 \mathrm{D}}{23}
$$

Threo fathoms Tow-net Gatherings.

$$
\frac{24 \mathrm{D}}{21}, \frac{33 \mathrm{~N}}{11}, \frac{35 \mathrm{D}}{6}, \frac{38 \mathrm{~N}}{9}
$$

Five fathoms Tow-net Gathering.

$$
\frac{\mathrm{S9} \mathrm{D}}{17}
$$

Ten fathoms Tow-net Gatherings.

$$
\begin{gathered}
\frac{41 \mathrm{D}}{21}, \frac{42 \mathrm{D}}{15}, \frac{45 \mathrm{~N}}{21}, \frac{50 \mathrm{D}}{22}, \frac{51 \mathrm{~N}}{25}, \frac{54 \mathrm{~N}}{20}, \frac{55 \mathrm{~N}}{21}, \frac{64 \mathrm{D}}{27}, \frac{65 \mathrm{D}}{21}, \frac{67 \mathrm{D}}{23}, \\
\frac{69 \mathrm{D}}{19}, \frac{72 \mathrm{D}}{36}, \frac{100 \mathrm{D}}{19}, \frac{114 \mathrm{D}}{32} .
\end{gathered}
$$

Fifteen fathoms Tow-net Gatherings.

$$
\frac{15 \mathrm{~N}}{15}, \frac{18 \mathrm{D}}{11}, \frac{71 \mathrm{~N}}{39}
$$

Twenty fathoms Tow-net Gatherings.
$\frac{47 \mathrm{~N}}{24}, \frac{52 \mathrm{~N}}{30}, \frac{53 \mathrm{~N}}{29}, \frac{56 \mathrm{D}}{26}, \frac{66 \mathrm{D}}{27}, \frac{68 \mathrm{D}}{39}, \frac{70 \mathrm{D}}{23}, \frac{20 \mathrm{D}}{24}, \frac{101 \mathrm{D}}{18}, \frac{109 \mathrm{D}}{22}$,

$$
\frac{115 \mathrm{D}}{2 \mathrm{y}} .
$$

Twenty-five fathoms Tow-net Gatherings.

$$
\frac{1 \mathrm{~N}}{25}, \frac{5 \mathrm{~N}}{10}, \frac{6 \mathrm{D}}{21}, \frac{10 \mathrm{~N}}{16}, \frac{17 \mathrm{D}}{15}, \frac{20 \mathrm{~N}}{16}, \frac{23 \mathrm{D}}{24}, \frac{25 \mathrm{D}}{30}, \frac{29 \mathrm{D}}{37} .
$$

Thirty fathoms Tow-net Gatherings.

$$
\frac{43 \mathrm{D}}{27}, \frac{46 \mathrm{~N}}{36}, \frac{57 \mathrm{D}}{45}, \frac{113 \mathrm{D}}{35}
$$

Thirty-five fathoms Tow-net Gathering.

$$
\frac{58 \mathrm{D}}{33}
$$

Fifty fathoms Tow-net Gatherings.
$\frac{2 \mathrm{~N}}{26}, \frac{4 \mathrm{~N}}{34}, \frac{7 \mathrm{D}}{11}, \frac{11 \mathrm{~N}}{13}, \frac{21 \mathrm{D}}{35}, \frac{26 \mathrm{D}}{30}, \frac{30 \mathrm{D}}{31}, \frac{44 \mathrm{D}}{28}$.
Sixty fathoms Tow-net Gathering.

$$
\frac{59 \mathrm{D}}{15}
$$

Eighty-five fathoms Tow-net Gathering.

$$
\frac{116 \mathrm{D}}{14}
$$

One hundred fathoms Tow-net Gathering.

$$
\frac{8 \mathrm{D}}{27}
$$

One hundred and thirty-five fathoms Tow-net Gathering.

$$
\frac{117 \mathrm{D}}{24} .
$$

One hundred and sisty fathoms Tow-net Gathering.

$$
\frac{60 \mathrm{D}}{20} .
$$

One hundred and eighty-five fathoms Tow-net Gathering.

$$
\frac{118 \mathrm{D}}{31}
$$

Two hundred and thirty-five fathoms Tow-net Gathering.

$$
\frac{119 \mathrm{D}}{33}
$$

Two hundred and sixty fathoms Tow-net Gathering.

$$
\begin{gathered}
61 \mathrm{D} \\
26
\end{gathered}
$$

Three hundred and sixty fathoms Tow-net Gathering.
$\frac{62 \mathrm{D}}{47}$.
Four hundred and sixty fathoms Tow-net Gathering.
(i3) D

$$
23^{\circ}
$$

The following separate Lists, representing about 16.6 per cent. of the entire number of the 'Buceanecr' 'tow-nettings, are given for the purpose of showing, among other details, the comparative differences in the gencral grouping of species in gratherings collected at the surface from others collected at varions depths.

The richest hauls- that is, those containing the greatest number of species-were under-surface gatherings, and were, with few exceptions, from no very extreme depths. Several good eatches were also obtained by working the tow-met at the surface during the night (see Table II.). The gathering that yiclded the greatest number of species was No. 62 from 360 fathoms, collected during the middle of the day, on January 22nd, in lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N}$. , long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E.; forty-seren species were obtained in this gathering. The collection that appeared to contain the greatest number of individuals was No. 113 , from 30 fathoms, collected during the middle of the day, on February 5th, at Station 23.

List I.-Tow-net Gathering No. 3, surface, collected at Station 2, Tanuary 1st, 1886, between 6 and 8.15 p.m. The specifie gravity of the water calculated at $60^{\circ} \mathrm{F}$. was $1 \cdot 0221$, surface temperature of water $82^{2} \because 2 \mathrm{~F}$.

Eucheta marina (Prestemitret).
Temora stylifera (Dente).
Candace pachydactyla, Deme.
Labidocera detroncata, var. interneedia.
Pontellina plumata, Dunu.
Oithona Challengeri, Brody.
Microsetella atlantica, Brody of Robertson.
Miracia efferata, Duncu.

Clytemnestra rostrata (Bruly).
Sotella gracilis, Dena.
Corycieus varius, Dana.

- pellacidus, Jeme.
—— vemustus, Deture.
()ncera obtusa (Dena).

Copilia mirabilis, $/$ lener
saphiriua ovalis, Jana.

List II.-This List gives the number of species obtained in Tow-net Gathering No. 1, from 50 fathoms, collected at Station $2\left(\right.$ lat. $7^{\circ} 5 y^{\prime}$ N., long. $17^{\circ} 25^{\prime}$ W.), January 1st, between 7.20 and 8.20 p.m.

Calanus valgus, Brady.
-_gracilis, Dana.
_- comptus, Darke.
Eucalanus atteuuatus, Dana.
Hemicalanns longicormis, C'laus.

- plamosus, Cleur.

Heterocalanus serricaudatus, n. sp.
I'leuromma abdominalo (Lul,bock).
Undima rulgaris, Dumu.
Scolecithrix Dante, Lublock.
——Bradyi, rieshocht.

- securifrons, u. sp.
-_ ctenopus, Giesbrecht.
- temuipes, n . sp.

Wuchxta marina (Prestructrect).

- luebes, Criesturecht.
__anstralis, Brurl!.

Euchicta barbata, Brally.
-Etidius armatus, Brady.
Clausocalanus arcuicomis (Dana).
Phyllopus bidentatus, Brady.
Crandace pectinata, Brody.

- pachydactrla, Dene.
-_intermedia, n. sp.
Acartia lasa, Detna.
()ithoua Challengeri, Bracly.

Setella gracilis, Dana.
Corgerns varius, Deture.

- speciosus, Ditma.

Oncea obtusa (Dene).
-_gracilis (Itenu).
Saphirina metallina, Dueue.
*Saphirinella stylifera (Luhloock).

List III.-Tow-net Gathering No. S, 100 fathoms, collected at Station ?, Jantury Znd, between ! A.m. and 5.30 p.m. Specitic grarity of the water at 100 fathoms $1 \cdot 02608$, temperature $56 \cdot \mathrm{~F}$.

Calanus propinguus, Brady.	
Eucalanus attemutus, Dreua.	- minor, Brady.
linincalanus commtus, Dheme	Enchasta marina (l'restendrea).
Hemicalanus lousicomnis, Cluns.	Atidins armatus, Imerl!.
Angaptilis longicaumatus (7 (eus).	Temora stylifera (Detue).
Calocalama jayo (Deme).	Acartial lixil, lheser.
Heteroelacta spinifrons, Cluens.	Ilarinna spinifera, Clews.
Lenckartia flavicornis, Clous.	Oithuna (hallengeri, Tiruly.

[^3]Miracia efferata, Duna.
Machairopus (?) idyoides, Braty.
Setella gracilis, Dana.
Corycerus varins, Denct.
-_speciosus, Dena.
Oncea obtusa (Danct).

Oncrea gracilis (Dana). Copilia mirabilis, Danu. Lubbockia squillimana, Claus. Saphirina metallina, Dena. Saphirinella stylifera (Lubbock).

List IV.-Tow-net Gathering No. 14, surface, lat. $5^{\circ} 58^{\prime} \mathrm{N} .$, long. $14^{\circ} 20^{\prime}$ W., January 5th. Collected in the evening after darkness set in.

Calanus valgus, Bredy.

- propinquas, Brady.

Eucalanus attenuatus, Duna.
Rhincalanus cornutus, Dana.
Leuckartia flavicornis, Cluus.
Undina vulgaris, Dance.
Euchirella messinensis (Claus).
Scolecithrix Dane (Lueblock).
Euchata marina (Prestantrea).
Candace pachydactyla, Detne.
Pontellopsis villosa, Brady.
Pontellina plumata, Dana.

Labidocera detruncata, var. intermedia, n. var. Oithona setigera, Dena. Miracia efferata, Dence. Setella gracilis, Dena. Corycreus varius, Dena. - speciosus, Dena.

- pellucidus, Dena. Oncea olitusa, Duna. Copilia mirabilis, Dana. Saphirina ovalis, Dana. Saphirinella stylifera (Lubbock).

List V.-Tow-net Gathering No. 21, 50 fathoms, Station 9 (lat. $3^{\circ} 0^{\prime} 8^{\prime \prime}$ N., long. $\left.7^{\circ} 43^{\prime} \mathrm{W}.\right)$, January 10th. Collected at noon. 'Iemperature (corrected) of water at 50 fathoms $59^{\circ} 59$ F., sp. gr. 1.02632.

Eucalanus setiger, Brady.

- attenuatus, Drana.
-_-spinifer, n. sp.
Rhincalanus cornutus, Dame.
Hemicalanus longicornis, Cluns.
Augaptilis longicaudatus (Clurs).
Leuckartia flavicornis, Claus.
Scolecithrix Danæ (Lublock).
——Bradyi, Giesbrecht.
- ctenopus, Criesbrecht.
——tenuipes, n. sp.
Enchrett marina (Prestumtrat).
——Hersei, Brotly, var. similis, n. var.
Candace pachydactyla, Denet.
——mermedia, n. sp.
Acartia lasa, Dama.
Clansocalanus arcuicornis (Dena).
Temora stylifera (I)ana).

Phaënna spinifera, Claus.
Pontellina lumata (Dance).
Oithona Challengeri, Brady.
Luterpe gracilis, var. armata, n. var.
Miracia efferata, Dana.
Clytemnestra rostrata (Brady).
Setella gracilis, Dena.
Corycens varius, Dena.
-_speciosns, Dana.

- pellacidus, Dance.
- limbatus, Brady.

Oncra obtusa, Denee.
-_gracilis, n. sp.
——mediterranea (Claus).
Copilia mirabilis, Dana.
Saphirina metallina, Dunc.
Saphirinella stylifera (Lublock).

List VI.-Tow-net Gathering No. 29, 25 fathoms, lat. $3^{\circ} 58^{\prime} \mathrm{N} .$, long. $3^{\circ} 42^{\prime} \mathrm{W} .$, January 13th. Collected between 8 A.m. and 1 p.мn. Temperature at 25 fathoms $67^{\circ} 7 \mathrm{~F}$., sp. gr. 1•02606.

Calames valgus, Bretly.
-_gracilis, Dena.
Paracalanus parrus (Claus).
Eucalauus sctiger, Brady.

- attenuatus, Dance.
- spinifer, n. sp.

Rhincalauns cornutus, Dance
Tremicalanus mucronatus, 'Tures.
Calocalams paro (Dene).
Heterochata spinitions, Cluus.
Leuckartia flaricornis, Cluens.
Undina rulgaris, Denee.
Scolecithrix Itane (Lubbocli).

- ctenopus, Giesbrcelt.

Euchæta marina (Prestanelrea).

- hebes, Gieshrecht.

在idius armatus, Braly.
Clausocalaus furcatus (Brudy).
Centropages violaccus, Clures.

Mecynocera Clausi, I. C. Thompson.
Caudace pachydactylia, Thene.
Acartia laxa, Denue.
Poutellina plumata (Dana).
Miracia efferata, Dence.
Clytemnestra mentrata (Brouly).
Setella gracilis, Ineme.
Coryeæus rarius, Hena.

- speciosus, Duna.
- pellucidus, Denu.
- remustus, Dhena.

Oncea obtusa, Denue.
Copiria mirabilis, Dure.
Saphirina opaca, Lublock.
-- splendens, Dune.

- metallina, Dene.

Saphirinella stylifera (Lulbock).
Clausocalams arcuicornis (Dena).

List VII.--Tow-net Gathering No. 46, 30 fathoms, lat. $3^{\circ} 22^{\prime} 5^{\prime \prime}$ N., long. $4^{\circ} 11^{\prime}$ S $^{\prime \prime}$ E., January 20th. Collected about 7 p.m.

Calamus ralgus, Brally.
—— propiuquus, Brady.

- gracilis, Denu.

Eucalanus setiger, Brady.
--attenuatus, Derec.
Rhincalanus cormutus, Dana.
Hemicalanus longicormis, Clurs.
-_mucronatus, Clens.
Pleuromma abdominale (Lubloch).
Leuckartia flavicoruis, Clous.
Undina vulgaris, Dana.
Euchirella messinensis (Cleus).
Scolecithrix Danæ (Luhbucli).
Euchata marina (Picstenclica).
Etidius armatus, Bruely.
Temora stylifera (Dunc).
Centropages furcatus (Danc).
Mecynoccra Clausi, I. C. Thompson.

Candace pectinata, Braly. Acartial Iaxa, Dence.
Oithona Challengeri, Brarly.

- setigera, Duna.

Microsetella atlantica, Broty \& Robertson.
Clytemnestra rostrata (Braly).
Setella gracilis, Dema.
Coryceus varins, Dand.

- speciosus, Dena.
- limbatns, Brculy.

Oncæa obtusa (Dana).
Copilia mirabilis, Duna.
Lubbockia synillimana, Claus.
Saphirina ovalis, Dence.
-opalina, Denu.

- opaca, Lublock.
- metallina, Detua.

Saphirinclla stylifera (Lublock).

List VIII.-Tow-net Gathering No. 55, 10 fathoms, lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., $\operatorname{long} 5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., January 2end. Collected during the middle of the day. Temperature (corrected) of the water $81^{\circ} \cdot 98 \mathrm{~F} .$, surface sp. gro. 1.0235s.

I'aracalanus parvus (Clcuss). Euealanus attenuatus, Dence. Euchecta marina (Prestandrea). Clausocalanus furcatus (Bredy).
Temora stylifera (Dana).
Centropages furcatus (Dena).

- riolacens, Cleus.

Candace pectinata, Braty.
Pontellina plumata (Duma).
Oithona Challengeri, Bratly.
Miracia efferata, Dunu.

Setella graeilis, Dance.
Corycerus varins, Dena.

- speciusus, Dema.
- pellueidus, Dana.

Oncra obtusa (Ireme).
Copilia miralilis, Dana.
Saphirina ovalis, Duna.

- inxyualis, Dana.
- opaca, Lublock.

Saphirinella stylifora (Luthock).

List IX.-Tow-net Gathering No. 57, 30 fathoms. Locality, date, and time of collection the same as List VIII. T'emperature of the water $63^{\circ} \cdot 98 \mathrm{~F}$.

Calanms valgus, Braty.
-- propinquus, Bretly.
——_gracilis, Dame.
Paracalanus parvus (Clars).
Eucalanns attenuatus, Deme.
RLincalanus cornutus, Itana.
Hemicalanus longicomis, Claus.
Calucalanus paro (Dena).

- plamulosus (Claus).

Heterocheta spinifrons, Clurs.
Leuckartia flaricornis, Cluns.
Undina vulgaris, Itera.
Sicolecithrix Dane (Lublock).

- minor, Brarly.
- Dradyi, Gussurcht.
- ctenopus, Gieshrecht.

Euchecta marina (Prestemdrea).
Etidius armatus, Brutly.
Clansocalanus furcatus (Brady).

- arcuicornis (Dana).

Temora stylifera (Denet).

- longicornis (Muller).

> Mecynocera Clansi, I. C. Thompson.
> Centropages furcatus (Dimu).
> Canduce pachydactyla, Dana.
> - intermedea, n. sp.
> - truncata, Dana.

> Acartia laxa, Dena.
> l'ontellina plumata, Dawa.
> Oithona Challengeri, Bratly.
> Microsetelia atlantica, Brody \& Robertson.
> Miracia efferita, Inane
> Setella gracilis, Dana.
> Coryeans varius, Dana.
> - speciosus, Dena.
> - pellucidus, Dana.
> —— limbatus, Brenty.
> - venustus, Dena.

> Oncea obtusa (Dane).
> Copilia mirabilis, Dena.
> Lubbockia squillimana, Clous.
> Suphirina ovalis, Dana.
> - metatlina, Dena.

> Saphirinella stylifera (Lublock).

List X.-Tow-nct Gathering No. 59, 60 fathoms. Locality, date, and time of collection the same as List VILI. Temperature of water 60.2丂 F., sp. gr. 1•02629.

Encalanns setiger, Brady.
Rhincalanus cornutus, Denae.
Pleuromma abdominale (Lubboch).

Heterochecta spinifrons, Claus.
Lenckart ia flavicornis, Claus.
Enchata hebes, Giestrecht.

Candace pachydactyla, Dana.
Etidins armatus, Brady.
Phaemma spinifer, Claus.
Oithona Challengeri, Brudy.
Corycæus varius, Dence.

Coryceus speciosus, Dana.
Copilia mirabilis, Dana.
Saphirina metallina, Dana.
Saphirinella strlifera (Lubbock).

List X I.--Tow-net Gathering No. 60, 160 fathoms. Locality, date, and time of collection the same as List VIII. Temperature about $50^{\circ} \mathrm{F}$.

Paracalanus parvis (Clans).
Endina rulgaris, Dana.
Euchzeta inarina (Prestandrent).
Temora stylifera ($D(w a)$.
Centropages riolacens, Cluus.
Pontcllina plumata, Dena.
Jabidocera detruncata, var. intermedia.
Miracia efferata, Deru.
Setella gracilis, Dana.
Coryeæus varius, Duna.

Corycrus speciosus, Dana.

- pellncidus, Jema.

Onceaz obtusa (Dema).
Copilia mirabilis, Duna.
Saphirina oralis, Dena.
———inæqualis, Dana.

- opitea, Lubbocl:
- splendens, Dara.

Saphirinella stşlifera (Lubbock).

List XII.--Torr-net Gathering No. 61, 260 fathoms. Locality, dite, and time of collection the same as List VIII. Temperature of water about $16^{\circ} \mathrm{F}$.

Calanus valgus, Braty.
-_gracilis, Denu.
Encalauns atteruatus, Dena.
Rhincalanus corrutus, Deme.
Hemicalanus longicornis, Cleus.
Pleuromma ablominalis (Lubloch).
Heterochreta spinifrons, Claus.
Leuckartia fiaricornis, Cluws.
Scolecithrix Itane (Lulbock).
——Bradyi, Giesbrecht.
Atidius armatus, Bratly.
Euchæta marina (Prestandrea).
Candace pectinata, Rrady.

Candace pachydactyla, Dana.
Pontellina plumata, Dema.
Oithona Challengeri, Brady.
Miracia efterata, Denue.
Corycerns varius, Dana.
-_speciosus, Dunu.
—— pellucidus, Dana.
——limbatus, Brady.
Oncæa obtusa (Dana).
Copilia mirabilis, Duna.
Saphirina serrata, Brady.
Saphirinella stylifera (Lublock).
Saphirella abyssicola, nov. gen. et sp.

List NIII.-Tow-net Gathering No. 62, 360 fathoms. Loeality, date, and time of eollection the same as List VIII. Temperature of water about $43^{\circ} \mathrm{F}$.

Calanus propinquas, Bruty.
Paracalanus jarrus (Claus).
Eucalanus attenuatus, Dana.
lihincalanus cornutus, Dena. Hemicalanus longicormis, Claus.

- longicaudatus, Cluus.
- plumosus, Claus.

Augaptilis hecticus, Giesbrecht.
SECOND SERIES.-ZOOLOGK, VOL. VI.

Calocalanus paro (Dance).
I'leuromma abdominale (Lubbock).

- pinceps, n. su.

Lenckartia Havicornis, Claus.
Undina vulgaris, Dana.
Scolecithrix Dauie (Lubboch).
__ longicornis, n. sp.
——Bradyi, Giesbrecht.

Seolecithrix tenuipes, n. sp.
Amallophora dubia, nov. gen. et sp.
Eucheta marina (Prestundrea).
—_ barbata, Braly.
Atidius armatus, Brady.
—— armiger, Giesbrecht.
Clansocalanus arcuicornis (Dana).
Phyllopus hidentatus, Brady.
Temora stylifera (Danct).
Candace truncata, Dema.
Acartia laxa, Dana.
Mormonilla phasma, Giesbrecht.
Phaënna spinifera, Claus.
Pontellina plumata, Dena.
Oithona Challengeri, Brady.

- setiger, Dema.

Miracia efferata, Dunu.
Setella gracilis, Duna.
Agisthus Jongirostris, n. sp.
Corycens varius, Dana.
-_ speciosus, Dини.
-_ pellueidns, Dana.
———limbatus, Bracly.

- obtusus, Dana.

Oncera obtusa (D)emet).
-_gracilis (Lhena).
Copilia mirabilis, Dena.
Lubbockia squillimana, Cleres.
Saphirina inequalis, $D_{\text {enne }}$.
-_metallina, Dena.
Saphiriuella stylifera (Lublock).

List XIV.-Tow-net Gathering No. 63, 460 fathoms. Locality, date, and time of collection the same as List VIII.

Calanns propinquus, Brad!/.
——gracilis, Duna.
laracalanus parrus (Ctuzs).
Eucalanus attenuatus, Dema.
Rhincalanus cornutns, Dema.
Hemicalanus longicormis, Claus.
l'leuromma abdominale (Lubbock).
Heterochæta spinifrons, Claus.
Levekartia flaricornis, Clues.
Undina vulgaris, Uema.
Enchirella messinensis (Clars).
Amallophora dubia, nov. gen. it sp.

- magna, n. sp.

Euehreta marina ('restendiede).

Euchxta 11 essei, var. similis, n. var.
Atidius armiger, Giesbrecht.
Temora longicomis (Hüller). Candace varicans, Ciesluecht. Oithona Challengeri, Bratly. Microsetella atlantiea, Brodly \& Ihobertson.
longipedia minor, T. \& A. Scott.
Clytemnestra rostrata, Breedy. Setella gracilis. Doure. Coryexus varius, Dena.
-_speciosus, Demu.
——vemustus, Dera.
Oncea obtusa (Danke).
(?) Saphirina nigromaculata, Cluts.

List XV.-Tow-net Gathering No. 6S, 20 fathoms. Off São Thomé Island (lat. $3^{\circ} 34^{\prime}$ N., long. $6^{\circ} 30^{\prime} 4^{\prime \prime}$ E.). Collected after midday, January 23 rd .

Calanus valgus, Bredy.
-_ propinquus, Brady.

- gracilis, Dence.

Eucalanus attenuatus, Dana.
Rhincalunus cornutus, Dena.
Hemicalanus longicornis, Clurs.
-mueronatus, Cluus.
Augaptilis hecticus, Giieslorecht.
__ Rattrayi, n. sp.
Pleuromma abdominalo (Luhbock).
Heterochæta spinifrons, Cluus.

Lenckartia flavicornis, Cleus.
Undina vulgaris, Dune.
Scolecithrix Dane (Lubibock).

- Bradyi, Gieshrecht.
——_ ctenopus, Gieshrecht.
Euchaeta marina (I'restumerea).
-? sp.
Etidius armatns.
Clansocalanus arcuicornis (Dena).
Temora stylifera (Dana).
Mecynocera Clausi, I. C'. Thompson.

Candace pectinata, Brady.

- pachydactyla, Denu.
- truucata, Damu.
l'ontellina plumata, Derac
Stenhelia accracusis.
Setella gracilis, Dame.
Corycous rarims, Denu.
-_spreciosns. Dener.
—— pellucidas, Dena.

Corycæus limbatus, Braly.
Uncea obtusa (Dame).
Copilia mirabilis, Dana.
Lubbockia squillimana, Clons. saphirina ovalis, Dena.
——opaca. Lelhock.

- metallina. Dena.

Saphirinclla stylifera (Lubloock).

List XVI.-Tow-net Gathering No. 71, 15 fathoms, lat. $0^{\circ} 28^{\prime} 7^{\prime \prime} \mathrm{N}$. , long. $6^{\circ} 35^{\prime} \underline{2}^{\prime \prime} \mathrm{E}$. Collected about 6 p.m., January 23 rd.

Calanne valgne, Brarly.
-propinquas, Ihena.

- sracilis, Dante.

Paracalaus parrus (Claus).
Eucalanus attenuatus, Denu.
Rhincalanus cornutus, Hena.
Hemicalanus lonericorvis, Clans.
Heterocheta spinifrons, Claus.
Undina rulgaris, Duna.
scolecithrix Danæ (Lubloch).
—— Bradyi, Gizeslireclet.
Enchreta marina (Prcstemlira).
——heles, Gieshrechet.
Clausocalanus furcatus (Bracly).
Temora stylifera (Danu).

- longicornis, Wülles.

Centropages violaceus (c'lues).
Candace pachydactyla, Inena.
_ intermedia, n. sp.
Acartia laxa, Dena.

Pontellina plumata, Mena.
Oithoua Challengeri, Braly.
Microsetclla atlautica, Brouly \&. Rolvortson.
Miracia efferata, Iumu.
Clytemnestra rostrata (Brally).
Setella gracilis, Denu.
Corycaus varius, Denue.

- speciosus, Detra.
-_ pellucidus, Duena.
_-. limbatus, Brady.
-_renustus, Damu.
Oncæa obtusit (Dana).
Copilia mirabilis, Dara.
Lubbockia squillimana, (lars.
Saphirina ivequalis, Dena.
-_ opalina, Dunce.
- opaca, Lebbock.
- splendens, Demu.

Saphirinella stylifera (Lubloch).

List XVII.-Tow-net Gathering No. S2, surface, lat. $0^{\circ} 22^{\prime} \mathrm{S}^{\prime \prime} \mathrm{N}^{\prime} ., \operatorname{long} . \mathrm{S}^{\circ} 33^{\prime} 2^{\prime \prime} \mathrm{E}$. Collected about midnight, January 28th. Sp. gr. of the water $1 \cdot 02937$.

Calanus valgus, Brady.
Paracalanus parrus (Clares).
Eucalanus attenuatus, Dine .
Rhincalanus cornutus, Dana.
Leuckartia flaricornis, Cluus.
Uudina rulgaris, Dana.
Luchata marina (Prestemelra).
Temora stylifera (IJuna).
-_ longicoruis, Hiuller.
Centroparges furcatus (Dama).
Coudace pectiuata, Brady.
——intermedia, u. sp.
Pontellina plumata, Dance.

Oithoua Challengeri, Bract!.
Mierosetella atlantica, Brouly of Robertson.
Eutcrpe gracilis, Fal. armata, n. var.
Clytemuestra rostrata (Bicaly).
setella gracilis, Duru.
Corycæus varius, Detna.

- speciosus, Dencr.
—— pellucidus, Dena.
- obtusus, Dane.

Oncea obtusa (Dena).
Saphirina oralis, Duna.
-_insqualis, Dance.

List XVIII.--Tow-net Gathering No. 91, shore (low tide), São Thomé Island. Collected during the day, January 31st
Laophonto pygmæa, n. sp.
Machairopus idyoides, Brady.
-_ longipes, n. sp.

List XIX.-Tow-net Gathering No. 92 , surface, lat. $0^{\circ} 7^{\prime} 6^{\prime \prime}$ N., long. $6^{\circ} 59^{\prime} 2^{\prime \prime}$ E. Collected February 2nd, shortly after midday.

Calauus valgus, Brady.
Temora stylitera (Dana).
Pontellina plumata, Dana.
Oithona Cballengeri, Brady.
Microsetella atlantica, B. \& π.
Miracia efferata, Duna.

Corycæus varius, Dana.

- speciosus, Dana.
- pellucidus, Dana.
- venustus, Dana.
- obtusus, Dana.

Oncea obtusa (Dena).

List XX.-Tow-net Gathering No. 97, surface, lat. $0^{\circ} 45^{\prime} 8^{\prime \prime}$ S., long. $7^{\circ} 37^{\prime} 4^{\prime \prime}$ E. Collected February 3rd, shortly after midnight.

Calanus valgus, Braty.
Rbincalanus cornutus, Duna.
Lenckartia flavicornis, Claus.
Undiua rulgaris, Dana.
Seolecitbrix Bradyi, Giesbrecht.
Euchæta hebes, Girslrecht.
Temora stylifera (Dana).

- longicoruis (Mïller).

Candace intermedia, n. sp.
Labidoccra acutifrous (Dana).
Pontellina plumata, Deme.
Oithona Challcugeri, Bruly.
Euterpe gracilis, var. armata, n. var.

Microsctella atlantica, Bredy \& Robertson. Miracia efferata, Dena.
Clytemmestra rostrata (Brculy).
Setella gracilis, Dana.
Coryexus rarius, Dana.

- speciosus, Dena.
- pellucidus, Dana.
- limbatus, Brady.
- venustrns, Dema.

Oncrea obtusa (Danu).
Lubbockia squillimana, Claus.
Saphirina iuæqualis, Dana.

- serrata, Brally.

List XXI.-Tow-net Gathering No. II3, 30 fathoms, Station 23 (lat. $4^{\circ} 26^{\prime} 7^{\prime \prime}$ S., long. $10^{\circ} 1^{\prime} \mathrm{S}^{\prime \prime}$ E.). Collected between 11 A.m. and 3 p.m., February 5th. Temperature $82^{\circ} \cdot 1$ F., sp. gr. at noon $1 \cdot 02317$. This gathering contained a greater number of individual specimens, though not of species, than any other in the collection.

Jabidocera acutifrons (Dena).
Pontella securifera, Brady.
Oithona Challengeri, Brad!.
Corycans varius, Dunu.

- speciosus, Dena.

Oncea obtusa (Denu).
-_gracilis (Dumu).
Copilia mirabilis, Dana.

Copilia quadrata, Dana.
_- Rattrayi, n. sp.
Lubbockia squillimana, Cluus.
Saphirina inxqualis, Dona.
_- serrata, Brady.

- splendens, Danr.
-metallina, Dame.
Saphirinella stylifera (Lubbock).

List XXII.-Tow-net Gathering No. 119, 235 fathoms, Station 23. Date and hour of collection the same as last. At 200 fathoms the temperature was $55^{\circ} \mathrm{F}$., sp. gr. $1 \cdot 0264 \mathrm{~s}$.

Calanus valgus, Brady.

- mropincuus, Brady.
- gracilis, Dana.

Eucalanus atteruatus, Dana.

- spinifer, n. sp.

Rhincalanus cornutus, Dena.
Hemicalanus longicornis (Claus).

- phamosas, ctlaus.

Pleuromma abdominalo (Lubbock),
Heterochata spinifrons, Cluns.
Leuckartia tlaricomis, Clteus.
Scolecithrix minor, Bratly.
Euchata marina (Prestendrea).
Etidius armatus, Brady.
Mceynocera Clausi, I. C. Thompson. Acartia lasa, Dimu.
Mormonilla phasma, Giesbrecht.

Futerpe gracilis, var. armata, n. var.
Microsetella atlantica, Bratly of Roburtson.
Miracia efferata, Dana.
Clytemnestra rostrata (Bruly).
Setcllia gracilis, Dunu.
Egisthus longirostris, n. sp.
Oncea obtusa (Dena).
-_gracilis (Ihna).
Corycæus varins, $M_{\text {tur }}$.
-_ speciosus, Dent.
Copilia mirabilis, Dara.
Lubbockia squillimana, Cluus.
Saphirima splendens, Denu.
_-metallina, Deno.
Saphirinella stylifera (Labbock).
Artotrogus abyssicolus, n. sp.

List XIIII.-'Tow-net Gathering No. 133, surface, lat. $6^{\circ} 29^{\prime} 4^{\prime \prime}$ S., long. $11^{\circ} 2$ t $^{\prime} 8^{\prime \prime}$ E. Collected at 7.30 p.m., February Sth. Sp. gr. at S p.m. 1.02398.

Paracalanus parvus (Clurs).
Pleuromma abdominale (L mblock).
Lenckartia tlavicurnis, Claus.
Undina vulgaris, Hanu.
Scolecithrix Danse (Lubloch).
Temora dubia (Lubloch).
—— longicornis (Mullor).
Centropages brachiatus, Dena.
_furcatus, Duna.
Candace pachydactyla, Duna.
-_ intermedia, n. sp.

Pontellopsis rillosa, Brady.
Pontella securifer, Brady.
__ iuermis, Brutly.
Oithona seligera, Diena.
Microsetella atlantica, Brutly f hobertson.
Corycæus varius, Itana.

- speciosus, Dunu.
- obtusus, Dena.

Uncaa obtusa (Derna).
Lubbockia squillimana, Claus.

List XXTV.—Tow-net Gathering No. 137, surface, lat. $7^{\circ} 35^{\prime}$ S., long. $12^{\circ} 3^{\prime} 3^{\prime \prime} \mathrm{E}$. Collected at 5 A.m., February 9th. Sp. gr. at 4 A.m. 1.02623.

> Calanns ralgus, Brady.
> - propinquus, Brady.

> Paracalanus parros (Claus).
> Eucalanus attennatus, Dunu.
> Ithincalanus cornutus, Dema.
> Undina rulgaris, Dena.
> Scolecitbrix Danæ (Lubbock).
> Enchæta marina (Prestumlrea).
> 'Temora dubia (Lublock). - lougicornis (Miuller).

> Caudace pectinata, Brady.
> Acartia laxa, Dena.
> l'ontellopsis rillosa, Brady. Labidocera acutifrons (Dina).

Pontella securifer, Brady.
-_ inermis, Brady. Oithona plumifera, Dana. Corycerus speciosus, Dunue.

- pellucidus, Dana.
—— limbatus, Bredy.
Oncea obtusa (Danct).
Copilia mirabilis, Lana.
Lubbockia squillimana, Clurs.
Saphirina insequalis, Dana.
-- opalina, Dana.
- splendens, Daru.

Saphirinella stylifera (Lubloch).

List XXV.--Tow-net Gatherings Nos. 111, 142, 143, 144, and 145, surface, Loanda Harbour. Collected during the afternoon, February 13th and 15th. Surface-temperature at noon on the 13 th was $78^{\circ} \cdot 2 \mathrm{~F}$.; at noon on the 15 th the surface-temperature of the seaward part of the Harbour, where all the tow-net gatherings, except No. 141, were collected, was $79^{\circ} \cdot \mathrm{F}$. Few species were observed in any of the Loanda Harbour gatherings.

Eucalaus attenuatus, Dana. Temora longicornis (Miller). Ceutropages brachiatus, Dana.
——furcatus, Dana.
Acartia plumosa, n. sp.
l'aracartia dubia, a . g. et sp .

- spinicaudata, n. g. et sp.

Oithona setigera, Dana.
-_ minuta, n. sp.
Longipedia minor, T. \& A. Scott.
Euterle gracilis, rar. armata, n. гar.
Corycreus olitusus (Dana).
Hersiliodes Livingstoni, n. sp.
Lichomolgus propinquus, n. sp.

COPEPODA.

INDEX TO GENERA AND SPECIES.

Acartia, Dtint ${ }^{\text {age }}$ (j5	Stidius, Brotly $\begin{array}{r}\text { Page } \\ \text { \%u }\end{array}$	hora typica, n. sp. . . . Page 54
Clausi, (îis shrecht 67	armatus, Bracly T0	Amymone, Claus.............. 94
denticornis, Bredy ¢6	armiger, Giesturcht 71	Andrewi, n. sp. 94
laxa, Dana 65	Amallophora, nor. subgen. . . . 54	Artotrogus, Boeck 128
plumosa, n. spl........... . 66	dubia, n. sp............. 55	abyssicolus, n. sp. 128
Egisthus, Giusbrecht 104	magna, ı. sp. 55	Augaptilis, Giesbrccht 34
longirostris, n. sp. 104	rolusta, n. sp. 56	hecticus, Giesbrecht...... 35

Page
, 92 92 $\because 4$ 26 $\because 5$ 5 .)4Euchæta, Philippi -
和 57 australis, Bratly $5 s$ larbata, Brarly 54 gigas, Bratly 55 hebes, (Fiesbucht 59 rar. valida, nov. var. .. 60 Hessci, Brudy, var. similis. 55 marina (Prestemetrea) 57 pulchra (Lublock) 57
Euchirclla, Fiestrech 45 messinensis (Clues)...... to
Eutcrpe, rlues. 93 gracilis, Clueus, var. armata,
n. var. 93

Harpacticus, H.-Ehmorls 102 chelifer (Müller), var..... 102
Hemicalanus, Clues........... 32 longicornis, Clans 32 mucronatus, Claus 33 plumosus, Clutes 33
Hersiliodes, Cumu 118 Livingstoni, 11. sp. 118
Hessolla, Brady 131 cylindrica, Bratly 131
Heterocalanus, n. gen. 3 , serricaudatns, n . sp. to
Heterochæta, Clans.......... . 4:; spinifrous, Cluns $4: 3$
1lyopsyllus, Braty f Robertson. 101 affinis, n. sp. 101
Labidocera, Lublock s. s. acutifrons, Demu 8 s acutum. Detere 85 Darwinii, Lelbork 83 detruncata, Dena, var. . s. s
Laophonte, Mhilippi............ ! 16 brevicoruis, n. sp. 97 longipes. n. sp. 96 prgmiea, n. sp............. 97
Laophoute scrrata (Clans) 90 96
Leuckartia, ('laus
Havicornis, Clars. 44
Lichomolgus, Thorell 120
congoensis, in. sp. 120
Lougipedia, C7aus 91
minor, T. S. A. Scott 91
Lubbockia, Clues 115
squillimana, Claus 11.5
Machairopus, Brenty 104
idyoider, Broul! 10.4
Mecynocera, I. C. Thompson 80
Clausi, I. C. Thompson 80
Microsetella, Bratly \& Robertson. :1latlantica, Brecly \& Rulert-
sore 91
Miracia, Duna 102
efferati, Dame 102
minor, n. sp 102
Mormonilla, Criestrecht (if
phasma, Cricsbrecht 64
Nogagus, Lectch 130
validus, Dene 130
Oithona, Buiral 89
Challeugeri, Bracty S9
minuta, in. \&p 90
plumifera, lneme 89
setigera, Diene 91
Oncra, thilip? 116
gracilis (Dunu) 116
mediterranea (Cluns) 117
obtusa (Demir) 116
l'achysoma, Clazs 119
punctatum, Cleus 119
Paracalanns, Boerto 26
parvus (Cluns). 26
prgmæus (Clues) 27
Paracartia, n. gen. 68
dubia, n. sp. 69
spinicaulata, n. sp. 69
Phoënna, Cleus S1
spinifera, C'luess 81
Puyllopus, Brarly 74
bidentatus, Bradly $7 t$
l'euromma, cluus II
abdominale (Latboch) 11
gracile, Clures 42
princeps, n. sp. 42
l'ontella, Dence 85

	Pago
Pontella inermis, Brady mediterranea (Claus) securifera, Brady.	85
	86
Pontellina, Daue	
plum	88
Pontellopsis, Bratly	
villosa, Bretly	
Pontops.	
elongatus, n. sp. 131	
Psendanthessius, Claus 12	
propinquus, n. sp. 1ٌl	
Rhincalanus, Denet 30	
aculeatus, n. sp.	
cornutus, Dana	
Saphirclla, n. gen. 126	
abyssicola, n. sp. 126	
Saphiriua, I. C. Thomp	
næqualis, Da	

	Page
Saphirina metallina, Dune opaca, Lubloock.	
opalina, Denue	3
oralis, Dena.	122
serrata, Brady.	23
sinuicauda, Bredy	125
splendens, Dant	12
Saphirinella, Cleus.	126
stylifera (Lublock)	120
Scolecithrix, Braty	7
Bradyi, Giesbrecht	
ctenopus, Giestrecht	
Dana (Lubhoch)	49
dubia, Giesbrecht	
latipes, n. sp.	
longicornis, n. sp.	
major, n. sp.	52

Scetion I. GNATIOSTOMA, Thorell.

> Family CALANIDE.

Genus Calanus, Leach.

1819. Calanus, Leach, Dict. Nat. Sci. vol. xiv. Art. Entomostraca.

Calanus valgus, Brady.
1883. Calanus valgus, Brady, 'Challenger' Copepoda, p. 33, pl. iii. figs. 1-7.

Ifabitat. Station 2 (lat. $7^{\circ} 54^{\prime} \mathrm{N} .$, long. $17^{\circ} 25^{\prime} \mathrm{W}$.), in 5 and 25 fathoms, tow-nettings, Jamary lst (night collection). Lat. $3^{\circ} 55^{\prime} \mathrm{N}$., long. $3^{\circ} 42^{\prime} \mathrm{W}$., in 25 and 50 fathoms, tow-nettings, January 13th (day collections). Bananah Creck, Mouth of the Congo, surface tow-uetting , day collection). Lat. $7^{\circ} 51^{\prime} 6^{\prime \prime} \cdot S$, long. $11^{\circ} 14^{\prime} 7^{\prime \prime}$ E., surface tow-netting (night collection), de.

This species was obtained in 55 tow-nettings, 24 of which were surface nettings and 31 muder-surface nettings: 5 of the surface and 22 of the under-surface nettings were day collections, while 19 surface and 11 under-surface nettiugs were night collections, as shown in the amexed formula :-
Tow-nettings $55\left\{\begin{array}{l}24 \text { surface } \\ 31 \text { under-surface }\left\{\begin{array}{l}5 \text { day collections. } \\ 19 \text { night ditto. } \\ 22 \text { day ditto. } \\ 11 \text { night ditto. }\end{array}\right.\end{array}\right.$
The under-surface tow-nettings ranged from 5 to 260 fathoms. Calanus valyus was taken in the open sea, where the specific gravity of the water was $1 \cdot 02620$, and the
temperature S2.2 F., and at Bananah Creek, where the sp. gr. of the water was 1.00870 and the temperature $82^{\circ} \mathrm{F}$. It was also captured at a depth of 260 fathoms (as recorded above), where the temperature of the water was about $46^{\circ} \mathrm{F}$. This species is thus apparently able to exist under very raried conditions, as regards the density and temperature of the water. It also appeared to be generally distributed throughout the area examined, but was more plentiful near, and sonth of, the Equator. The flexed position of the right fifth foot of the male, referred to by Dr. Brady in lis Report on the 'Challenger' Copepoda, was also observed in many of 'Buccancer' specimens.

Calantes propinquels, Brady.
1883. C'alamus propinquиs, Brady, op. cit. p. 31, pl. ii. figs. 1-7, pl. xiv. figs. 10, 11.

Habilal. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms, day collection, January 22nd. Station 23, surface and 235 fathoms, day collections, February 5th.

This species, though only satisfactorily identified in tow-nettings from the localities deseribed, may hare occurred in others. Usually I was unable to identify this Calemus with certainty, exeept by carefully dissecting the specimens; hence the probability of its being of more frequent oceurrence in the collection than the few localities given for it would seem to indicate.

Calanus toxsus, Brady.
1883. Calanus tonsus, Brady, op. cit. p. 34, pl. iv. figs. 8, 9.

Hubitet. In a tow-netting from Station 23, a surface gathering.
The large and tumid first abdominal segment seems to be a fairly good character of this species.

Calayus gracilis, Dana.
185:. Calamus gracilis, Dana, Crust. U.S. Expl. Exped. p. 1078, pl. lxxiv. fig. 10.
1883. Calanus yracilis, Brady, op. cit. p. 35, pl. r. figs. 1-6, and pl. xlvi. fig. 1.

Hubitat. Station 2, 5 fathoms, night tow-netting, January 1st. Station 3, 25 fathoms, January 2ud (day collection). Lat. $3^{\circ} 22^{\prime} 5^{\prime \prime}$ N., long. $4^{\circ} 11^{\prime} 8^{\prime \prime}$ E., 30 fathoms, January 20th (night collection). Station 21, surface, February 3rd (day collection). Station 23, surface and $\mathbf{2 3 5}$ fathoms (the first a day, the other a night collection).

Calonus gracilis was obtained in 19 tow-nettings- 4 of these were surface gatherings and 15 were under-surface gatherings. 2 of the surface and 12 of the under-surface townettings were day collections, while 2 oif the surface and 4 of the under-surface were night collections, as in the formula :-
Tow-nettings $19\left\{\begin{array}{c}4 \text { surface }\left\{\begin{array}{l}2 \text { day colleetions. } \\ 2 \text { night ditto. }\end{array}\right. \\ 15 \text { under-surface }\left\{\begin{array}{c}12 \text { day ditto. } \\ 4 \text { night ditto. }\end{array}\right.\end{array}\right.$
The under-surface tow-nettings ranged from 5 to 460 fathoms. Though frequent in a few of the gatherings in which it occurred, Calanus gracilis was not a common species,

SECOND SERIES.-ZOOLOGY, VOL. FI.
but was, nevertheless, widely though sparingly distributed throughout the greater part of the area examined. The specimens obtained were mostly females, and were readily distinguished from the other species of Calanus by the long anterior antennie and the peculiar terminal spine of the first swimming-feet.

P Calanus comptus, Dana. (Pl. V. figs. $46-50$; Pl. VI. figs. 1-5.)
1853. Calanus comptus, Dana, Crust. U.S. Expl. Exped. p. 1050, pl. lxxii. fig. 2 a

Male. Length, exclusive of tail-setæ, 33 mm . Body composed of six segments, the first as long as the entire length of the other five. Anterior antenne scarcely longer than the cephalothorax, 23 -jointed, and very sparingly setiferous; the proportional lengths of the joints are nearly as in the formula :-

Posterior antenne and mouth-organs nearly as in Calanus finmarchicus. The first four pairs of swimming-feet closely resemble those of Cul. gracilis, Dana, the peculiar terminal spine of the outer branches of the first pair in both species being almost identical. The fifth pair also resemble those of that species, as figured in the 'Challenger' Copepoda, except that the small secondary branch is 3 -jointed. Abdomen short, 5 -jointed, the second segment rather longer than any of the others. Caudal stylets short.

Habilat. Lat. $6^{\circ} 34^{\prime} \mathrm{N}$., long. $12^{\circ} 39^{\prime} \mathrm{W}$., surface collection. One or two specimens only were obtained.

This Calanus so closely resembles Calamus gracilis in many respects that I am inclined to consider it as simply a variety of that species.

Genus Paracalanus, Bocek (1861).

Paracalants parytes (Claus). (Pl. I. figs. 9-14.)
1863. Calunus parvus, Claus, Die freilebenden Copepoden, p. 173, t. xxvi. figs. 10-14, t. xxvii. figs. 1-1. 1864. Paracalanıs parver, Boeck, Oversigt Norges Copepoder, p. 232.

Length 1.12 mm . Cephalothorax elongate-orate, rounded in frout and behind. Anterior antenne reaching to the end of the caudal stylets, 24 -jointed; the proportional lengths of the joints are as follow (antennie the same in both sexes):-

$$
\frac{35 \cdot 25 \cdot 12 \cdot 12 \cdot 10 \cdot 10 \cdot 12 \cdot 13 \cdot 10 \cdot 10 \cdot 10 \cdot 13 \cdot 12 \cdot 13 \cdot 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15 \cdot 15 \cdot 13 \cdot 14 \cdot 15 \cdot 27}{2 \quad 3 \quad 4} \frac{6}{2} \frac{10}{2}
$$

Posterior antennæ and moutl-organs as in Calenns. The inner branch of the first pair of swimming-feet 2-jointed, about as long as the first two joints of the outer branch; the basal joint of the peduncle bears a stout plumose scta near the inner distal angle. The basal joints of both branches of the fourth pair are small, the second and third joints of the inner branch and the second joint of the outer branch are furmished on the side witl an armature of spines as in the figure (fig. 11), and the outer margin of the last joint of the outer branch is distinctly dentate from the base to the first marginal
spine. All the first four pairs of swimming-feet have the inner margins of both branches fumished with long plumose hairs. The fifth feet in the male are 1 -branched-the right short, 3 -jointed, and terminating in two short spines of unequal length; the left 5-jointed, apparently hinged between the first and seeond joints; length of the joints subequal, the last terminating in two small spines. Fifth pair of feet in the female 1-branched, 2-jointed, the last joint mueh narrower than the first and terminating in one long and one short spiniform setæ.

Hubitet. Lat. $6^{\circ} 34^{\prime} \mathrm{N} .$, long. $1 \vartheta^{\circ} 39^{\prime} \mathrm{W}$., surface, January 6th (day collection). Off Accra, 3 fathoms, January 15th (night collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $5^{\circ} 55^{\prime} 55^{\prime \prime} \mathrm{E}$., $10,20,30,360$, and 460 fathoms, January 22nd (day collection). Station 18, surface tow-netting, February 3rd (day collection). Station 24 (off the mouth of the Congo River), surface tow-netting, February Gth (day collection). Lat. $\Xi^{\circ} 9^{\prime} \mathrm{S}^{\prime \prime} \mathrm{S} .$, long. 11° $10^{\prime} 4 \prime$ " E., surface tow-netting, Febrnary 19th (day collection), \&e.

Paracalanus parves oceurred in 19 tow-nettings, 29 of which were surface and 20 under-surface gatherings. The under-surface tow-nettings ranged from $2 \frac{1}{2}$ to 460 fathoms. 11 of the surface and 16 of the under-surface tow-nettings were day collections, while 18 surface and 1 under-surface were night collections, as in the formula :-
Tow-nettings $19\left\{\begin{array}{l}29 \text { surface }\left\{\begin{array}{l}11 \text { day eollections. } \\ 18 \text { night ditto. }\end{array}\right. \\ 20 \text { under-surface }\left\{\begin{array}{c}16 \text { day ditto. } \\ 1 \text { night dito. }\end{array}\right.\end{array}\right.$
This species was comparatively frequent in all the gatherings in which it was observed.

Paracalants pýguees (Claus). (Pl. I. figs. 1-8.)
1863. Calanus pygmeus, Clans, Die freilebenden Copepoden, p. it.

Female. Length 7 mm . (1-36th of an inch). Body robust, composed of four segments, the first being fully twice the entire length of the onter three; rostrum short, stout, prominent. Anterior antcnne reaching beyond the eephalothorax, 21-jointed, sparingly setiferous; setie mostly small, exeept towards the extremity, where there are several moderately long hairs; the proportional lengths of the joints are as shown in the formula :-

```
30.6.5.5.5.5.5.5.6.7.8.8.8.8.8.7.8.11.8.12.11.12.10.15
    1##
```

Posterior antenne small, provided with moderately long seter; the primary branch eomposed of tro nearly equal joints; secondary hranch fully half the length of the other ; 7 -jointed, the third, fourth, and fifth joints rery short, the others longer and subequal. Mouth-organs as in Paracalamus parcus. The swimming-fcet are also similar to those of that speeies, but differ in their armature, especially in having the second as well as the last joints of the outer branches of the sceond, third, and fourth pairs serrate on the outer margin, in the terminal spines being proportionally smaller, and in both branches
of the fourth pair being more slender. The fifth pair rescmble those of Paracalanus parvus, but are proportionally stouter and have mueh shorter terminal spines. Abdomen small, composed of four segments, the second and third segments very short. Caudal stylets nearly as long as the last abdominal segment, breadth about half the length; apical setæ four. No males were observed.

Habitat. Lat. $3^{\circ} 57^{\prime} 2^{\prime \prime}$ N., long. $7^{\circ} 42^{\prime} 8^{\prime \prime}$ W., 2 fathoms, January 9 th (night collection). Libreville, Gaboon River, surface, January 2Sth (day collection). Bananah Creck, Congo River, surface, February 7 th (day collection).

Comparatively few specimens of Paracalumus pygmeus were obtained.

Gemus Eucalanus, Dana.
Eucalamus and Calamus (in part), Dana, Crust. U.S. Expl. Exped. (1852).

Edcalanus attenuatus, Dana.
1852. Calames attenuatus, Dana, loc. cit. p. 1080, pl. lxxv. fig. 2.
1856. Calanus mirabilis, Lubbock, Trans. Entom. Soc. vol. iv. pl. v. figs. 1-6.
1883. Euculamus attemuatus, Brady, op. cit. p. 38, pl. ii. figs. 8-10, pl. vi. figs. 1-8.

Mabitat. Station 2, 5, 25, and 50 fathoms tow-nettings, January 1st (night collections). Station 9, 25 and 50 fathoms tow-nettings, January 10th (day colleetions). Station 14, 10 fathoms tow-netting, January 21st (night collection). Lagoon Island, Sino Thomé, surface tow-netting, Jamary 28th (night collection). Station 23, surface, 10, 20, 55, 135, 185, and 235 fathoms tow-nettings, February 5th (day collections). Bananah Creek, Congo River, surface tow-netting, February 7th (day eollection). Loauda Marbour (seaward), surface, Feloruary 15th (day collection).

This was one of the more common and generally distributed species in the 'Buccaneer' collections. It occurred in 89 tow-nettings, 41 of these being surface and 48 undersurface gatherings. The under-surface tow-nettings ranged in depth from 2 to 460 fathoms. 18 of the surface and 35 of the under-surface gatherings were collected during the day, while 23 of the surface and 13 of the under-surface were collected during the night, as in the formula:-

$$
\text { Tow-nettings } 89\left\{\begin{array}{l}
41 \text { surface }\left\{\begin{array}{l}
18 \text { day collections. } \\
23 \text { night ditto. }
\end{array}\right. \\
48 \text { under-surface }\left\{\begin{array}{l}
35 \text { day ditto. } \\
18 \text { night ditto. }
\end{array}\right.
\end{array}\right.
$$

Eucalanus attenuatus was taken at the surface in the open sea, the specific gravity of the water being 1.02543 and temperature $85^{\circ} \cdot 5 \mathrm{~F}$., and at 360 fathoms with the temperature of the water at about $43^{\circ} \mathrm{F}$. It was taken off the mouth of the Congo River, where the specifie gravity of the water was 1.01981 and the temperature $S 2^{\circ} \mathrm{F}$. (the colour of the water here, -lat. $5^{\circ} 54^{\prime} 3^{\prime \prime}$ S., long. $11^{\circ} 33^{\prime}$ E., —was "brownish olive-green to amber-hrown "), and at Bananah Creek, where the specifie gravity was only $1 \cdot 00870$. It will be observed from these records that this Eucalumus is able to live in water of very varied character, as regards density and temperature. A species capable of existing
under such id diversity of conditions might be expected to have a wide distribution, and such is the case witl this Eucutenus. Dana has recorded it from the Pacific and China Seas. In the 'Challenger' Report it is recorded from the Malayan and Aastralasian Seas. Sir John Lubbock has recorded it from the Bay of Biseay * and Mr. I. C. Thompson from Madeira and the Canary Islands \dagger. Prof. Claus records a Calanella from the Mediteranean, which Dr. Brady thinks is "in all probability identical with the present species."

Eucalinus splafifer, n. sp. (Pl. I. figs. 15-23.)
Length 5.5 mm . Forehead triangular; rostrum as in Eucultmus attenuatus ; posterolateral angles produced and spiniform; anterior antennæ 22 -jointed, reaching to the extremity of the caudal stylets, the proportional lengths of the joints are nearly as follows :-

```
40.11.11.12.12.13.20.15.20.25.29.27.29.25.29.24, 29, 27, 24. 23.13.10
```

The secondary branch of the posterior antenne small, 7 -jointed, the two basal and the terminal joints longer than the others, both branches furnished with mumerous phmose hairs. The secondary branch of the mandible-palp 3-jointed, stouter and nearer the distal end of the large basal part than that of E. attenuatus; both branches furnished with a number of long hairs, those of the secondary branch being setiferous from the middle to near the extremity (fig. 17). Interior and posterior foot-jaws as in E. attenuatus. The inner branches of first pair of swinming-feet 2-jointed, joints subequal; the following three pairs as in Eucalants attemutus. Fifth pair of feet in the make 1-branched, each branch 1 -jointed, the last joint terminating in a long somewhat curved spine; on the inner margin and near the base of the spine springs a stout plumose hair, the leugth of which exceeds that of the terminal spine. Abdomen very short and 3jointed, the basal joint as long as the other two together. Candal stylets mearly as longr as the last two abdominal segments, each stylet furnished with five plumose hairs, the inner one beinğ about half the length of the other four, which are about equal.

Hubitat. Station 9, 50 fathoms tow-netting, January loth (day collection). Lat. $5^{\circ} 10^{\prime} \mathrm{N} .$, long. $3^{\circ} 56^{\prime} 2^{\prime \prime} \mathrm{W}$., inshore surface tow-netting, January 12th (night collection). Lat. $35^{\prime} \mathrm{N} .$, long. 3 42' W., 25 fathoms tow-netting, January 13th (day collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$., 35 fathoms tow-netting, January 2end (day collcetion). Lat. $4^{\circ} 26^{\prime} 7^{\prime \prime}$ S., long. $10^{\circ} 1^{\prime} \mathrm{S}^{\prime \prime}$ E., 238 fathoms tow-netting, February 5 thi (day collection).

The tow-nettings from the localities described were the only gatherings in which this Eucalemus was observed, but, though its distribution was limited, a considerable number of specimens were obtained. Its chief and most apparent distinctive characters are the spiniform lateral imgles of the last thoracie segment and the form of the male fifth feet. Eucalanus spinifer is also a larger and more robust species than Eucalanus attenutus. which it closely rescmbles.

Eucalanus setiger, Brady.
1883. Eucalamus setiger, Brady, op. cit. p. 39, pl. iii. figs. 8-15.

Habitat. Station 2, 50 fathoms, January 1st (night collection). Station 9, 50 fathoms, Jannary 10th (day collection). Off Aecra, surface and 3 fathoms tow-nettings, January 16th (day collection). Lat. $0^{\circ} 45^{\prime} S^{\prime \prime}$ S., long. $7^{\circ} 37^{\prime} 4^{\prime \prime}$ E., surface tow-netting, February 2nd (night collection). Bananah Creek, Congo River, surface tow-netting, February 7th (day collection), \&e.

Eucalanus setiger was observed in 32 tow-nettings, 15 of which were surface and 17 muder-surface gatherings. The under-surface tow-nettings were from varions depths, ranging from 3 to 60 fathoms. Of the surface gatherings 10 of them were day, and 5 (inchuding 1 elose inshore) were night eollections. Of the under-surface gatherings, 11 were day and 6 were night collections, as in the formula :-

By comparing this with other formule it will be observed that Encalames seliger oceured in a proportionally greater number of day surface tow-nettings than do the majority of the species recorded in this Report, the occurence of which is frequent enough to admit of eomparison. This difference may only be due to accidental causes; nevertheless it seems of sufficient interest to be worth noting, as possibly indicating less susceptibility to the influenec of daylight or sunlight than those species which occur more frequently in might than in day surface eollections.

Eucalanus setiger, like Eucalams attonuatus, seems able to exist under very varied conditions as regards the density and temperature of the water : it was obtained in the opeu sea at Station 2 (50 fathoms), the density of the water being about 1.02620 and temperature (corrected) $56^{\circ} \cdot 85 \mathrm{~F}$. ; at Station 23 (surface), density 1.02347 and temperature $S 2^{\circ} \cdot 1 \mathrm{~F}$. ; and at Bananah Creek, where the density of the water was only $1 \cdot 00870$. This may readily be distinguished from the other Eucalani of this Report by its smaller size and by lateral setac on the last two thoracie segments.

> Genus Rhincalanes, Dana (1852).

Rhincalanus cornutus, Dana.
1852. Rhincalamus cornutus, Dana, loc. cit. p. 1083, pl. 1xxvii. figs. 2a-l.
1883. Rhincatanus cormotus, Brady, op. cit. p. 41, pl. vii. figs. 1-10.

Halitat. Station 3, 100 fathoms tow-netting, January 2nd (day collection). Station 9, 25 and 50 fathoms tow-nettings, January 10th (day collection). Station 14, 10 and 20 fathoms, Jannary 21st (night eollection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 55^{\prime \prime}$ E., 30, 60, 260, 360, and 460 fathoms tow-nettings, Jannary 22nd (day collections). Station 23, surface, and 10, 20, 85, 135, 185, and 235 fathoms tow-nettings, February 5th (day collections), \&e.

This species was observed in 70 fow-nettings, 29 of these were surface and 41 undersurface gatherings. The under-surface comprised tow-nettings from rarious depths from 3 to 460 fathoms. 9 of the surface and 30 of the under-surface tow-nettings were collected during the day, while 20 surface and 11 under-surface were collected during the night, as shown by the formula :-
Tow-nettings $70\left\{\begin{array}{l}29 \text { surface } \\ 11 \text { under-surface }\left\{\begin{array}{l}9 \text { day collections. } \\ 20 \text { night ditto. }\end{array}\right. \\ 30 \text { day ditto. } \\ 11 \text { night ditio. }\end{array}\right.$
The superficial and bathymetrical distribution of Rivinculemes cormutus was co-extensive with the area examined, exeept that, unlike either Encalanus attenuatus or setiger, it was not obtained in any gathering from Bamanah Creek or Loanda Harbour, where the specifie gravity approximates so elosely to that of fresh water. I have not observed a single specimen among the large number that have passed through my hands that could be ascribed to Rhinculcuns gigas, Brady.

Ruincalanus actleatus, 12. sp. (Pl. II. figs. 11-2 l.)
Length about 3.9 mm . (exclusive of tail-setie, which were fully 1 mm . in length). Body orate, attenuate towards the head. Forehead produced forward into a strongly spiniform rostrum. The postero-lateral angles of the last thoraeic segment are produced backward into spine-like processes. The anterior antenne long and slender, reaching to beyond the eaudal stylets, 21-jointed ; the proportional lengths of the joints are nearly as follows:-

$$
\begin{aligned}
& 170 \cdot 42 \cdot 17 \cdot 15 \cdot 14 \cdot 14 \cdot 10 \cdot 9 \cdot 9 \cdot 12 \cdot 13 \cdot 45 \cdot 54 \cdot 59 \cdot 72 \cdot 50 \cdot 020.80 \cdot 80 \cdot 30
\end{aligned}
$$

The anterior antemac are sparingly setiferous. The secondary branch of the posterior antenne about two-thirds the length of the primary branch, 6 -jointed, the first joint fully half as long as the second, the third, fourth, and fifth small, the last as long as all the preeeding three together ; the end of the primary branch is furnished with four long plumose sete and a small plain one; two plumose setre spring from the end of the last joint of the secondary branch and one from each of the preceding four joints. Mandible stout, the distal end with four teeth, three of which are elose together and one separated from the others by a deep and moderately wide simus. I failed to observe a mandiblepalp. The maxilla-palp furnished with three very long setie, which are plumose from the middle. The anterior loot-jars resemble those of Hemicultentes more closely than those of Rhincalemes. The posterior foot-jaw as in Rhincalunus cornutus, but differing in being furnished with three ciliated heart-like processes, two of which are on the under margin and near the end of the first segment and one on the upper margin of the second segment. Both branches of the first four pairs of swimming-feet 3-jointed, the second of the two basal joints of the first feet is produced on the inside so as to form a stout process to which the imner branch is attached. A stout eurved spine springs from the end of the posterior margin of the second joint of the outer branch of the second pair of swimming-
feet, which is fully lialf as long as the next joint. The end of the last joint of the onter branch of the first pair is furnished with a stout plumose spinous seta, while the outer branches of the next three pairs have each a terminal falciform spine ciliated on the inner margin and fincly serrate on the onter margin. Fifth pair of feet 2 -branched, inner branch l-jointed, rudimentary, and bearingg at its apex a long plumose seta; the outer branch 2 -jointed ; an extromely long slender seta springs from the outer edge near the proximal end of the second basal joint on both sides. The terminal joints of both of the outer branches bear several small spines on the outer margin and one on the inner margin. Abdomen short, 4-jointed; second and third joints smaller than the first, sulsequal. Caudal stylets fully as long as the last abdominal segment, and furnished with densely plumose dark-coloured setee.

Habitat. Lat. $6^{\circ} 35^{\prime} \mathrm{N} .$, long. $12^{\circ} 37^{\prime}$ W., 25 fathoms tow-netting, January 6 th (day eollection). One specimen only of this curious form was obtained.

Rhinctlamus aculeatus differs somewhat from the generic characters of Rlincalamus as described by Prof. Brady in the number of joints of the anterior antennæ, the comparatively long terminal joint of the secondary branch of the posterior antenne, and in the form of the mandible and maxilla, but agrees with the other characters; I have therefore included it in that genus.

> Gemus Hemicalanus, Claus, 1863.
> Hemicalamus, Claus, Die freilebenden Copepoden, 1863 (not Hemicalanus of Dana) ; Brady, 'Challenger' Copepoda, 1883.

Hemicalanus longicornis, Claus.
1863. Hemicalanus longicornis, Claus, loe. cit. p. 179, pl. xxix. fig. 1.
1883. Hemicalanus longicornis, Brady, op. cit. p. 44, pl. ix. figs. 1-5.

Habitat. Station 2, 25 and 50 fathoms, Jannary 1st (night collection). Station 3, 100 fathoms (day eollection). Station 9, 50 fathoms (day collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E} ., 30,260,360$, and 160 fathoms (day collections). Station 23, surface, and 10 , 20, 85, 135, 185, and 235 fathoms, January 5th (day collections).

Hemicalanus longicomis was oltained in 26 tow-nettings, but only one of these was from the surface, all the others were under-surface gatherings and ranged in depth from 5 to 160 fathoms. 21 of these tow-nettings (inchuding the surface gathering) were day collections, while 5 were night collections, as shown in the formula :-
Tow-nettings $26\left\{\begin{array}{l}1 \text { surface } \\ 25 \text { under-surface }\left\{\begin{array}{c}1 \text { day collection. } \\ 20 \text { day collections. } \\ 5 \text { night ditto. }\end{array}\right.\end{array}\right.$
This Hemicalams was of frequent occurrence in some of the tow-nettings. It was very rommon in a gathering from 35 fathoms, collected on the 22nd January in lat. $1^{\circ} 55^{\prime} 55^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$.; in this gathering eighty-five perfect specimens, besides a number of others more or less damaged, were obtained.

Hemblalanes plumoses, Clams. (Pl. II. fig. 6; Pl. VI. fig. 6.)
1863. Hemicalanus plumosus, Clans, Dic freilebenden Copepoden, p. 178, pl. xxviii. fig. 12, pl. xxix. figs. 1- $\overline{\text {. }}$
Hubitat. Station 2, 50 fathoms (night collection). Lat. $6^{\circ} 38^{\prime}$ N., long. $12^{\circ} 37^{\prime}$ W., 25 fathoms (day collection). Lat. $3^{3} 55^{\prime} 3^{\prime \prime}$ N., long. $4^{\circ} 7^{\prime} 3^{\prime \prime} \mathrm{E}$., 30 fathoms (day collection).
 and 235 fathoms (day collections).

This appears to be a scarce species in the 'Buecancer collections; only a few specimens have been ohtained. Claus (loc. cit.) gives a very full deseription and some very good figures of this Hemicalams. Hemicalans plumosus comes very near Hemicatomus orientalis, Brady, described in the 'Report on the 'Challenger' Copepoda.'

Hemicalanus mucronatus, Claus.

1863. Hemicalame mucronalus, Clans, loc. eit. p. 179, pl. xxix. fig. .2.

Length (exclusive of the tail-sete) of the specimen figured 3.8 mm . (the length varies in different specimens). Body somewhat eylindrical. Head pyramidal, the apex mucro-nate-in some specimens spiniform, the postero-lateral angles of last thoracie segment rounded. Anterior antennæ, reaching to beyond the caudal stylets, 25 -jointed. The proportional lengths of the joints are represented very nearly by the anmexed formula:-

Posterior antenn te smilar to those of II. plumosus. The mouth-organs are also similar to those of that species, except that the anterior foot-jaws are weaker, the spines on the second and third joints of the same foot-jaws are shorter and more slender, and the terminal setce of both anterior and posterior foot-jaws are not spiniferous or ciliated as in Hemicalans phemosus. The swimming-fect are similar to those of Hemicalames plumosus. Abdomen 4-jointed, first segment much larger than the others. Candal stylets short, divergent, the terminal setee densely plumose.

Habitat. (1) Station 2, 50 fathoms tow-metting, January 1st (night collection). (2) Lat. 3° ag $^{\prime}$ N., long. $3^{\circ} 42^{\prime}$ W., 25 fathoms tow-netting, January 13th (day collection). (3) Lat. $3^{\circ} 22^{\prime} 5^{\prime \prime}$ N., long. $4^{\circ} 11^{\prime} 8^{\prime \prime}$ E., 30 fathoms tow-netting, January 20th (night collection). (t) Station 14, 10 fathoms tow-netting, Jannany 21st (night collection). (5) Lat. $6^{\circ} 38^{\prime}$ N., long. $12^{*} 37^{\prime} \mathrm{W} ., 25$ fathoms tow-netting (day collection). (6) Lat. 1° $55^{\prime} 5^{\prime \prime}$ E., 35 fathoms tow-netting, January 22nd (day collection). (7) Off Sĩo Thomé Island (lat. $0^{\circ} 34^{\prime}$ N., long. $6^{\circ} 30^{\prime} 4^{\prime \prime}$ E.), 20 fathoms tow-netting, Jannary 23 rd (day collection). (8) Station 23, surlace tow-netting, February 5th (day collection).

Several specimens of $I I$. mucronutus were obtained; the size of the specimens varied to some extent, and the forehead was more spiniform in some specimens than in others. This species comes very near Hemicalams aculeatis, Brady, in general form and in the structure of the appendages, but is much smaller than Brady's specimen. The length of the specimen described and figured in this Report, which was one of the largest of

SECOND SERIES:-ZOOLOGY, VOL. VI.
the 'Buecaneer's specimens, was, as already stated, 3.8 mm . ; but Hemicalumus aculeatus, Brady, measured 575 mm . in lengtl-that is, fully half as long again as the 'Buccancer' specimen.

It is interesting to note that while six species of Hemicalanus (including four of Clans's Mediterranean species) have been obtained in the 'Buceaneer' colleetion, only three (ineluding one of Claus's Mediterranean speeies) were observed in the colleetions of the 'Challenger' expedition, and further, that while Hemicalani were of frequent occurrence in the 'Buccaneer' tow-nettings, 85 perfect specimens, hesides a number of others more or less damaged, were captured in a single tow-net gathering. The three species recorded in the 'Challenger' Report were represented in the collection "only by about half a dozen specimens in all." Such a remarkable difference in the distribution of the Hemicalemi seems to indieate that their distribution is loeal, and that, with perlaps one or two exceptions, they prefer to frequent what is comparatively inshore water to mid-ocean. Hemicutanus longicornis appears to be more eosmopolitan than the other species and to have a more or less general distribution throughout tropieal and subtropical seas. Yet, though this Hemicalanus has undoulbedly an extensive distribution, it is noteworthy that none of Dana's speeies ean be satisfactorily ascribed to it. This might have been accounted for had it been a eritical species, but the extremely long anterior antenne of Hemicalanus longicomis at onee distinguish it from all other Calanide.

> Genus Augaptilis, Giesbrecht (1889).
> Hemicalamus, Claus (in part).

Augaptilis longicaudatus (Claus). (Pl. I. figs. 24-26; Pl. 1I. fig. 5.)
1863. Hemicalanus longicaudatus, Claus, loc. eit. p. 179, pl. xxix. fig. 3.
1892. Augaptilis Tonyicornis, Giesbrecht, Fama und Flora des Golfes von Neapel (Copepoden), p. 414, pl. 27. fig. 31; pl. 28. figs. 2, 8, 19, 23, 31, 35, 38; pl. 39. figs. 37, 48.
Hulitat. Station 3, 100 fathoms tow-netting, January 2nd (day eollection). Lat. 1° $55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms tow-netting (day collection).

This Auyaplilis oceurred only in the tow-nettings from the two localities deseribed; it differs from other species of Hemicalams in the great length of the secondary braneh of the postcrior antenne, in the comparatively long caudal stylets, and particularly by the anterior and posterior foot-jaws being furnished with moderately longs setre, whieh possess each a double row of short filaments with round, flat, button-like tops. These filaments (or sense-organs?) somewhat resemble " drawing-tacks," i. e. small nails with round flat heads, used for fixing drawing-paper upon a drawing-board. There is a double row of these filaments on eaeh seta, the filaments of eael double row being usually opposite each other; there are about 147 of these filaments in the length of a millimetre. They impart to the setre that are furnished with them a very marked and striking appearance. Prof. Claus considers them as forming an important and distinctive speeifie character, and refers to them in his description of the species in the following terms :"Die Hakenhorsten der oberen und untern Maxillarfüsse tragen zwei Reihen sehr zierlich
geknöpfter Seitenspitzen." This form of filament appears to be peeuliar to Auy(u)tili,s Tongicaudatus. Inother species (Auguptifis Rattrayi) deseribed in this Report possesses similar filaments, but the button-tops, instead of being round, are broadly cresecnt-shaped. Not more than about half a dozen specimens of Augaptilis tongicaudatus were obtained in the 'Buceancer' collcetions.

Augaprtits mecticus, Giesbrecht. (Pl. I. figs. 37-39, Pl. II. figs. 1-4, 35-12.)
1892. Auguptilis. hecticus, Giesbrecht, op. cit. p. 114, pl. 2T. fig. 30; pl. 28. figs. 5, 5, 16, 30, 33, 37 ; pl. 29. fig. 18 ; pl. 39. fig. 45.
1892. Hemiralumus tomyisetosus, Scott (MSS. name).

Length, exchusive of tail-setac, $2 \cdot 16 \mathrm{~mm}$. ; epphalothorax elongate, slender, crlindrical, subtriangular in front, rounded behind; anterior antennal, reaching beyond the extremity of the abdomen, 25 -jointed ; the right antema of the male 18 -jointed. The proportional lengths of the joints are nearly as follows :-


```
Female, 20.&゙.*.s.s.s.s.s.10.10.11.1:3.15.15.14.13.14.15.1こ.10.10.10.11.15. Is.
```

In the male antemme the eighth joint is rather longer than the united lengths of the preceding four joints, and there is a distinct hinge between the fourteenth and fifteenth joints; the fifteenth lears at the proximal end a slender hair-like appendage which extends forward beyond the extremity of the joint. A densely plumose seta springs from the lower terminal angle of the sixteenth joint, and from the upper angle a rather long non-plumose spinous seta; a second densely plumose seta, similas to that on the sixteenth, springs from the upper terminal angle of the seventeenth joint. The second and third last joints of the female anterior antenuæ and the left male antenna are likerrise furnished with one or two (\%) plumose setie similar to those of the male eighth antema; the antenne of both sexes are otherwise sparingly setiferous. The secondary branch of the posterior antenne is fully half the length of the primary branch, $6(?)$-jointed, both branches with long plumose hairs; mandible styliform, the extremity somewhat furcate, but one of the teeth nearly obsolete; other mouth-organs as in ILemicatemus longicomis. Five pairs of swimming-feet in both sexes, all of them 2branched, with both branches 3 -jointed; the terminal spine of the outer branch of the fourth pair has a row of minute tubercules along its exterior margin ; the inner margin is ciliated. The middle joint of the outer branch of the right (?) fifth foot of the male bears a stout, slightly curved process on the upper part of the inner margin; the last joint bears a short terminal spine, immediately behind which, on the inner margin, is a moderately long plumose hair' ; the last joint of the outer branch of the left foot bears a long curved terminal spine, finely serrate on its inner edge; both the inner margins are furnished with several long plumose hairs whieh extend beyond the terminal spine of the outer bramch of the left foot. Abdomen in the male 5 -jointed, in the female 4 jointed; the length of the segments in both are subequal. Caudal stylets in the male about as long as the last two abdominal segments, and in the female about the length of the
last segment of the abdomen. Each stylet is furnished with one extremely long seta, which is longer than the cephalothorax and abdomen together ; each seta bears a dense mass of fine hairs, near, but not quite at, its extremity; the extreme end appears to be free from hairs ; there are also three short and densely plumose setae on the exterior margin of the stylets, one near the middle and two near the extremity of eaeh stylet.

IItaitat. (1) Lat. $3^{\circ} 58^{\prime} \mathrm{N}$., long. $3^{\circ} 42^{\prime} \mathrm{W}$., 25 fathoms tow-netting January, 13th (day collection). (2) Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms tow-netting, January $22 n d$ (day collection, temperature of the water about $43^{\circ} \mathrm{F}$.). (3) Off Sino Thomé Island (lat. $0^{\circ} 34^{\prime} \mathrm{N} .$, long. $6^{\circ} 30^{\prime} 4^{\prime \prime} \mathrm{E}$.), 24 fathoms tow-netting, January 23 rd (day collection).

Only two or threc specimens of this interesting form were obtained. The extremely long tail-setr, with the remarkable acemulation of fine hairs near their extremity, distinguish this Auguptilis at once from the other species described in this Report.

Augaptilis Rattrayi, n. sp. (Pl. II. figs. 25-37.)
Length, exclusive of tail-setæ, 1.9 mm . Cephalothorax robust, seen from above broadly ovate, measuring in breadth 2.6 mm ., rounded in front, the postero-lateral angles of the last thoraeic segment also rom ded. Thoracie segments five, the first as long as all the other fom together. Every part of the integument-cephalothorax, ablomen, and appendages-is eovered more or less with minute spinons hairs. Anterior antenne short, not much longer than the first thoracic segment, 24-jointed. The proportional lengths of the joints are nearly as follows :-

The antenne are sparingly setiferons, the setx on the second, eighteenth, and twentieth joints being the longest. The posterior antennæ have the basal part stout, the primary and secondary branches short, the secondary braneh being shorter and more slender than the other and 7-jointed; the last joint is rather longer than all the preceding four together, and furnished at the extremity with three long setre, which are plumose from the middle. The end of the primary branel is also furnished with a number of hairs similar to those of the secondary branch. The mandibles are slender and terminate in two modcrately long teeth, between which is another minute and rudimentary one; the mandible-palp is stout, 2-branched, one of the branches 2-, the other d-jointed; both branches bear several plumose hairs. The "rod-like process" of the maxillæ terminates in three very long plumose hairs. Two hairs, bearing cach a double row of peenliar short filaments having flat broadly erescent-shaped tops, which extend from near the distal end to about the middle of the hairs, spring from the extremity of a stout lateral appendage of the maxillæ. Anterior foot-jaws stout, 5-jointed, the first tro with several stout spinous hairs on the anterior margin, the last three with a nmmber of long setr having a double row of short filaments, with flat, broadly crescentshaped tops, each double row not extending below the middle of the seta. The posterior foot-jaw 6 -jointed, the first two joints moderately stont and long, sparingly setiferous on the upper margin; the sceond joint has also a long non-plumose hair attached to
its upper distal angle; the next three joints are short and stout, and bear four longs filamentiferous setie similar to those of the anterior foot-jaws. The end joint is small and rudimentary, and terminates in one short and two long non-plumose hairs. The swimming-feet are as in Hemicalanus longicomis; the five pairs are 2-branched and each branch 3 -jointed, all of them being more or less thickly beset with short spinous hairs. The basal joint of the onter branches of the first pair bears on its posterior distal angle an elongate spine, which extends to the extremity of the last joint. The exterior distal angles of the first and second joints of the outer lranches of the third and fourth pairs bear one very stout spine, having a short spinous process on each side of it at its base. Abdomen short, 3 -jointed, the first joint much longer than the othergitwo together. Caudal stylets short, somewhat divergent, each with six plumose hairs, four terminal, which are moderately long and subequal ; a smaller one on the lower outer margin, and one very slender hair near the base of the second terminal seta, counting from the inside.

Habitat. (1) Station 3, 100 fathoms tow-netting, January 2nd (day collection), specific gravity of the water 1.02608 , temperature $56^{\circ} 4 \mathrm{~F}$. (2) Lat. $6^{\circ} 38^{\prime} \mathrm{N} .$, long. $12^{\circ} 37^{\prime} \mathrm{W}$., 25 fathoms tow-netting, January 6th (day collection), sp. g. of the water (surface) 1.02400, temperature (surface) $83^{\circ} 5 \mathrm{~F}$. (3) Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$., 35 fathoms tow-netting, January 22nd (day collection), temperature at 30 fathoms $63^{\circ} 98 \mathrm{~F}$. (4) Off São Thomé Island, lat. $0^{\circ} 34^{\prime} \mathrm{N}$., long. $6^{\circ} 20^{\prime} 4^{\prime \prime}$ E., 20 fathoms tow-netting, January 23 rd (day eollection).

Only one adult specimen and a few others more or less immature were obtained; the adult specimen is from locality (3), and is the one from which the drawings were made.

The peculiar short flat-topped filaments (sense-organs?) with which several of the hairs of the maxille and foot-jaws are furnished resemble those observed and described in Augaptilis longicuulatus, which Prof. Claus speaks of as "sehr zierlich geknöpfte Seitenspitzen," but instead of the tops being circular like a button, as in that speeies, they are broadly crescent-shaped; the "button-tops" are also larger than those of Augaptilis longicuudatus. In Augoptilis Rattrayi there are about forty button-topperd filaments in the length of a millimetre, but in Augaptilis longicaudatus the number of filaments in a millimetre is about one hundred and forty-seven. The filaments in each double row are usnally opposite each other, as shown in the enlarged drawings. They glve a peculiar and striking appearance to the sete that are provided with them.

Genus Calocalanus, Gieshrecht (1891).
Elenco dei Copepodi pelagici,-R. Corretta 'Vettor Pisani.' (Atti della Reale Accademia dei Lincei, serie iv. Rendiconti, vol. v. pt. 1.)

Calocalanus pavo (Dana). (Pl. VT. figes. 9, 10.)
1859. Calanus paro, Dama, loe. cit. p. 1061, pl. 72.
1892. Calocalamus paro, Giesbrecht, op. cit. p. 185, pls. 1, 4, 9, 36.

Length about 7 mm . Cephalothorax rounded in front and behind. Anterior antennæ fully a half longer than the cephalothorax and abdomen together, 24-jointed, the first. joint large and bearing two plumose and a few plain setæ, the last joint long and slender, furnished at its extremity with four plain setar of moderate lengtli. The second and thind last joints possess longer sete than any of the other joints; all the joints from the eleventh to the twentieth inclusive bear each a number of small hairs on the upper margin besides the longer setre with which all the joints are more or less furnished. The proportional lengths of the joints are very nearly as in the annexed formula :-

Secondary branch of the posterior antenne as long as the primary branch, S-jointed; the third and last much larger than the other joints; both branches setiferous. Mandibles stout, the apex furnished with several more or less rudimentary teeth; the mandible-palp well developed ; secondary branch $5(\%)$-jointed, shorter than the primary, the basal part furnished with three setce on its inner margin. Maxillæ large, somewhat similar to those of Eucalamus, but the basal part dilated. Foot-jaws as in Eucalanus, but the terminal setre of first foot-jaws plain. The first four pairs of swimming-feet 2-branched, outcr branches 3 -jointed, the inner branch of first pair 2 -, of the others 3 -jointed. The outer branches of sceond, third, and fourth pairs only with sabre-like terminal spines; the second joint of the onter and the second and third joints of the inner lranches armed with transverse rows of spines. Fifth pair of feet in the male (?) lbranched, branches 3 -jointed, the terminal joint longer than the other two together, compressed, the extremities rounded and furnished with several long setæ and two or three transverse rows of small hairs as in the figure, Abdomen very short, 3(?)jointed. Candal stylets extremely divergent, bearing four long spreading setæ, two of which are divided to near the base.

Habitat. Station 2, surface and 25 fathoms tow-nettings, January 1st (night collections). Station 3, 25 fathoms, January 2nd (day collection). Station 9, 50 fathoms, January 10th (day collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 and 460 fathoms tow-netting, January 22nd (day collection). Station 23, 20 fathoms, February 5th (day collection).

This species was comparatively frequent all over the area examined. It is readily distinguished from other Calanide described in this Report by the remarkably divergent eaudal stylets, which are at almost right angles to the abdomen. The anterior antennæ and tail-sete appear to be, in this species, more than usually friagile; not a single perfect specimen was obtained in the whole collection. The tail-setre were commonly altogether wanting or the stumps of them only remained, and the anterior antenne were, with very few exceptions, all more or less damaged. It was only after very carefully searching the tow-nettings that a few specimens were discovered that had the joints of the antenne complete; the figure, therefore, represents the anterior antenne perfeet as regards the number of joints. No speeimens with perfect caudal sete were obtained.

Calocalanus plumulosus (Claus). (Pl. I. figs. 3y, 36 ; Pl. VI. figs. 7, 8.)
1863. Calanus plumulosus, Claus, Dic freilebenden Copeporden, p. 174, taf. xxvi. figs. 15, 16.
1892. Calocalamus plumulosus, Gieshrecht, op. cit. p. 185, pls. 3, 9, 36.

Length (female) 1.3 mm . Body clongate, first segment nearly equal to twice the entire length of the other three; postero-lateral angles of thorax rounded. Anterior antenne, reaching somewhat beyond the extremity of the abdomen, 21 -jointed; the large basal joint bears one long plumose seta near the proximal end, the last joint is slender and equal to the combined length of the preceding two. The proportional lengths of the joints are nearly as shown in the formula :-

Postcrior antennæ, mouth-appendages, and swimming-feet as in Calocalanus pavo. The last joint of each foot of the fifth pair is equal to half the length of the foot, and the third joint is nearly one and a half times the length of the preceding one; the broadly rounded extremity of the last joint bears a swall spine near the outer angle, a much larger spine near the middle, and a moderately long seta near the inner angle; there are also two small sete near the distal end of the inver margin ; both margins of the joints are also more or less fringed with cilia (PI. I. fig. 35). Abdomen short, first segment rather tumid, the sceond much shorter than either the first or third, breadth of the second and third inereasing towards the distal end; the first and second have each a fringe of small serrae concentric with, and a little anterior to, the distal margin. Stylets about equal to the length of the second abdominal segment, slightly divergent, and furnished with four terminal plumose setee, and one very small seta near the extremity of the inner margin.

Calocalanus plumulosus was obtained in a tow-net gathering from 30 fathoms, lat. $1^{\circ} 55^{\prime} 55^{\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$., collected January 22nd. Only a few specimens were observed.

This species differs very markedly, not only in its greater size but also in general appearance, from Calocalemus pavo; moreover, the anterior antenne are proportionally much shorter than in that species. The proportional lengths of the joints of the anterior antennse and fifth fect also differ considerably in the two species. Another character of the spirit specimens is the abruptly flexed abdomen, which is bent at a right angle in all those obtained. The position of the caudal stylets in Calocalanus plumulosus is almost normal, while those of Calocalamus pavo are extremely divergent. The long plumose seta on the basal joint of the anterior antenne appears also to be a character of Colocalemus plumulosus*。

Genus Heterocalanus, nov. gen. (Provisional name.)

Anterior antenne 22-jointed; right antenne of the male resembling that of the

[^4]Pontellida. Second branch of the posterior antennse longer than the primary branch, 4-jointed. Mandibles stout, broad, furnished with papilliform teeth and elongate tooth-like processes on the exterior angle; mandible palp 2-branehed, secondary branch 3-jointed. Anterior foot-jaws like those of Rhincalanus cormutus. Posterior foot-jaws strong, G-jointed, the two basal joints large. The first four pairs of swimmingfeet have both branches 3-jointed. Fifth pair in both sexes 1 -branched, those of the male dissimilar and adapted for grasping; those of the female the same on both sides, 3 -jointed, the last joint produced into a large curved spiniform process. Ovisae large.

Heterocalanus serricaudatus, n. sp. (Pl. II. figs. 48-48; Pl. III. figs. 1-7.)
Length 1.15 mm . Body elongate, narrowly romnded in front, the postero-lateral angles of last thoracic segment rounded and bearing several small spines. Anterior antenne longer than the body; those of the female slender, 22-jointed, sparingly setiferous. The proportional lengths of the joints are nearly as follows :-

$$
11 \cdot 11 \cdot 5 \cdot 7 \cdot 6 \cdot 10 \cdot 5 \cdot 6 \cdot 10 \cdot 12 \cdot 14 \cdot 16 \cdot 18 \cdot 18 \cdot 18 \cdot 16 \cdot 14 \cdot 14 \cdot 13 \cdot 14 \cdot 12 \cdot 3
$$

The right anterior antenna of the male also 22-jointed, distinctly hinged between the 18th and 19th joints, the upper margin of the 1Sth joint serrate; the 11th and 12th joints are small, the $14 t h, 15 t h$, and 16 th dilated. The general form of the male right antema somewhat resembles that of the Pontellide. Posterior antenne have the secondary branches longer than the primary, 4 -jointed, the third joint very small, imparting to the branch the appearance of being much constricted in the middle; both branches furnished with numerous non-plumose hairs. Mandible stout, broad, bearing several smalk papillose teeth, and on the exterior angle three elongate tooth-like processes and a short phumose seta. The basal part of the mandible palp is comparatively large, and produced laterally to form the base of the secondary branch, which is 3 -jointed. Both branches are furnished with a number of non-plumose hairs (Pl. III. fig. 4). Anterior foot-jaws like those of Rhincalanus cornutus, short, obseurely 3 (or 4 ?)-jointed. Posterior foot-jaws strong, 6-jointed, the two basal joints large, the other four small, subequal ; each of the fourth, fifth, and sixth joints bear interiorly a stout, elongate, blunt-pointed spine, that of the fifth being much larges than those of the other two joints; the terminal joint is also furnished with six long plumose hairs. The first four pairs of swimming-feet are 2-branched, both branches 3 -jointed. The joints of the inner branch of the first pair subequal ; the outer branch is without dagger-like spines at the distal angles of the joints. The first joint of the inner branch and the middle joint of the outer branch of the second, third, and fourth pairs are smaller than the other joints, and the exterior distal angles of all the joints of the outer branches bear stont dagger-like spines, which are finely scrrate on both edges; the last joint has an additional and similar spine arisiag from an excavation on the lower half of the outer margin. The terminal spines of the outer branches are finely serrate on the outer edge, except near the base, which is plain; the extremity of the terminal spines is slightly eurved
outwards. The terminal spines of the outer liranches of the first pair are more slender than those of the others ; all the four pairs are firnished with numerous stout phumose seter on the inner margins of both branches as well as round the extremity of the inner branches. The fifth pair in the male is 1-branched. The second joint of the right foot bears interiorly a small dilated process having a number of small spines; the extremity of the last joint truncate; an elongate enrved appendage with a tumid base springs from the inner angle, and a stout setiferous spine from the outer angle of the extremity of the last joint. The second joint of the left foot has a long slender appendage, very faintly serrate on the imner edge. The onter angle of the thind joint and the extremity of the fourth terminate in a long spinous process, and the inner edge of the base of the last joint is ciliated. The fifth pair in the female is 1 -loranched, the right and left are similar, and 3 (or 4 ?)-jointed ; the first and second joints stout, the third short, hat produced inwards into a large eurved spiniform process, finely but distinetly serrate on both margins ; the last (?) joint nearly obsolete, teminating in one long plain spine and a second short one, serrate on the imner edge. Abdomen (exclusire of caudal stylets) nearly half as long as the cephalothorax, 5 -jointed in the male, 4 -jointed in the female; the sccond, third, and fourth segments in the male, and the first, second, and third in the female, fringed posteriorly with a prominent row of saw-like teeth. Candal stylets as long as the last abdominal segment, narrow, somewhat divergent, bearing each four moderately long', terminal, plumose setee, and a fifth which springs from a notch on the outer margin ; all the sete are articulated below the proximal half; there is also a small hair between the two inner sete. Ora forming one large circular complanate cluster, containing about sixtcen large ova armged in a single layer, eleven or twelve round the circumference, the other's central.

ILabitat. Lat. $5^{\circ} 10^{\prime} \mathrm{N}$., long. $3^{\circ} 56^{\prime \prime} 2^{\prime \prime} \mathrm{W}$., surface, close inshore, January 12th (night collection). Off Accra, three fathoms, January 16th (night collection). Off Appi, surface tow-netting, January 18th (day collection). Libreville, Gaboon River, in two surface tow-nettings, January 28th (day collection). Bananalı Creek, Congo River, surface tow-netting, February Sth (uight collection).

Heterocalemus semicaudatus appears to be more confined to inshore waters than many of the species recorded in this Report, though it seems nevertheless eapable of existing under varied conditions as regards the density of the water, having been obtained in water varying in specific gravity from 1.02511 to $1 \cdot 00870$.

Genus Pleuromina, Clans.

Pleuromma, Claus, Die freilebenden Copepoden (1863).
:Metridia, Bocek, Oversigt af Norges Marine Copepoda, 1864.
?Metrillia, Brady, Monograph, British Copepodi, vol. i. 18is.

Pleuromina abdominale, Claus.

1863. Pleuromma abdlominale, Claus, loc. cit. p. 195, pl. v. figs. 1-G, 18, 14; pl. vi. figs. 1-10.
1864. Plearomma abdominale, Brady, 'Claallenger,' Copepoda, p. 46, pl. xi. figs. 1-13.
second series.-ZOOLOGY, VOL. VI.

Mabitat. Station 2, 25 fathoms tow-netting, January 1st (night collection). Lat. $3^{\circ} 55^{\prime} 3^{\prime \prime}$ N., long. $4^{\circ} 7^{\prime} 13^{\prime \prime}$ E., 50 fathoms tow-netting, January 20th (day collection). Off Sĩo Thomé Island (lat. $0^{\circ} 34^{\prime}$ N., long. $6^{\circ} 31^{\prime} 6^{\prime \prime}$ E.), 20 fathoms tow-netting, January 23 rd (day collection). Statiou 23, 235 fathoms tow-metting, February 5 th (day collection).

Plenomma abdominale was obtained in 25 tow-nettiugs, eight of which were surface gatherings, and seventeen under-surface, ranging in depth from 3 to 460 fathoms; one of the surface and seven of the under-surface gatherings were day collections, the others were collected during the night, as shown in the formula :-

In the adult males the abdomen was usually more or less distorted, as figured by Prof. Brady in his Report on the 'Challenger' Copepoda.
The form agrecing with Pleuromma gracile, Claus, was obtained in a few of the townettings, and the difference between it and Pleurommet abdominale is so marked and constant in the 'Buccaneer' specimens that I have considered it preferable to record them separately.

Pletroma gractle, Clans. (Pl. VI. figs. 11-14.)
1863. Pleuromma grucile, Claus, loc. cit. p. 197, pl. v. figs. $7-11$.
1883. ? Pleuromma abdominale, Brady (in part), op. cit. p. 46, pl. xii. figs. 1-16; pl. xxxi. figs. 13, 14.

Habitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 250 and 360 fathoms tow-nettings, January 22 nd (day collections). Lagoon, Sĩo Thomé Island, surface.

A form agreeing with the description and figures of Plenromma gracile in 'Die freilebenden Copepoden' occurred in the gatherings deseribed; it seems to be distinet from Plenromma abdominale.

Pleuromma princeps, n. sp. (Pl. III. figs. S-20.)
Length (exclusive of tail-sete) 12 mm . Cephalothorax elongate, robust. Forehead acute; postcro-lateral angles of the last thoracic segment produced, shortly spiniform. Seft anterior antenna of male 25 -jointed ; the right antenna is 22 -jointed, hinged at the cighteenth joint, the proportional lengths of the joints as in the annexed formula:-

The ninetecnth joint is furnished at the distal end with a tooth-like process which extends over the base of the next joint. There are also, near the middle of the same joint, one long and one very short spine, which extend in a forward direction along the margin of the segment; buth antenue are sparingly setiferous. Posterior antenne as
in Plorronma aldiominale; seter on both branches plumose. The month-organs also as in P. abdominree, but the anterior foot-jaw bears two elongate spines which spring from a prominent basal part near its extremity. The distal processes of the maxilla appear to be less produced than in Pleuromma abdomincte. The first pair of swimmingfect are smaller than the following three pairs; the posterior outer aspect of the basal joint of the inner branch is beset with numerous fine cilia, and the outer margin of the middle joint is fringed with finc hairs. The exterior margin of the second, and the upper half of the third, segment of the outer branch are also fringed with fine hairs, while the lower half of the third segment is finely serrate. The outer branch of the second pair of swimming-feet on hoth sides has the first segment "deeply excavated at the base;" the excaration is bounded interiorly by two strong, upward-directed, curved spines. There is no "thumb-like prominence" on the basal semment of the third pair of feet, as in Pleuromma abdominule. The fourth pair of feet closely resemble the preceding pair. The last segment of the outer branch of the first pair terminates in a long stout seta, plumose on the inner margin. The onter brauch of the second, third, and fourth pairs terminates in a moderately short, stout, sabre-like spine, the inner margin fringed with cilia, the onter margin very faintly toothed. The fifth pair of feet strongly prehensile ; one branch (the right?) terminates in a clumsy claw-like segment. A small spine springs from near the proximal end of the penultimate segment. The last segment of the other branch is furnished, on the inner side and near the base, with a moderately long, stout process, and two peculiar, stalked appendages. There is also at the base of the last segment a thin plate haring a saw-like edge, and partly suprounded with delieate cilia; both branches of the fifth feet are about the same length. Abdomen 4-jointed; joints subequal. Candal stylets twice the length of the last abdominal segment, and each furnished with six sete, four of them on the rounded extremity of the stylet, one on the outer margin, and a very small slender seta on the inner margin. All the setae are densely plumose.

Hebitut. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{3} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms tow-netting, January $22 n d$ (day collcetion).

Only one speeimen-a male-of this fine species was obtained.

Genus Шeterocileta, Claus. Heterocheta, Claus, Die freilebenden Copepoden (1863).

Heterocheta spinifrons, Clans.
1863. Heterochuta spinifrons, Clans, loc. cit. p. 189, pl. xxxii. figs. 8, 9, 11, 16.
1888. Heterochceta spimifions, Brady, Report 'Chall.' Copep. p. 49, pl. siii. figs. 1-13.

Habitat. Station 2, 25 fathoms tow-netting, January 1st (night eollection). Lat. $3^{\circ} 58^{\prime} \mathrm{N} .$, long. $3^{\circ} 42^{\prime} \mathrm{W} ., 50$ fathoms tow-netting, January 13th (night collection). Station 1.1, 10 fathoms, January 21st (night collection). Off São Thomé Island (lat. $0^{\circ} 34^{\prime} \mathrm{N} .$, long. $6^{\circ} 30^{\prime} 4^{\prime \prime} \mathrm{E}$.), 20 fathoms, January $23 \mathrm{r}^{\prime}$ (day collection). Station 23, 235 fathoms, February 5th (day collection).

Heterochete spinifrons occurred in 20 tow-nettings; only one of these was a surface gathering collected during the day, the other ninetcen were under-surface and ranged in depth from 5 to 460 fathoms; fiftecn of these were day collections, and four night collections, as shown in the formula :-
Tow-nettings $20\left\{\begin{array}{c}1 \text { surface } \\ 19 \text { under-surface }\left\{\begin{array}{c}1 \text { day collection. } \\ 4 \text { day collections. } \\ 4 \text { night ditto. }\end{array} .\right.\end{array}\right.$
This, though generally distributed, was a somewhat rare species in the 'Buccancer' collection. The dilated outer branches of the fourth pair of swimming-feet, with their short terminal spines, and the extremely long and slender seta of the right caudal stylet, allow of its being readily distinguished from most other species.

Genus Leuckartia, Claus.
Leuckartia, Claus, Die freilcbenden Copepoden (1863).

Leuckartia flavicornis, Claus.
1863. Leuckartia flavicornis, Clans, loe. eit. p. 183, pl. xxxii. figs. 1-7.
1883. Leuckartia flavicornis, Brady, op, eit. p. 50, pl. xv. figs. 1-9, 16.

Habitat. Station 2, 25 fathoms, January 1st (night collection). Off Accra, surface tow-netting, January 1Gth (night collection). Lagoon, Sĩo Thomé Island, surface tow-netting, January 27ih (night collection). Station $23,10,20,85,135,185$, and 235 fathoms tow-nettings, Fchruary 5th (day collection). Bananah Creek, Congo River, surface tow-nctting, February 7 th (day collection).

This Leuckartia was observed in 67 tow-nettings ; 30 of these were surface gatherings, and 37 under-surface. The under-surface tow-nettings were from various depths, from 10 to 460 fathoms. Seven of the surface and 27 of the under-surface tow-nettings were day collections, the others were night collections, as exhibited by the annexed formula :-
Tow-nettings $67\left\{\begin{array}{l}30 \text { surface }\left\{\begin{array}{l}7 \text { day collections. } \\ 23 \text { night ditto. }\end{array}\right. \\ 37 \text { under surface }\left\{\begin{array}{l}27 \text { day ditto. } \\ 10 \text { night ditto. }\end{array}\right.\end{array}\right.$
This species appears to have been widely distributed throughout the area examined during the 'Buccaneer's' expedition, but comparatively few specimens were observed in the tow-nettings in which it occurred, except in those from deep water.

> Genus Undina, Dana.
> Undina, Dana, Proe. Amer. Aead. Sci. (1849).

Undina vulgaris, Dana.
1852. Undina vulgaris, Dana, Crust. of U.S. Expl. Exped. p. 1092, pl. 1xxvii. fig. 8, a-d.
1856. Undina lonyipes, Lubbock, Trans. Entom. Soc. p. 17, pl. vi. figs. 1-5.
1883. Undina vulgaris, Brady, Report 'Chall.' Copep. p. 53, pl. xv. figs. 11-15 ; pl. xviii. fig. 6.

Habitat. Station 2, surface tow-nettings, January 1st (night collection). Lat. $3^{\circ} 58^{\prime} \mathrm{N}$., long. $3^{\circ} 10^{\prime}$ W., surface tow-netting, January 13th (day collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N}$. . long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 20, 35 , and 460 fathoms tow-nettings, January 22 nd (day collections). Lagoon, São Thomé Island, surface tow-nettinç, January 27th (night collection). Station 21, surface tow-netting, February 1th (day collection). Bananah Creek, Congo River, surface tow-netting, February 7th (day collection).

Undina vulgaris was observed in 89 tow-nettings; 51 of these were surface gatherings and 38 nuder-surface, the depth of which ranged from 2 to 460 fathoms; 20 of the surface and 26 of the under-surface gatherings were collected during the day, while 31 of the surface and 12 of the under-surface gatherings were collected during the night, as shown by the annexed formula :-

Tow-nettings $89\left\{\begin{array}{l}51 \text { surface }\left\{\begin{array}{l}20 \text { day colleetions. } \\ 31 \text { night ditto. }\end{array}\right. \\ 35 \text { under-surface }\left\{\begin{array}{l}26 \text { day ditto. } \\ 12 \text { night ditto. }\end{array}\right.\end{array}\right.$
This Undine was comparatively common in the 'Buccanecr' collections, both sexes being equally frequent. It was also one of the more common of the 'Challenger' Copepoda. Another species (Undina Durwini, Lubbock), which appears to have been almost as common as Undina vulgaris in the 'Challenger' collections, was entirely absent from the 'Buccancer' tow-nettings, not a trace of it being observed, though carefully sought for.

Genus Euchimella, Giesbrecht (1891).
Elenco dei Copepodi pelagici,-R. Corvetta 'Vettor Pisani.' (Atti della Realc Accademia dei Lincei, scric iv. Rendiconti, vol. v. pt. 1, p. 336.)
? Euchirella messinensis (Claus). (Pl. VI. figs. 15 \& 16.) ? Undina messinensis, Claus, Dic frcilebenden Copepoden, p. 187, pl. 31.
Length, exclusive of tail-setr, 5 mm . Body elongate, robust. Forehead subtruncate; postero-lateral angles of the last thoracic segment romded and furnished with a number of hairs. Anterior antenne reaching to near the extremity of the abdomen; the left 24 -, the right 23 -jointed, the proportional lengths of the joints nearly as in the annexed formula :-
light antenna. 10. 13.7.6.7.7.7.11.8.8.8.14.19.19.19. 20.18. 20.18.13.13.12.14.

The 3rd, 7th, 8th, 13th, 17th, and 20th joints are each fumished with a long plain seta. The terminal joint bears three (or four ?) long setee, two of them phomose; there is also a phmose scta on the penultimate joint, and two stout short plumose hairs spring from near the end of the basal joint. The posterior antenne have the secondary lranch
large and stout, 6 -jointed, the first and last joints long, the intermediate very short. The small intermediate joints bear each one seta, and the extremity of the last joint three long phomose setre; the primary branch is extremely short, being almost rudimentary. Mandible stout, with numerous terminal papillose teeth; the exterior angle bears a strong laterally-produced spine, which is serrate on the upper margin. The mandible palp is of moderate size, 2-branched, each branch with several long terminal plumose lairs. The maxille are large, and bear at the extremity and on the interior margin a number of stout setiferous spines; the external branch of the maxilla-palp very short and broad ; terminal branch stont, somewhat digitiform; both branches with mumerous plumose hairs. Foot-jaws as in Euchete Hessei, except that near the extremity of the anterior foot-jaw are two setiferous spines mucl stouter than the others, and also two plain spinous setee on the lower extreme angle of the ultimate joint. The first four pairs of swimming-feet are similar to those of Euchotet the first pair resemble those of Euchete Hessei, except that the inner branch has a lobe-like proeess near the base, and the outer branch a long slender terminal spine, fincly serrate on the outer margin; the onter branches of the scoond, third, and fourth pairs armed with a stout terminal spine, having about twenty strong saw-like teeth on its outer margin. The hasal joint of the fourth pair bears a large bifurate spiniform appendage; the setre on both branches of all the four pairs are densely plumose. Abdomen short, composed of four segments, the first large, being nearly as long as all the other three together. Candal stylets short, divaricate, each with one short spine on the onter distal angle, and four moderately long terminal plumose hairs; another slender hair springs from near the inner distal angle of cach stylet, and is about halt the length of the others.

Habitut. Station 2, 50 fathoms, Jannary 1st (night tow-netting). Lat. $55^{\circ} 58^{\prime}$ N., long. $14^{\circ} 20^{\prime} \mathrm{W}$., surface gathering, January 5th (night tow-netting). Lat. $3^{\circ} 22^{\prime} 5^{\prime \prime} \mathrm{N}$., long. $4^{\circ} 11^{\prime} 8^{\prime \prime}$ E., 20 and 30 fathoms tow-nettings, January 20th (night collections). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$, 4.60 fathoms tow-netting, January 22 nd (day collcetion). Lat. $1^{\circ} 29^{\prime} \mathrm{N}^{\prime} .$, long. $7^{\circ} 33^{\prime} 5^{\prime \prime}$. E., surface tow-netting, January 27 th (night collection). Station 23, 30 fa thoms, Felornary 5th (day collection).

Only a few specimens of this species were obtained; they were all females, and were readily distinguished by the large forked spiniform appendage on the basal joints of the fourth pair of swimming-feet. As has been pointed out ly Prof. Brady, Undina messinensis, Claus, differs from Undina, Dana, by the alsence of the first pair of foot-jaws in the male (as described by Dr. Claus), and by the inner branches of the first and second swimming-feet being only 1-jointed (Claus, however describes the inner branch of the second pair as 2-jointed, but in the 'Buccancer' specimens it was certainly only 1-jointed). In Undina, Dana, on the other hand, the immer branches of all the swimming-feet are Bojointed. Undine messinensis has the fifth pair of feet in the male similar to those of Eucheta putchre, Lubbock (to which it has been doubtfully referred), but differs from that and all other Eucheta known to me by the very rudimentary form of the primary branch of the posterior antennæ.

Genus Scolecithrix, Brady.

Scolecithrix', Brady, Report 'Challenger' Copepoda (1883).
Scolecithrix securifrons, 12. sp. (Pl. IV. figs. 10-56; Pl. V. fig. 1.)
Length, exclusive of tail-setæ, about 4 mm . Cephalothorax robust, the anterior segment fully two-thirds the length of the body. Forehead with a prominent median keel, which is continned downwards to the slightly furcate rostrum. Anterior antennæ longer than the body, 20-jointed in the female, 19-jointed in the male. The annexed formula shows very nearly the proportional lengths of the joints :-

The long eighth joint has one or two pscudo-divisions, indicating the possible coalescence of two, if not three, smaller joints. The secondary branch of the posterior antenne is half as long again as the primary one, 5-jointed, the third and fourth joints small, the last joint with three terminal sete ; sereral setie spring from the ricinity of the two small joints; the primary branch is furnished with a number of terminal setre, which, with the others, are all more or less phmose. Mandible-palp with two small branches set wide apart, and each with numerous plumose hairs. Maxilla and other mouth-organs as in Scolecithrix Dance. First pair of swimming-feet small, inner braneh 1-jointed, with a lobe-like appendage, terminal spine of the outer branch small. All the joints of the second and third pairs are armed with transverse curved rows of short stout spinules, and the terminal sabre-like spines of the outer hranches have their exterior margin strongly and coarsely toothed. The fourth pair wants the transverse rows of spiuules, but is otherwise similar to the second and third pairs. The fiftle pair in the female is very small, 1-branched, 2-jointed, and with a moderatcly long slender, curved, terminal spinc, the distal half serrate on the outer margin; a small blunt process springs from the inner distal angle of the terminal joint, close to the base of the elongate spine; this spine was apparently linged to the extremity of the last joint, for in one or two specimens it was turned upward at a right angle to the joint, and in such a manner as to allow of its being applied to the base of the first abdominal segment. The fifth feet in the male are strongly developed; the left foot is 1-branched, 3 -jointed, with a curred finger-like process at the extremity; the right has a slender 1-jointed inner branch, curved outwards so as to be opposed to the 2-jointed clawed terminal part of the outer branch; the basal part to which the two branches are attached is much dilated. Abdomen in the female short, first segment larger and much wider posteriorly than the next; the posterior margin of the abdominal segments in both sexes fringed with hairs. Caudal stylets short, divergent, cach with four long terminal plmose setee nearly equal in length, and a small hair near the base of the inner scta.

Habilat. Siation 2, 50 fathoms tow-netting, Jannary 1st (night collection). Lat. $7^{\circ} 33^{\prime} \mathrm{N}$., long. $15^{\circ} 18^{\prime} \mathrm{W} ., 25$ fathoms tow-netting, January 2 nd (night collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $55^{\circ} 55^{\prime} 5^{\prime \prime}$ E. 360 fathoms tow-netting, January 2? ind (day collection). Lat. $0^{\circ} 25^{\prime} 1^{\prime \prime}$ N.,
long. $6^{\circ} 35^{\prime} 2^{\prime \prime}$ E., 10 fathoms tow-netting, January 23rd (night collection). Station 23, 185 fathoms tow-netting, Eebruary 5th (day collection).

Not more than one, or at most two, specimens of this Scolecithrix were obtained in each of the tow-nettings from the localities here recorded. The prominent keeled forchead, which gives this species such a marked character, enables it to be readily distinguished.

Scolecithrid ctenopus, Giesbrecht. (Pl. V. figs. 2-9.)
1892. Scolecithrix ctenopus, Giesbrecht, Fauna und Flora des Golfes von Neapel (Copepoden), p. 285̃, pls. 13, 37.
Male. Length, exclusive of tail-seta, 1.83 mm . The cephalothorax elongate, rounded in front and behind. Anterior antennæ slender, reaching to the extremity of the abdomen, the left 21 -, the right 20 -jointed. The proportional lengths of the joints of the left ontenna are nearly as follows:-

$$
\frac{16 \cdot 16.3 \cdot 3 \cdot 3 \cdot 4 \cdot 4 \cdot 16 \cdot 5 \cdot 5 \cdot 6 \cdot 6 \cdot 6 \cdot 5 \cdot 6 \cdot 5 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 3}{1} 3 \pm \frac{6}{8} 101112181415161718192021 .
$$

The sixteenth joint of the right antemna consists of two coalescent joints, but otherwise the right and left antennæ are similar ; posterior antenne and mouth-organs as in Scolecithrix Dance. The imer branch of the thind pair of swimming-feet small, the terminal spine of the outer branch somewhat distorted, its outer margin being furnished with irregular but stout and prominent teeth. The fifth pair of feet has one very short 3-jointed, and one very long, slender, 4-jointed branch, which extends beyond the extremity of the abdomen; the last segment of the elongate branch is curved, furnished on one side with a dense fringe of hairs, and terminates in two unequal spines; the small 3-jointed brameh is about as long as the first segment of the long branel, the basal joint being longer than the other two together. Abdomen 4 -jointed; joints subequal, fully onefirth the length of the eephalothorax. Caudal stylets short, not divergent, bearing at the extremity four moderately long plumose hairs, the inner being shorter, and the next one considerably longer than the others; the arrangement of the tail-seta in this species resembles Undina more than Scolecithrix.

Habitat. Station 2, 50 fathoms tow-netting, January 1st (night collection). Station 9, 50 fathoms tow-netting, January 10th (day collection). Lat. $3^{\circ} 58^{\prime} \mathrm{N}$. , long. $3^{\circ} 42^{\prime} \mathrm{W}$., 25 fathoms tow-metting, January 13th (day collection). Lat. $3^{\circ} 55^{\prime} 3^{\prime \prime} \mathrm{N} .$, long. $4^{\circ} 7^{\prime} 3^{\prime \prime} \mathrm{E}$., 20 fathoms tow-netting, January 20th (day collection). Lat. $0^{\circ} 21^{\prime} 1^{\prime \prime}$ N., long. $7^{\circ} 33^{\prime}$ E., 20 fathoms tow-netting, January 29th (day collection).

Scotecithrix ctenopus was comparatively a rare species in the 'Buceaneer' collection, having been observed in only a few of the tow-nettings. The most marked characteristic of this Scolecithrix is the extremely long branch of the fifth foot, having the last segment curved, and with the margin densely setiferous.

Scolecititrix tentipes*, n. sp. (Pl. V. figs. 10-19.)
Ifalc. Length, exclusive of tail-setx, $1 \cdot 1 \mathrm{~mm}$. Anterior antennæ reaching to beyond

[^5]the extremity of the abdomen. the left $21-$, the right 20 -jointed. The following are the proportional lengths of the joints, nearly, of the left antema :-

```
5.4.3.8.3.8.3.73.4.4.5.5.5.6.5.5.5.0.5.5.8
```


The sixteenth joint of the right antema consists of two coalescent joints, but otherwise both right and left antenne are similar. The posterior antenner, month-organs, and first pair of swimming-feet are somewhat similar to those of Scolecithrix Deme. The onter branch of the third pair has a distorted terminal spine, as in Scolecithrix ctenopes. The segments of all the first four pairs of swimmins-feet are armed with eurved, trincrerse rows of short, stout spinules. The fifth pair of feet eonsists of one rery long, slender hranch, and an extremely short, almost obsolete, 3 -jointed one. The elongate branch has the hasal joint somewhat stout and short, the second long, fully twice the length of the third; the fourth long and slender, longer than the second; the last joint is extremely small, with a spiniform extremity. Abdomen, caudal stylets, and tail-setie as in Scolccilhrix ctenopus, which appears to be closely allied to the species now described. The fifth pair of feet are, however, decidedly different from those of Scolecitherix ctenopus, being much more slender and without the fringe of lairs. Whe terminal worm-like sense-organs of the anterior foot-jaws are stonter than those of Scolecither ctenopus, though that species is the larger of the two.

ITabitat. Station 2, 50 fathoms tow-nctting. January 1st (night collection). Station 9,
 30 and 360 fathoms tow-nettings, Jamuary 2end (day collection).

Scolecithrix temipes was not obtained from any surface gathering, and was of rare oceurence in the fers tow-nettings in which it was observed.

Scolecititrix Danee (Lubboek).
1856. Undina Deme, Lubbock, Trans. Entom. Soc. vol. iv. p. 15, pl. ix. figs. 6-9.
1883. Scolecithrir Dance, Brady, Report 'Chall.' Copep. p. 57, pl. xvii. figs. 1-1શ.

Ifabitat. Station 2, surface tow-netting, January 1st (night collection). Station !, 2.5 fathoms tow-netting, January 10th (day collection). Station 11, 10 fathoms tow-netting, January 19th (day collection). Stations 21 and 22, surface tow-nettings, February 4.th (day collcetion). Lat. $5^{\circ} 55^{\prime \prime} 1^{\prime \prime}$ S., long. $11^{\circ} 30^{\prime \prime} 7^{\prime \prime}$ E., surface 1ow-nctting, Fehrory 18th (night collection).

Scolecithrix Deme was observed in 57 tow-nettings, 20 of which were surface gatherings, and the others under-surface; 10 of the surface and 21 of the under-surface were day collections, while 10 of the surface and 13 of the under-surface gatherings were eollected during the night, as shown by the formula :-

$$
\text { Tow-nettings } 57\left\{\begin{array}{l}
20 \text { surface }\left\{\begin{array}{l}
10 \text { day collections. } \\
10 \text { night ditto. }
\end{array}\right. \\
37 \text { under-surface }\left\{\begin{array}{l}
21 \text { day ditto. } \\
13 \text { night ditto. }
\end{array}\right.
\end{array}\right.
$$

SECOND SERIES.-ZOOLOGY, VOL. VI.

The under-surface tow-nettings rauged from 5 to 260 fathoms. This species was more or less common in nearly all the tow-nettings in which it was observed.

Sconectithrix minor, Brady.
1883. Scolecithrix minor, Brady, op. cit. p. 58, pl. xri. figs. 15-16; pl. xviii. figs. 1-\%.

Mabitat. Station 3, surface tow-netting, Jannary and (day eollectionj). Lat. $3^{\circ} 55^{\prime} 3^{\prime \prime} \mathrm{N}$., long. $4^{\circ} 11^{\prime} 8^{\prime \prime}$ E., 50 fathoms tow-netting, Jamuary $20 t h$ (day collection). Station 14, 10) fathoms, January 21 st (night collection). Lat. $0^{\circ} 21^{\prime} 1^{\prime \prime} \mathrm{N} ., \operatorname{long} 7^{\circ} 33^{\prime}$ E., 20 fathoms, January 29th (day collcetion). Station 23, 235 fathoms, February 5th (day tow-netting). Station 24 (off the mouth of the Congo, colour of the water brownish-olive green to amber-brown), surface, February 6 th (day collection).

This Scotecithrix was a somewhat rare species in the 'Buceaneer' tow-nettings; males especially were very scarce, and were observed only in a 30 -fathoms tow-aetting from lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} ., \operatorname{long} .5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$. The ultimate joint of the longer branch of the male fifth foot and the appendage of the same branch were not so long as shown in the figure in the 'Challenger' Report, but otherwise the 'Buccancer' specimens agreed with the description and drawings of Scolecithrix minor (loc. cit.). I have examined many specimens, mature and immature, of Scolecithrix Dance, and have certainly not found the fifth pair of feet in any of them to agree in structure with those of Scotecithrix minor; hence I feel satisfied that the two are quite distinct from each other.

Scolecitheis longicornis, m. sp. (Pl. V. figs. 20-2S.)
Femule. Length, not inchding tail-setie, 154 mm . The first body-segment is more than twice the entire length of the other three; the forehead is rounded. Anterior antemise slender, reaching to the extremity of the abdomen, 23-jointed, and furmished with a mumber of rery small setae (with the exception of the last joints, which bear longer setre) (tig. 21); the proportional leugths of the joints nearly as in the formula :-

The anterior foot-jaws terminate in fone lobes with several phumose sete at their extromity, while one lobe forms the base of a fascicle of slender sensory filaments; a single filament also springs from the end of the lowest of the four setiferous lobes. Posterior font-jaws small, the first two joints long, the third very short, the fourth equal to the entire length of the last three. Other month-organs similar to Scolecithrix Dena. The first four pairs of swimming-feet similar to those of Scolecithut securifions. Fifth pair small, 3-jointed, the middle joint rather longer than either of the other two, and hearing several small spiniform sete at its exterior distal angle; the extremity of the last joint is produced forward into a triangular sharp-pointed process, while an clongate spine, serrate on the outer margin, springs from the inner distal angle (fig. 27). Abciomen short, stout, composed of four segments, the first segment large, the other three very
sloort. Caudal stylets short, the length and breadth equal ; each stylet bears four long plumose terminal sete, and one small seta on the inner distal angle.

Mabitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms (day collection). Station $2: 3$, 135 fathoms, February 5th (day collection).

This Scolecithrix was obtained in only two tow-nettings from comparatively doep water.
Scoledthutic Bradey, Giesbreeht. (Pl. V. figs. e99-39.)
1892. Scolecithrix Bralyi, Giesbrecht, op. cit. p. 283, pls. 4, 13, 37.

Length about 1.8 mm . In form like that of Scolecithrix Dance. Anterior antenne in the male as long as the eephalothorax, 19-jointed; in the female 23 -jointed and about one-fourth longer than those of the mate. The proportional lengths of the joints are nearly as in the annexed formula :-

The basal joints bear a number of setee, but the others are very sparingly setiferons; posterior antenue and mouth-organs is in Scolecithrix Dono, but the larger branch of the mandible-palp bears a number of very long slender sete. The first four pairs of swimming-feet are similar to those of Scolecithrix securifrons; the terminal spines of the onter branehes are finely but somewhat unequally sermate on the outer margin and ciliated on the inner. Fifth pair wanting in the female, 1-branched in the male; basal joints dilated ; the third joint of the (?) right foot elongate, with a short digit-like process on the inner margin near the distal end, the last joint divided to near the base into two subequal segments, the inner of which is curved upward so as to form a hook-like appendage. The (?) left foot $\overline{5}$-jointed and longer than the other; the second joint is the longest, being nearly as long as all the following three together, and bearing at its inner distal angle an appendage which is fully as long as the third joint. Abdomen and caudal stylets in both sexes as in Scolccithirix Dume.

Scolecithrix Bradyi resembles Scolecithrix Dane very nearly in its general form, but is mueh smaller ; it differs in possessing extremely long hairs on the larger branel of the mandible-palp, and espeeially in the form of the fifth pair of feet.

Habitat. Station 2, 25 fathoms tow-netting, January 1st (night collection). Station 9 , 50 fathoms tow-netting, Jawuary 10th (day collection). Off São Thomé Island (lat. 0° 34^{\prime} N., long. $6^{\circ} 30^{\prime} 4^{\prime \prime}$ E.), 20 fathoms tow-netting, Jannary 23rd (day collection). Station 23, 135 fathoms tow-netting, February sth (day eollection).

Scolecitherix affinis was obtained in thinteen of the tow-nettings, one only of which was a surface (night) gathering, the other twelve being under-surfaee, the depth of which ranged from 5 to 360 fathoms, and of which three were collected during the day and nine during the night, as in the formula:-
Tow-nettings $13 \begin{cases}1 \text { surface } & \left\{\begin{array}{l}0 \text { day collection. } \\ 1 \text { night ditto. }\end{array}\right. \\ 12 \text { under-surface } & \left\{\begin{array}{l}3 \text { day collections. } \\ 9 \text { night ditto. }\end{array}\right.\end{cases}$

Scolectithex latipes, n. sp. (Pl. IIT. figs. 21-23; Pl. V. figs. 40-43.)
Female. Length $3 \cdot 2 \mathrm{~mm}$. (1-Sth of an ineh). Body stont. Abdomen short, t-jointed Forehead with a median keel extending round the front to the bifid rostrum. Anterior antenne rather longer than the thorax, 23.jointed, sparingly setiferous (fig. 58). The proportional lengths of the joints are as shown in the formula:-

```
35.5.5.5.5.5.11.5.5.6.8.8.8.4.9.9.6.8.8.6.9.10.7
```


The posterior antenne, month-organs, and swimming-feet are somewhat as in Scolecithrix Dance, but the anterior foot-jaws are strongly gibloons on the underside (Pl. V. fig. 12). The fifth pair of feet are simple, considerably dilated, especially towards the end, and are each furvished with three spines on the broadly-rounded apex; the imner spine, which is longer than the others, is finely serrate on the outer margin, the others are plain (Pl. III. fig. 22). Candal stylets short, shightly divergent, and fimmished with fom loug, plumose, terminal setie.

This form, of which only one or two specimens (females) were obtained, ocenred in a gathering from 85 fathoms, collected February 5th at Station 23 (lat. $4^{\circ} 26^{\prime} 7^{\prime \prime} \mathrm{S}$., Jong. $10^{\circ} 1^{\prime} \mathrm{s}^{\prime \prime}$ E.).

Scolecithrix tatipes was readily distinguished from the other species of Scolecitherix by the peculiar form of the fifth pair of feet, which are broad and leaf-like.

Scolectiturix major, n. sp. (Pl. III. figs. 21-26; Pl. V. figs. 44, 45.)
Female. Length 3 mm . (1-Sth of an inch). Body elongate. The anterior foot-jaws are stont and the marginal lobes are furnished with long, spiniform, plumose, terminal sete ; all the sensory filaments are large with the exception of two, which are smaller and provided with elongate acutely-pointed heads. The terminal spines of the swimming-feet, especially those of the third and fourth pairs, are coarsely toothed on the outer margin; there are sixteen or seventeen large teeth along the margin. Fifth pair small, simple, 2-jointed; the last joint is about three times the length of the other, and armed with one moderately long terminal and one small subterminal spine, while a long spiniform seta springs from near the middle of the inner margin. Abdomen long, composed of four segments, the first three nearly equal, the last much shorter. Candal stylets short, about as long as the last abdominal segment; apical setie fomp, plumose.

Mabitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$., 460 fathoms (day collcetion, January 22nd).
The form of the animal, the armature of the anterior foot-jaws, and the coarsely-toothed terminal spines of the swimming-feet are characters which distingnish this from other species of Scolecithrix. A considerable portion of the anterior antemne was wanting in the only specimen obtained.

Scolechthrix tumida, n. sp.* (Pl. III. figs. 33-38.)
? Scolecithrix abyssalis, Gicslurecht, op. cit. p. 284, pl. 13. figs. 15, 40, p1. 37. fig. 7.
Femule. Length 2.1 mm . Body somewhat robust; forehead obtuse, with a small

[^6]rostrum; postcro-lateral angles of last thoracic segment rounded. Anterior antenne: long, reaching to near the extremity of the abdomen, 21 -jointed and sparingly setiferous. The amexed formula shows the proportional lengths of the joints :-
\[

$$
\begin{array}{r}
12.3 .3 .3 .3 .3 .8 .3 .3 .4 .6 .1 .7 .7 .4 .7 .7 .7 .4 .8 .11 \\
-234 \\
1
\end{array}
$$
\]

Anterior foot-jaws stout; four of the marginal lobes are each armed with a long setiferous spine and two seter ; number of slender scusory fitaments spring from the end of the anterior foot-jaws as in other species of Scolecithrix. The terminal spines of the swimming-feet are finely toothed on the outer margin ; the arrangement of the marginal tecth of the terminal spines of the third and fourth pairs differs from those of the second, as shown in figure 36. The fifth pair are small, somewhat dilated, and 1 -jointed, armed with one terminal spine, a stout and prominent spine on the imer margin, and a small tooth on the outer margin (tis. 37). Abdomen short, stout, the last segment small. Candal stylets short, the breadth about equal to the length, and furnished with one subterminal and three apieal seta:
 Station 23, 85, and 235 fathoms (February 5th, day collection).

Scolecithrix tumidn is a rare species in the 'Buceancer' collections; its robust form, the spinous armature of the anterior foot-jaws, and the dilated fifth pair of feet are characters that readily distinguish it from other species of Scolecithrix.

Scolecithinis mubli, Giesbrecht. (Pl. III. figs. 27-32)
1892. Scolecithrir dubia, (ficsbrecht, op. cit. p. 281, pl. 13. fig. 29 a.

189:. Srolecithrix simulans, Scott (MS. name).
? Nete. Length 1.6 mm . Body robust; abdomen of moderate length, 3 -jointed, the middle segment rather shorter than the first or last. Anterior antenne reaching to about the end of the sceond abdominal segment, sparingly setiferous, composed of twenty joints, the eighth equal to the entire length of the preceding forr, the last two elongate, slender. The formula shows the proportional lengths of the diflerent joints :-

$$
\begin{aligned}
& 1 \because 3+567 \text { 8 } \because 10111 \because 1: 31+151617151920
\end{aligned}
$$

The articulation between the sisteenth and serenteenth joints of the right antenna is imperfect and somewhat indistinet. The posterior antenne, mouth-appendages, and first four pairs of swimming-feet nearly as in Scolecithrix Donce, exeept that the marginal lobes, especially the one nearest the apex, of the anterior foot-jaws bear elongate eurved spines with ciliate imner margins; the apex, as in Scolecithrix Dance, bears a number of hair-like filaments (tig. 20)) The terminal spines of the swimming-feet are finely serrate on the outer and ciliate on the imer margins. The fifth pair are unequal; the (?) left consists of three joints; the hasal part of the elongate middle joint is eonsiderably swollen and bears a (:) spiniform appendage on its imner aspect ; the imner angle at the distal end

[^7]forms a produced lobe-like process; the last joint small, curved inward, and bearing a minute bent terminal spine. The (\%) right foot is longer than the other and 5 -jointed; the first joint is about twice the length of the first joint of the (?) left foot, but the first and second joints of the ($(\stackrel{?}{0})$ right are together scarcely equal to the length of the same joints of the other foot; an elongate appendage - ? as long as the third joint-springs from the end of the second joint; the third and fourth joints, which are subequal in length, are more slender than the preceding joint, and are together nearly equal in length to the first; the fifth, which is seareely so long as the fourth and appears to be comected with it loy a linged articulation, is ciliate on the inner edge.

Habitat. Lat. $4^{\circ} 20^{\prime} 7^{\prime \prime}$ S., long. $10^{\circ} 1^{\prime} \mathrm{S}^{\prime \prime} \mathrm{E}$., in a tow-net gathering from 235 fathoms collected between 11 д.м. and 3.30 p.m. February 5th.

This Scolecithrix somewhat resembles Amallophora in the form of the fect of the fifth pair, but differs in the number and proportional length of the joints. It also differs from any other Scolecithrix described in this lieport in the proportional length of the joints of the anterior antenne, the formi of the anterior foot-jaws, and the fifth pair of feet.

> Subgenus Aballopuora*.
> (Subgenus of Scolecithrix, Brady.)

Anterior antemse 20- to 23-jointed. Mouth-organs and swimming-fcet nearly as in Scolecithid, except that the anterior foot-jaws are furnished with one or more appendages, cach consisting of a bundle of filanents resembling a sheaf of corn in miniature. Fifth pair of feet in the male dissimilar, 1- or 2-branched, prehensile; in the female simple, 1-branched.

Amallophora typica, n. sp). (Pl. TII. figs. 30-16; Pl. VI. higs. 1-1.)
Length $2 \cdot 7 \mathrm{~mm}$. (about 1-9th of an inch). Body clongate, moderately stout; forehead rounded. Anterior antemas rather longer than the body, 20 -jointed, and sparingly setiferous. The formula shows approximately the proportional lengths of the joints:-

The first seven joints bear short club-shaped appendages. Primary braneh of the posterior antenus short, secondary branch moderately long, the intermediate three very short (fig. 41). Mandible small, with a large 2-branched palp, one of the branches 2-, the other 4 -jointed (fig. 42). Anterior foot.jaws stout, short, 4 -jointed, first joint long, the second provided with an appendage bearing a large rounded cluster of curled filaments, and somewhat resembling a sheaf of corn in miniature; third and fourth joints small and armed with a large spiniform and several small plumose sete (fig. 44). Posterior foot-jaws slender and clongate, 6 -jointed, the first, second, and fourth joints long, the others very short and bearing a few sete. The first four pairs of swimming-feet as in Scolecithrix; the terminal spines are strongly serrate on the outer edge, those of the third

[^8]pair considerably narrowed at the base. The fifth pair is simple, consisting of one short 3 -jointed branch, which terminates in a small spine, and one very long and slender branch, composed of four nearly equal parts, and bearing a ciliate digitiform process and a number of short setie at the apex. Abdomen short, the first segment rather narrower than the next ; the last is very small. The caudal stylets are also very short and somewhat divergent (Pl. IV. fig. 4).

Habitat. Lat. $1^{\circ} 55^{\prime} ⿹^{\prime \prime}$ Ň., long. $5^{\circ} 5_{5} 5^{\prime} 5^{\prime \prime}$ E., in a tow-net gathering from 3.5 fathoms, collected Jamary ?ond. Only one specimen of this curious form was olitained.

Amallopifora magia, m. sp. (Pl. IV. figs. j-9.)

Female. Length about 45 mm . (2-11ths of an inch). Body robust, attenuated towards the front, the first segment equal to the entire length of the other body-segments and abdomen; head produced into a distinct though small median keel, which passes round over the forchead (fig. 31). The postero-lateral angles of the last thoracic segment are produced ventrally into a small tooth. Interior foot-jaws small; four of the marginal lohes are furnished with long terminal phomose sete, while the other forms the base of a long setose spine; several small sensory filaments, some of which have romed heals, spring from the extremity of the foot-jaw, as shom in fig. 6. The other month-organs and swimming-feet are similar to those in Seolecithrix Dunce, except that the large terminal spines of the swimming-feet are strongly toothed on the outer margin. The fifth pair are very small, simple, \because-jointed; the second joint is nearly twice the length of the other and provided with one terminal and two submarginal seta; the terminal and one of the submarginal setio are long and slender, the other is very short (fig. 9). Abdomen short.

Habitat. Off São Thomé Tsland, 20 fathoms, January 23rd (day collection).
One specimen only of this curious form was obtained ; it wanted a considerable portion of the anterior anteme and part of the abdomen, but, though thus mutilated, the peculiar structure of the anterior foot-jaws and the large, strongly-toothed, terminal spines of the swimming-feet, together with the large size of the animal, readily distinguish this from allied species. No males were observed.

Amallophora debia, n. sp. (Pl. IV. figs. 10-1S.)
Mrete. Lengith 2.5 mm . (1-10th of an inch). In this species the first eephalothoracic segment is nearly equal to the entire length of the other three body-segments and the abdomen. Anterior anteme about as long as the eephalothorax; the right antenna is 1S-, the left 23-jointed; in the right antenna, which is indistinctly geniculate at the proximal half (fig. 11), the seventh joint is composed of five and the fifteenth of two coaleseed joints; the first thirteen joints of the left antenna and the corresponding joints of the right have a row of elongate setae along the upper margin, each of which is furnished with a membrane-like unilateral expansion or fringe as shown in the finure, but the remaining portion of the anteme is only sparingly setiferous. The amexed formula shows the proportional lengths of the right and left anteme: -

The mouth-organs are as in Scolecilhoix, except that the anterior foot-jaws are each provided with two peculiar appendages, consisting of a morlerately stont filament bearing an oblong conical head, which appears to lee composed of dense fibre-like tissue (fig. 13). The posterior foot-jaws are furnished at the extremity with a few hair-like papilliferons filaments (fig. 1 H). The swimming-fect are as in Scolecithoix, but the first four pairs differ in the form and amount of their armature (figs. 15, 16). The fifth pair has the second joint of the left foot elongate ; the basal part of the joint is greatly dilated, and is furnished interiorly with a spiniform appendage which terminates in a small apical seta; the third and fourth joints are small and slender; both brauches of the right foot are 2-jointed and furnished with small digitiform terminal processes (fig. 17). The abdomen is composed of form segments, the first heing rather shorter than the others. Caudal stylets short, each bearing four modcrately long, plumose, terminal hairs (fig. 18).

Habitat. Lat. $1^{\circ} 55^{\prime} 55^{\prime \prime} \mathrm{N} ., \operatorname{long} .5^{\circ} 55^{\prime} 5^{\prime}$ E. In two gratherings, one from 360 fathoms and one from 460 fathoms. Collected during the middle of the day, January 22nd.

Varicty similis. (Pl. IV. figs. 19-23.)
This is a form which occurred along with the other in the gathering from 460 fathoms, and whicl!, though closely resembling it, yet differs in a few points. It resembles Amallophora dubia, especially in the form of the fifth pair of feet, but differs considerably in the proportional length of the joints of the anterior antenne and of the segments of the aldomen, as will be observed by comparing the figures of the variety with those of the species.

Amallophora robusta, n. sp. (Pl. IV. figg. 21-29.)
Female. Length 3 mm . (1-Sth of an inch). The body is robust, with a rounded forehead and a small rostrmm. The anterior foot-jaws are provided with a number of terminal tilaments, the majority of which are comparatirely short and possess ovate conical heads, while three of them are stont and moderately long and resemble those in Scolecithorix (fig. 25). Posterior foot-jaws as in Scolecithrix, except that the first joint in each is furnished with a short and stout filament haring an ovate pointed head like the smaller filaments of the anterior foot-jaws. The swimming-feet are similar to those of Amellophoru mugnc, but the terminal spines are long, and finely serrate on the onter edge, and plain on the imaer edge. The fifth feet are small, simple, and 2-jointed; a large setose spine springs from the inner margin, and a small spiniform seta from the outer margin, of the last joint ; while a plain spine, smaller than that on the inner margin, springs from the imere part of the rombded apex, as shown in the figure (tig. 28). Abdomen comparatively small, 4-jointed, the segments subequal. Caudal stylets about half the length of the last ablominal segment, and furnished with four apieal plumose sete.

Habitat. Station 23 (Lat. $4^{\circ} 26^{\prime} 7^{\prime \prime}$ S., long. $10^{\circ} 1^{\prime} S^{\prime \prime} \mathrm{E}$.), in a gathering from S5 fathoms. Collected about midday, Fehruary buth.

One or two specimens only of this species were obtained. The armature of the anterior and posterior foot-jaws, the long and finely serrate terminal spincs of the swimming-feet, and the form and armature of the fifth pair are characters by which this may be distinguished from other allied species.

Genus Evciteta, Philippi.

> Euchetu, Plilippi, Archiv f. Naturgeseh. 1813; Dana, Proc. Amer. Aead. Sci. 1819 ; Claus, Die freikebenden Copepoden, 1863; Brady, heport Chall. Copep. 1883.

Eucheta mamina (Prestandrea, 1833).
1843. Euchuta Prestundreee, Plilippi, Arehiv. f. Naturgesel. Taf. iv. fig. 5.
1863. Eucheta Prestandrea, Claus, Die frcilebenden Copepoden, p. 183, pl. v. fig. 18 a, pl. ix. figs. 6, 7, 9, 12, pl. xxx. figs. 8-17.
1883. Euchetu Prestandrece, Brady, R'eport Chall. Copep. p. 60, pl. xriii. figs. $7-15$, and pl. xix.
1892. Euchete marine, Giesbrecht, Fauna und Flora des Golfes von Neapel (Copepoden), p. 262, pls. 1, 15, $16,37$.
Habitat. Stations 2, 3, 9, 11, 14, 21, 21, and others ; also Lagoon, São Thomé Island, surface tow-ncttings.

Euchata murinu was one of the commoner species observed in the collection. It occurred in 106 tow-nettings, 47 of which were surface-gathorings and 59 under-surface, ranging from \because to 460 fathoms. 16 of the surface and th of the under-surface tow-nettings were collected during the day, and 31 of tho surface and 18 of the under-surface during the night, as represented in the formula :-

Torr-netting's $100\left\{\begin{array}{l}17 \text { surface }\left\{\begin{array}{l}16 \text { day collections. } \\ 31 \text { night ditto. }\end{array}\right. \\ 59 \text { under-surface }\left\{\begin{array}{l}41 \text { day ditto. } \\ 18 \text { night ditto. }\end{array}\right.\end{array}\right.$
A greater number of Eucheta marina carricd ora than any other species of Calanide in the 'Buccaneer' collection. The clusters of ova somewhat resembled miniature bunches of grapes.

Eecileta pulcira (Lubbock).
1856. Uudina pulchra, Lulbbock, Trans. Entom. Soc. iv. 1. 14, pl. iv. figs. 5-8, pl. vii. fig. ©.
1883. Euchuetu pulchru, Brady, Report Chall. Copep. p. 633, pl. xiv. figs. 6-9, pl. xx. figs. 14-19.

Habitat. Lat. 733^{\prime} N., long. $15^{\circ} 18^{\prime}$ W., 25 fathoms tow-netting, January 2nd (night collection). Lat. $\mathscr{}^{\circ} 31^{\prime} 9^{\prime \prime}$ N., long. $5^{\circ} \mathscr{2}^{\prime} 2^{\prime \prime}$ E., 20 fathoms, January 21st (night collection). Lat. $1^{\circ} 55^{\prime} 5^{-\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime} 5^{\prime \prime \prime} \mathrm{E}$., 35 fathoms, Jannary 22nd (day collection). Lat. $0^{\circ} 25^{\prime} 1^{\prime \prime}$ N., long. $636^{\prime} 6^{\prime \prime}$ E., 10 fathoms, January 2ith (night collection). These are the only tow-nettings in which this Euchectu was observed, and a few specimens only were obtained.

SECOND SERIES.-ZOOLOGY, VOL. VI.

Eucheta australis, Brady. (Pl. VI. fig. 23.)
1883. Eucheta australis, Brady, Report Chall. Copep. p. 65, pl. xxi. figs. 5-11.

A single specimen of this species (a male) was obtained in a tow-net gathering from 50 fathoms at Station 2 (lat. $7^{\circ} 54^{\prime} \mathrm{N}$., long. $17^{\circ} 25^{\prime} \mathrm{W}$.). Collected between 7.20 and $5.20 \mathrm{p} . \mathrm{m}$. . January lst. I have nothing to add to the description of this apparently rare species contained in the Report on the Copepoda of the 'Challenger' Expedition. The species, after being dissected, was easily recognized by the deseription and figures of it in that Report.

Eucheta gicas, Brady.
1883. Euchetu gigas, Brady, loc. cit. p. 65, pl. xxii. figs. l-5.

This Euchetu was obtained in a tow-nct gathering from a depth of 35 fathoms in lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E. Collected during the day, January 22nd. Two or at most three specimens (females) were obtained.

Eucheta barbata, Brady. (Pl. VI. fig. 17.)
1883. Eucheta barbrtu, Brady, loc. cit. p. 66, pl. xxii. figs. 6-12.

This Eucheta was obtained in three different tow-net gatherings, in one from 50 fathoms at Station 2, January 1st, in one from 360 fathoms in lat. $1^{\circ} 55^{\prime \prime} 5^{\prime} \mathrm{N}$. , long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., January 22nd, and in one from 30 fathoms, at Station 23, February 4th.

This remarkable species is readily distinguished from other Euchetre by the tufts of setre on the last abdominal segment, loy the first abdominal segment being greatly dilated ventrally, and by the tufts of setre on the posterior angles of the last thoracic segment. Very few specimens (females) were obtained.

Eucheta (?) Hessei, Brady, var. simlis, nov. var. (Pl. VI. figs. 24 \& 25.)
1883. Eucheta Hessei, Brady, loc. cit. p. 63, pl. xx. figs. 1-13, pl. xxiii. figs. 11-14.

MEule. Length 2.2 mm . (1-12th of an inclı). Body elongate, rounded in front; the postero-lateral angles of the last thoracic segment are produced in aculeate spines, as shown in fig. 1. Anterior antennæ as long as the thorax, 2l-jointed, geniculate at the twolfth joint; the eighth and twelfth joints are composed of two or three coalesced joints and are indistinctly articulated ; the basal joints are furnished with leaf-like appendages, and a club-shaped filament springs from the end of the last joint. The annexed formula shows the proportional lengths of the joints :-

$$
\frac{10 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 3 \cdot 3 \cdot 4 \cdot 4 \cdot 5 \cdot 6 \cdot 6 \cdot 6 \cdot 9 \cdot 14 \cdot 8 \cdot 8 \cdot 8}{12345} .
$$

Posterior antennæ and month-organs similar to those of Euchate marina, but the anterior foot-jaws, though small, are somerhat stout, as shown in fig. 4. Swimmingfeet also as in that species, except that the terminal spines of the swimming-feet are more coarsely serrate-especially those of the third and fourth pairs, the serrations of whieh number about eighteen; the secondary spines of the second pair are longer than
in the other swimming-feet. The fifth pair (fig. 25) closely rescmble those of Eucheta Hessei as figured in the 'Challenger' Copepoda. Alsdomen composed of four nearly equal segments. Candal stylets very short, furnished with four long plumose hairs.

Malitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime \prime} 5^{\prime \prime}$ E., 460 fathoms (day collection, January 22nd).
This eomes rery near Euchceta Ilessei,* and is possibly a form of that species. It differs in the following points :-It wants the prominent rostrum of Eucheta IFessei; the posterior margin of the last thoracie segment bears on each side a small but distinet aculeate spine; it possesses small but stout anterior foot-jaws; the inner edge of the terminal spines of the swimming-feet is densely ciliate. The right foot of the fifth pair has no secondary appendage and terminates in a spiniform process; the left foot has a very short inner appendage, and the last joint, which is elongate, is genieulate near the middle.

No females were observed.
Eucheta hebes, Giesbreeht. (Pl. VI. figs. 18 \& 19.)
1892. Euchueta hebes, Giesbrecht, op. eit. p. 263, pls. 15, 16, 37.

Male. Length $2 \cdot 7 \mathrm{~mm}$. (1-9th of an inch). Body elongate, rostrum small. Anterior antenne not longer than the thorax, 2 -2-jointed; the second joint bears a number of small club-shaped appendages; the upper margin of the eighth joint is produced near the distal end into a small digitiform setiferous lobe; the proportional lengths of the joints is shown in the annexed formula :-

Posterior antemne robust, the primary branch considerably shorter than the secondary. Mouth-organs as in Euchata murine, except that the posterior foot-jaws are comparatively short and stout. Swimming-feet nearly as in Euchota marina; the fifth pair are unequal in length; the left is 2 -branched, the outer braneh 3 -jointed, the last joint being long and slender, with a bluntly rounded extremity, the inner branch is 1-jointed and as long as the first two joints of the outer branch; the right foot, which has a small rudimentary iuner branch, is slorter than the other and terminates in three processes; one of these processes is stout, curved, and spiniform; the second is oblong-ovate, somewhat truncate at the apex, and bear's a dense fringe of cilia on the distal end of the inner margiu; the third is a strong, somewhat hook-like appendage, serrate on the inner edge. The whole forms a complicate apparatus with which the left foot probably interlocks. Alodomen elongate, of four nearly equal segments, the posterior margins of which are servate. Candal styleis very short, nearly obsolete, and furwished with four plumose setre-the third from the ontside being considerably longer than the others.

Ifabitut. Station 2, 50 fathoms (night collection, Jannary 1st). Station 9, 50 lathoms (day collection, January 10th).

[^9]This species is closely allied to Euchcetn marina, but differs in several important points and especially in the character of the fifth feet; it also wants the prominent bifid rostrum of that species. No females were observed.

Eucheta hebes, var. valida. (Pl. VI. figs. 20-22.)
A form, which may be only a variety of Euchete heles, oecurred along with that species in a tow-net gathering from 50 fathoms at Station 2 (lat. $7^{\circ} 54^{\prime} \mathrm{N} .$, long. $17^{\circ} 25^{\prime} \mathrm{W}$.). But while rescmbling Euchete hebes in general form and in the form of the fifth feet, it differs in some of its structural details as well as ly its much greater size. The following is a description of some of its more obvious differences:-

Length (male) 5.7 mm ., of which the body forms two-thirds and the abdomen onethird. Anterior antenne reaching somewhat beyond the last thoracic segment, 22 jointed, sparingly setiferous; the eighth joint, which is louger than the preceding two together, and the seventeenth, eighteenth, and last are subequal, and are the longest joints of the antennæ. The proportional lengths of the joints are nearly as shown in the formula :-

Between each of the large marginal teeth of the proximal half of the terminal spines of the second, third, and fourth swimming-feet there is a very small tooth; it can only be satisfactorily distinguished by using a moderately high magnification (fig. 21). The second joint of the (?) right foot of the firth pair is moderately short and considerably swollen, and bears interiorly at its distal end an appendage, the length of which is rather greater than the elongate third joint; the fourth joint is very slender and as long as the third, and terminates in a blunt-pointed extremity. The (?) left foot is 4-jointed, the first joint is short, the second and third elongate ; the last, which is comparatively short, ends in a complex trifid apparatus, somewhat similar to that of Eucheeta hebes (fig. 22). Abdomen slender, the last segment about two-thirds the leagth of the preceding. Stylets short, their breadth searcely cqual to the length; the long seta-the third seta from the outside-of each is at least equal in length to the abdomen.

> Genus Candace, Dana.
> Candacia, Dana, Amer. Journ. Sci. 1846 .
> Ifionyx, Kröycr, Nat. Tidsskr. 1849.
> Candace, Dana, U. S. Expl. Exped. 1852.

Candace pacifydactila, Dana.
1852. Candace puclydactyla, Dana, U. S. Expl. Exped. p. 1113 , pl. Axxviii. figs. $2 a-b$.
1883. Canduce pachyductyla, Brady, Report Chall. Exped. p. 68, pl. xxxi. figs. 2-9.

Halitat. Station 2, 5 fathoms tow-uetting, January lst (night collection). Lat. $4^{\circ} 21^{\prime}$ $S^{\prime \prime}$ N., long. $1^{\circ} 57^{\prime} \mathrm{W}$., surface tow-uctting, January 14th (day collection). Station 24, 10 fathoms, Jannary 21st (night collection). Lagoon, São Thomé Island, surface,

January 27 th (day collection). Station 23 , surface, $10,20,55$, and 185 fathoms townettings, February 5th (day collection). Lat. $S^{\circ} 36^{\prime} S^{\prime \prime}$ S., long. $12^{\circ} 57^{\prime}$ E., surface, February 9th (day collection).

This Candace was obtained from 57 tow-nettings, 24 of which were surface and 33 under-surface gatherings; 37 of the tow-nettings (16 surface and 21 under-surface) were collected during the day, and 20 (8 surface and 12 under-surface) were collected during the night, as shown in the formula :-

$$
\text { Tow-nettings } 57 \begin{cases}21 \text { surface } & \left\{\begin{array}{l}
16 \text { day collection. } \\
8 \text { night ditto. }
\end{array}\right. \\
33 \text { under-surfaec }\left\{\begin{array}{l}
21 \text { day ditto. } \\
12 \text { night ditto. }
\end{array}\right.\end{cases}
$$

The under-surface tow-nettings ranged in depth from 2 to 260 fathoms. Candace pachydactyla, as noted above, occurred in twice as many day surface as in night surfacegatherings ; its distribution in this respect is thus more or less the reverse of that of most of the species described in this Report.

Candace pectivata, Brady.
1878. Canduce pectinatu, Brady, Monog. Brit. Copep. i. p. 49, pl. viii. figs. 14, 15; pl. x. figs. 1-12.
1883. Canduce pertinata, Brady, Report Chall. Copep. p. 6í, pl. xxx. figs. 1-13.

Habitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, loug. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 35 fathoms, January 22nd (day collection). Station 23, surface tow-netting, February 5th (day collection).

This Canduce was of rare occurrence in the 'Buccancer' collections.
Candace intermedia, n. sp. (Pl. IV. figs. 30-37.)
? Candace certa, Dana (1852), Crust. U. S. Expl. Expedition.
Length, exelusive of tail-seter, $2 \cdot 46 \mathrm{~mm}$. In form somewhat like Candece pectinate, Trady, lout the posterior margin of the first thoracie segment is produced in the median dorsal line so as to form a distinct limp, which is usually of a chocolate-brown colour, while the surrounding integument is white or nearly so (fig. 56). The last thoracie segment (figs. 62, 63) is furnished on each side with four small hairs, the posterior one being the longest. The 16th, 17 th, and 18 th joints of the right male antenns are toothed in a manner somewhat similar to that of Cundece pectinuta, but the teeth on the 18th joint (the joint on the distal side of the hinge) do not form a distinet beard-like fringe as in that species. The proportional lengths of the joints, especially of the right male antenna, differ from those of C. pectincte and are very nearly as in the annexed formula :-

The 17 th joint in the male is usually dark-coloured. The mouth-organs and swimmingfeet, except the fifth pair, resemble those of Candace pectinata. The fifth feet in the female are somewhat like those of Candace pachydactyla, but the terminal spines only
are dark-coloured; the fifth feet in the male are intermediate in form (fig. 35) between Candace pectinata and Candace pachydactyla. The abdomen in the female has the first segment stout and rounded-not "produced at each side into a triangular prominence," as in Candace pectinata. The first segment in the male, however, is produced on the right side similar to that species. The posterior margin of all the abdominal scgments is finely and distinctly scrrate. Between the second and third setæ of the caudal stylets (counting from the outside) there is a short stout spine, which was quite conspieuous in some of the specimens.

This species is intermediate between Candace pectinata and Candace pachydactyla, but is readily distinguished from both by the characteristic dark-coloured dorsal hump described above.

Habitat. Station 2, 5 fathoms, January 1st (night collcetion). Station 9, 50 fathoms (day collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $55^{5} 55^{\prime} 5^{\prime \prime}$ E., 35 fathoms, January 22nd (day collection). Station 23, surface and 10 fathoms, February 5th (day collection). Lat. 7° $54^{\prime} 6^{\prime \prime}$ S., long. $12^{\circ} 14^{\prime} 7^{\prime \prime}$ E., surface, February 9th (day collection). This species oceurred in 16 tow-nettings, 9 of which were surface and 7 under-surface gatherings; the undersurface tow-nettings were from 5 to 50 fathoms. The proportion of day to night gatherings in which it was observed is shown in the amnexed formula:-
Tow-nettings $16\left\{\begin{array}{l}9 \text { surface }\left\{\begin{array}{l}2 \text { day collections. } \\ 7 \text { night ditto. }\end{array}\right. \\ 7 \text { under-surface }\left\{\begin{array}{l}4 \text { day ditto. } \\ 3 \text { night ditto. }\end{array}\right.\end{array}\right.$
Candace intermedia, though restricted in its distribution, was nevertheless of frequent oecurrence in some of the gatherings in whieh it was observed.

Candace varicans, Giesbrecht. (Pl. IV. figs. 38, 39 ; Pl. VII. figs. 7-10.)
1892. Candace varicans, Gicsbrceht, Fauna und Flora des Golfos ron Neapel (Copepoden), p. 439, pl. 22. figs. 22, 23.
Candace tenuiremus, Scott (MS. name).
Length, exclusive of tail-setx, 2.3 mm . Anterior antenne long and slender, reaching to the extremity of the abdomen, 21 -jointed in the female, the right antenna in the male 23-jointed ; the proportional lengths of the joints as in the amnexed formula:-
Male right antenra. 10.10.5.4.f.7.3.4.3.3.4.4.5.7.8. S . © . 13.11. 13.7.6.8.
 Female antenna ...12. 10.4.4.6.5.4.8.4.4.4.7.7.5.9.10.11, 12. 13.12.7.6.7.10.

The 18 th joint of the right male antenna (the joint on the proximal side of the hinge) is distinctly pectinate ; the 17 th joint, which is about half the length of the 18th, is finely toothed, and the 19th has a fringe of small fine setæ on the upper margin; several of the basal joints bear strong marginal spines, and the 20th joint is as long as the following two joints together. The female antemne resemble those of Canduce truncata. The mouth-organs and first four pairs of swimming-feet resemble those of other species of Candace. The 5th pair in the female 3-jointed, the last joint long, with three long, stout,
terminal setose spines, and a small spine on the exterior margin below the middle of the segment; the 2nd joint has a stout seta on the exterior distal angle. The 5 th pair in the male are somewhat similar to those of Candace pectinata and Candace pachydectyla; the left foot is 4-jointed, the penultimate being longer than the others, and furnished with a fringe of hairs on the lower exterior margin and a small spine near the interior distal angle; the outer margin of the last joint has a fringe of hairs on the upper laalf and four spines (2 short, 1 long, and 1 intermediate) near the margin of the lower half. There is a small tuft of hairs and a spine on the imner aspect of the same foot; the right foot terminates in a stout prehensile hand like Candace pectinate. The posterior thoracic segment has the lateral angles produced into stout prominent spines, which in the male reach to near the end of the first abdomimal segment. The abdomen in the male 5 -, in the female 3-jointed; the first segment of the female abdomen is about as long as the other two together, stout and rounded, but not produced into angular processes as in Candace pectinata. It resembles Candace truncata in this respect, but the middle segment is much shorter than in that species. The abdomen of the female in the 'Buccancer' specimens is dark-coloured-almost black, but only the stylets of the male abdomen are dark-coloured. The tail-setre are also dark-coloured and densely plamose. This species is intermediate between Candace pachydactyla and Candace truncata; its chief distinctive characters seem to be the form of the anterior male antenna and of the male and female fifth feet.

Habital. Lat. $I^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{S} ., \operatorname{long}$. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$. It was olbtained in two tow-nettings from this locality, one from 35 fathoms and one from 460 fathoms. The peculiar arrangement of the colour, together with its decided character, make the species, especially the females, quite conspicuous among their confieres.

Candace tieuncata, Dana.
1852. Candace truncata, Dana, Crust. U. S. Explor. Exped. p. 1118, pl. Ixxviii. figs. 8 a-d.
1863. ? Candace bispinosa, Claus, Die freilebenden Copep. p. 191, pl. xxvii. figs. 9-16; pl. xxxiii. fig. 5.
1883. Candace truncata, Brady, Report 'Challenger' Copep. p. 69, pl. xxviii. figs. 12-15; pl. xxix. figs. 1-14.
ILabitat. Station 2, 95 fathoms tow-netting, January Ist (night collection). Lat. 1° $55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $555^{\prime} 5^{\prime \prime} \mathrm{E} ., 20$ and 30 fathoms tow-netting, Jannary 29nd (day collections). Off São Thomé Island, lat. $0^{\circ} 3 S^{\prime} 6^{\prime \prime}$ N., long. $6^{\circ} 25^{\prime} S^{\prime \prime}$ E., 20 fathoms tow-netting, Tamuary 23rd (day collection). Station 23, surface tow-netting, February 5th (day collcetion).

Candace truncata was a somewhat rare species in the 'Buccaneer' collection, the tow-ncttings described above being the only ones in which it was observed. It nevertheless appears to have a wide distribution.

Genus Mormonilla, Giesbrecht (1891).
Corynuropis, Seott (MS. 1892).
Resembles Corymura, Brady, in general appearance but differs in the following details:-

1st. The body becomes gradually narrower posteriorly, so that the thorax and abdomen are not clearly defined the one from the other.

2nd. The secondary branch of the posterior antenne is multiarticulate.
3 rd. The maxillx are provided with a well-developed bilobed palp.
4th. The anterior foot-jaws are large and resemble those of IHemicalames longicornis, Claus.

5th. The posterior foot-jaws, which are furnished with a number of marginal setre, are 2-jointed, the apical joint leing comparatively short (fig. 17). They resemble neither Acartia nor Corymura.

6 th. The outer branches of the first four pairs of swimming-fect are 2-, and the inner branches 1-jointed, cxcept the first and second pairs, which appear to have the inner branches rery indistinetly 2 -jointed.

7th. In the female the fifth pair of feet is absent or obsolete. Nale unknorn.
These differences, especially the 3rd, 5th, and 7th, are too important to allow of the 'Buccaneer' specimens being ascribed to Corymura, even though the general resemblance is rery striking.

Mormonilla pilasma, Giesbrecht. (Pl. VII. figs. 11-21.)
189.. Mormonilla phasma, Giesbreeht, Fanna und Flora des Golfes von Neapel (Copepoden), p. 536, pl. 43. figs. 2S-32, 31-41.
1892. Corynuropis temicaudatus, Scott (MS. name).

Female. Length 1.7 mm . Body elongate-pyriform, composed of five segments, the first equal to the combined length of the other body-segments and abdomen; forehead narrowly rounded. Anterior antennæ slender, 5 -jointed, and bearing a number of long plain sete, especially at the extremity, where there are six or seven of considerable length; the sccond and fourth joints are subequal and fully twice the length of the third joint, as shown by the annexed formula :-

$$
\text { Anterior antenne. } \frac{14 \cdot 20 \cdot 9 \cdot 23 \cdot 14}{1} 2.3+5 \cdot
$$

The basal joint of the posterior antenne short ; the primary branch moderately stout, 2-jointed ; the end joint about three-lourths the length of the first; the integument of both partly covered with fine cilia. Secondary branch rather longer than the first joint of the primary branch, S-jointed; all the joints small except the first, which is nearly equal to the entire length of the next three; the last joint of the principal branch and all the joints of the secondary one are furnished with very long plumose setre (fig. 13). Mandibles with a broad dentate biting part; the principal branch of the palp is furnished with long aculeate setre, and the small secondary branch with plumose setee (fig. 14).

The maxillæe are well dereloped and provided with a stout bilobed palp-one lobe bearing long plumose, the other aculeate sete (fig. 15). Anterior foot-jaws large, 5-jointed, the first joint about twice the length of the remaining portion, the three apical joints very short; the third and fourth joints bear each one, and the last three, moderately long aculeate setæ; the anterior foot-jaws are also provided with four marginal setiferous lobes-three on the first joint and one on the proximal end of the second. Posterior foot-jaws smaller, 2-jointed, and bearing several stout marginal and terminal seta ; the last joint is comparatively short (fig. 17). The last joint of the outer branches of the first four pairs of swimming-feet are each provided with a long slender terminal spine, very finely serrate on the outer and ciliate on the inner edge, and also with several long plumose setx; the imer branches, which are shorter than the outer, bear two long terminal setæ, and a subterminal one. In the first pair, which differ from the others, the exterior margin of the outer branch is armed with three stout spines and a subterminal spiniform seta, while the interior margin of the inner branch bears three processes resembling somewhat the dilated bases of rudimentary hairs. The inner margin of the second basal joint is also armed with several short spines (fig. 18). Abdomen slender, 3 -jointed, the middle segment searcely half the length of either the first or third. Caudal stylets very slender, once and a half the length of the abdomen, bearing each four long terminal setre, and a small subterminal seta exteriorly, while a moderately long seta springs from the outer margin and near the base of each stylet, as shown in figure 21.

Habitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms, tow-net gathering. Collected during the day, January 22nd. Temperature of the water about $43^{\circ} \mathrm{F}$. Lat. $4^{\circ} 24^{\prime} 7^{\prime \prime} \mathrm{S}$., long. $10 \mathrm{l}^{\prime} \mathrm{S}^{\prime \prime}$ E., in tow-net gatherings from 235 fathoms and 185 fathoms. Collected between 11 A.m. and 3.30 p.m., February 5th. Temperature of the water at 200 fathoms $55^{\circ} \mathrm{F}$. A considerable number of specimens were obtained in the first of the three gatherings. No males were observed.

This species has a close general resemblance to Comynura gracilis, Brady, and I was at first inclined to ascribe it to that genus, but a further study of the structure of the animal showed that there were differences between it and Corynure so important as to make its position in that genus untenable (see remarks to description of genus, p. 61).

Genus Acartia, Dana.

Acartia, Dana, Amer. Journ. Sci. 1846 ; Brady, Report 'Chall.' Copep. 1883.
Dias, Lilljeborg, Crust. ex. ord. trill. 1853 ; Claus, Die freilebend. Copep. 1863 ; Boeck, Oversigt Norg. Copep. 186t; Brady, Monogr. Brit. Copep. 1878.

Acartia laxa, Dana.
1852. Acartia laxa, Dana, Crust. U.S. Expl. Exped. p. 1123, pl. Mxxix. figs. 5 a-c.
1883. Acartia laxa, Brady, Report 'Chall.' Copep. p. 73, pl. xxxii. figs. 1-11.

Habitat. Station 2, 25 fathoms, tow-netting, January 1st (night collection). Station 9, 50 fathoms, January 10th (day collection). Off Sĩo Thomé Island (lat. $0^{\circ} 38^{\prime} 6^{\prime \prime} \mathrm{N}$., second series.-ZOOLOGY, VOL. Vi.
long. $6^{\circ} 25^{\prime} 5^{\prime \prime}$ E.), 20 fathoms, January 23rd (day collection). Station 22, 20 fathoms, February 4th (day collection). Lat. $5^{\circ} 55^{\prime} 1^{\prime \prime}$ S., long. $11^{\circ} 30^{\prime} 7^{\prime \prime}$ E., surface, February 18th (night collection), \&c.

Acartia laxa was observed in 38 tow-nettings, 11 of which were surface and 27 undersurface gatherings. The under-surface tow-nettings ranged in depth from 5 to 235 fathoms. Four of the surface and 19 of the under-surface gatherings were collected during the day, while 7 surface and 8 under-surface gatherings were collected during the night, as shown in the formula:-

Tow-nettings $38\left\{\begin{array}{l}11 \text { surface }\left\{\begin{array}{c}4 \text { day collections. } \\ 7 \text { night ditto. }\end{array}\right. \\ 27 \text { under-surface }\left\{\begin{array}{c}19 \text { day ditto. } \\ 8 \text { night ditto. }\end{array}\right.\end{array}\right.$
Acartio laxe was of frequent ocenrence in nearly all of the tow-nettings in whieh it was observed.

Acartia denticornis, Brady.
1883. Acartia denticornis, Brady, op. cit. p. 73, pl. xxxi. fig. 1, pl. xxxii. figs. 12-17.

Habital. Lagoon, São Thomé Island, surface tow-netting, January 27 th (night collection). Libreville, Gaboon River, surface, January 2Sth (day collection). Lat. \& 40^{\prime} S., long. $10^{\circ} 25^{\prime} 2^{\prime \prime}$ E., surface, February 5th (night collection). Bananah Creck, Congo River, surface, February 7th (day collection). Loanda Iarbour, surface, Febriary 13th (day collection).

The distribution of Acartia denticomais within the area dealt with in this Report appears to have been more restricted than Acartic laxa; it was also more confined to inshore and surface gatherings than was that species. It is interesting to note that this apparent preference of A. denticornis for localitics more or less inshore is borne out to some extent by the 'Challenger' records, where the following statement oecurs (loc. cit. p. 74):"Abundant in IIilo Harloom, Sandwich Islands (August 1875); one or two specimens noted in a gathering from the Philippine Islands and (?) in the Atlantic, north of Tristan d'Acumha."

Acurtia denticomis was obtained in 14 of the 'Buccancer' tow-nettings-all of them surface gatherings. Kight of the tow-nettings were day and 6 were night collections. The specific gravity of the water in which it occurred varied from $1 \cdot 025$ to $1 \cdot 0087$.

Acartia plumosa, n. sp. (Pl. VII. figs. 22-32.)
Length $1 \cdot 2 \mathrm{~mm}$. Body elongate-ovate, somewhat ronnded in front; the rom postero-latcral angles of the last thoracic segment bear a number of small spines. Anterior antenue about as loner as the cephalothoras, those of the female 20-jointed and furmished witli mumerous plumose setre; the annexed formula shows the proportional lengths of the joints:-

The male right antenna is 17 -jointed ; the 11th, 12th, and 13 th appear to be each composed of troo coalesced joints, indistinctiy hinged between the 12th and 13th joints, both of which are ciliate on the upper margin. On the proximal side of the hinge there is one and on the distal side three short stout spines, as shown in fig. S. Posterior antenure and mouth-oreans as in Paracartia spinicaudata. The length of the joints of the imner branches of the first pair of swimming-feet is about equal, while the first joint of the outer branch is mueh stouter and once and a half the length of the next. The inner branch of the fourth pair is slender, the first joint of which reaches nearly to the middle of the second joint of the outer branch; the last joint of the outer branch is much smaller than either of the other two joints; the terminal spines are long and slender (fig. 27). The fifth pair in the female are each furnished with two long setec, one of which is submarginal and plumose and one apical; the basal part of the plain apical seta is considerably dilated and gibbous (figs. 29,30). The right filth foot in the male is much longer than the other, and the penultimate joint, which is shorter than either the preceding or following joints, is produced interiorly into an elongate protuberance; the last joint of the left foot is armed with a large spine on its inner aspect; each foot terminates in a short stout spine, and the first joint of both is furnished with a long plum se seta on the outer margin (fig. 30). In the abdomen of the female the first segment is about once and a half the length of the next and fully twice the length of the last segment; the first and second segments are sparingly dentate on the posterior margin (fig. 31). Caudal stylets longer than the last, and nearly as long as the penultimate, abdominal segment; caudal setre as in Leartiol Clausi. The first segment in the male abdomen is considerably narrower than those that follow. The caudal stylets are about three-fourths the length of those of the female and not longer than the last abdominal segment, and furnished with setee as in the female (fig. 32).

Ilubitut. Bananah Creck, Congo River, in a surface gathering collected at noon, February 7th; the specific gravity of the water when the gathering was made was 1.00870 ; and in Loanda Harbour, in two surface gatherings collected in the seaward part of the Harbour during the afternoon of the 15th February. The surface temperature of the water was about $79^{\circ} \mathrm{F}$.
-Lcartia plamosu somewhat resembles Acartia discuuduta (Giesb.), especially in the male right anterior antenne and fitth pair of feet, which are quite prominent in adult specimens.

Acalitia Clalsi, Giesbrecht. (Pl. VII. figs. 33-40.)

1889. Acartia Clausi, Giesbrecht, Rendiconti R. Accad. d. Lincei, vol. v. fasc. 11.
1890. Acartiu galoonensis, Scott (MS. name).

Length fully 1 mm . Viewed dorsally the body is oblong-ovate, the forehead is broadly triangular, almost truncate, with the lateral angles somewhat produced ; the last thoracic segment has the postero-lateral angles rounded. Anterior antenne nearly as long as the thorax, those of the female, which are 21-jointed, are sparingly setiferous, except towards the extremity, where the last five joints bear moderately long plumose setre ; a plumose seta
also springs from the Sth and 12th joints, counting from the end. The proportional lengths of the joints are nearly as shown in the formula:-

$$
\frac{34 \cdot 8 \cdot 10 \cdot 6 \cdot 11 \cdot 16 \cdot 14 \cdot 15 \cdot 15 \cdot 13 \cdot 11 \cdot 16 \cdot 15 \cdot 18 \cdot 15 \cdot 15 \cdot 17 \cdot 9 \cdot 16 \cdot 10 \cdot 6}{112} \cdot \frac{4}{4}
$$

The jointing of the proximal half of the antennee was somewhat indistinct and required a high power of the microscope and careful focussing to make out the articulations. The right anterior antenna of the male is 15 -jointed, and hinged between the 11th and 12th joints; both of these joints are fringed with small teeth on the upper margin, while a moderately stout spine springs from the proximal end of the 12th joint (fig. 35) ; the male antennæ are shorter than those of the female, and are provided with a greater number of plumose setæ. The posterior antemne and mouth-organs resemble those of Paracartie spinicaudata. The first four pairs of swimming-feet also resemble those of that species. The fifth pair in the female have the apex subtriangular and are each furnished interiorly with an elongate stout spine, serrate on the inner margin of the distal half and exteriorly with a long plumose seta (fig. 31). In the male the fifth pair are comparatively short and stout, as in Acartia denticomis, Brady; the proximal joint of each is furnished on the exterior margin with a long plumose seta (fig. 3S). Abdomen in the female short, stout, and composed of three segments; the first is longer than both the other two together, the seeond is about equal in length to the third; the posterior margin of the first and second joints is fringed with small teeth. The caudal stylets are somewhat longer than the last abdominal segment, and are each provided with six phomose sete arranged as follows :-one, strongly curved, near the mirldle of the exterior margin ; one subterminal; three terminal, the middle one being much longer than any of the others; and one (small) on the lower half and near the inner margin of the stylet. The abdomen in the male is composed of five segments; the first is rather narrower than the next, and the penultimate one is very short. The stylets are shorter than those of the female, but the number and arrangement of the plumose sete are similar (fig. 34).

Habitut. Libreville, Gaboon River, in a surface gathering collected at midday, January 28 th. The surface temperature of the water was $83^{\circ} \cdot 4 \mathrm{~F}$., and the specifie gravity 1.02301 .

This Acartia resembles Acartia denticornis, Brady, in several of its characters, but differs in some important points, especially in the armature and proportional length of the joints of the male right anterior antenna and in the form of the male and female fifth feet and abdomen.

Subgenus Paracartia, n. subgen.
Near Acartia, Dana, but differing very markedly in the form of the fifth pair of feet, which in the female are each armed with a stont curved spine; in the male the fifth pair are large and unsymmetrical, that of the left side being about half the length of the right; the male right antenna has also the joints of the proximal half somewhat tumid, as in Pontella.

Paracartla spinicaudata, n. sp. (Pl. VIII. figs. 1-11.)

Femele. Length 1.25 mm . Cephalothorax elongate, rather tumid, rounded in front, the postero-lateral angles of the last thoracic segment acute. Anterior antenna as long as the eephalothorax, 20-jointed, and bearing a number of long plumose sete distributed as follows-one on eaeh of the 2nd, Brel, 14th, Sth, 9th, 10th, 13th, 15th, 16th, and 18th joints, two (one smaller than the other) on the 19th, and five on the last joint. The 7th joint is about as long as all the precerling three together' the 12 th and last joints are shorter than the others. The proportional lengths of the joints are nearly as in the amexed formula:-

Posterior antennæ, mouth-organs, and first four pairs of swimming-feet as in Acartice Rexa, except that the last joint of the onter branch of the first swimming-feet has the lower exterior surface setose. Fifth pair of feet small, 1-branched, the basal part short and tumid and furnished with a stout eurred spine, the distal half of which is strongly toothed on both margins; exteriorly and elose to the spine and about a third of its length is a small plain seta; the right and left branches are alike. Alodomen short. 3-jointed; the first segment is somewhat triangular in form and has the distal end fully twice the breadth of the next segment; it is also longer than both the secoud and last segments together. Caudal stylets short and broad, rather longer than the last abdominal segment, eaeh stylet armed with a prominent and strong terminal spine and two setie, one on each side of the spine; there are also two setre on the exterior margin of the stylets, and a third, with a distinct basal part, a little above the inner of the two terminal sete. The terminal spines, which are about double the length of the stylets, and all the setæ, except the one last deseribed, are plumose.

ILabitut. Bananah Creek, Congo River, in one surface tow-netting collected at noon and in another collected at 4.30 p.м. February 7 th, 1886 . Several specimens, all females, were obtained in these two tor-nettings.

The more obvious characters which serve to distinguish this species are the fifth feet and the peculiar form of the abdomen.

Paracartia dubia, n. sp. (Pl. VII. figs. 41, 12 ; Pl. V III. figs. 12-15.)
JIale. Length about $1 \cdot 2 \mathrm{~mm}$. Body elongate, broadly subtriangular in front, and rounded posteriorly, composed of five segments; head indistinctly separated from the thorax. Anterior antenne about as long as the body, that of the left side provided with a number of moderately long setr, 20 -jointed, the proportional leugths of the joints being nearly as shown in the formula:-

The proximal half of the right antenna, which bears several long plumose hairs, has the lower portion somewhat dilated; there is a hinged articulation between the fifth
and sixth joints, counting from the end. The sixth joint, which is nearly as long as the remaining portion of the antenna, has a rounded excavation on the upper edge and near the proximal end; the lower side of the excaration is produced into a stout tooth-like lobe; the fifth joint, still counting from the end of the antenna, is about half the length of the preceding, and bears a styloid process on its upper margin and a long plumose seta at the upper distal angle; the ultimate and penultimate joints are also furnished with a number of long plumose sctre (Pl. VII. fig. 42). The posterior antennæ and mouth-organs as in Paracartia spinicatedata. The first four pairs of swimming-feet simitar to those of Acartia. The fifth pair is largely developed, that of the right side large, 4 -jointed, the first and second joints stout, the other two slender, elongate; the fourth joint appears as if it were articulated to the side of the third. There is a stout digitiform process on the inner side of the upper half of the second joint, and near the middle of the third joint the outer margin is produced into a bluntly triangular lobe ; the last joint bears an apical appendage, the basal part of which is tumid, the extremity slender and setiform. The right foot has an inner rudimentary scoond branch composed of one joint about equal in length to the first joint of the outer branch. The left foot, which is stout, scarcely reaches to the middle of the second joint of the principal branch of the right foot, and appears to be 3 -jointed; the second joint is furnished with a membraneous, curved (?) sexual process, as shown in figure 9. Abdomen composed of five segments, the first short, of greater width than the next, the outline of the sides rounded (Pl. VIII. fig. 15) ; the second and third joints are long, while the combined length of the fourth and fifth is searcely equal to the third. The stylets are somewhat longer than the last abdominal segment, and have the third apical seta, counting from the outside, considerably longer than any of the others.

Hubitut. Loanda Harbour, in material collected with surface tow-net, on the afternoon of February 15th. Several specimens, males only, were obtained.

As females only of Paracartia spinicauduta, and males only of P. dubia, were obtained in the tow-net gathering from Loanda Harbour, it is just possible that they may both belong to the same species, but the difference between the two is so considerable and so manked that it seems better, for the present at least, to describe them under separate names.

A species described and figured by I. C. Thompson in the 'Proceedings of the Liverpool Biological Society,' vol. ii. p. 111 (1858), as Acurtiu rempoost, rescmbles somerrhat the Paracurtia spinicaudata of this Report ; but the difference in the form of the fiftly feet and in other important details is great enough to render them at least specifically distinet.

Genus Etidius, Brady.
ELtidius, Brady, Report on the Copepoda of the 'Challenger' Expedition, 1883.
Etidius alimatus, Brady.
1883. Etidius "rmatus, Brady, Report 'Chall.' Copep. p. 76, p1. x. figs. 5-16.

Habilut. Station 2, 5 fathoms tow-netting, January 1st (night collection). Lat. $3^{\circ} 58^{\prime}$
N., long. $3^{\circ} 42^{\prime} \mathrm{W} ., 50$ fathoms, January 13th (day collection). Lat. $3^{\circ} 55^{\prime} 3^{\prime \prime}$ N., long. $4^{\circ} 7^{\prime} 3^{\prime \prime}$ E., 30 fathoms, January 20th (day collection). Off Sĩo Thomé Island (lat. $0^{\circ} 34^{\prime \prime}$ N., long. $6^{\circ} 31^{\prime} 6^{\prime \prime}$ E.), 20 fathoms, damary 23 rd (day collection). Station 3, 135 fathoms, February 5th (day collection).

Stidius armatus occuryed in 19 tow-nettings, all of which were under-surface collections and ranged in depth from 5 to 1.60 fathoms; 2 of the tow-nettings were collected during the night, the other 17 were day collections. With one exception, all the tow-nettings were from 20 fathoms or more, and eleven of them from 50 fathoms and orer. The difference between the bathymetrical distribution of this species and of Acertiu denticomis is very marked, the Acortio having been observed only in surface gatherings. The distribution of Etidius was nearly coextensive with the area examined, and in some of the tow-nettings it was of comparatively frequent occurrence. The strong curved rostrim, and the spinous and strongly produced lateral angles of the last thoracie segment, are so conspictions as to make the species readily distinguished from other Copepoda. It was obtained at five of the 'Challenger' stations, one of which (Station 318, lat. $310^{\prime} \mathrm{N} .$, long. $1451^{\prime} \mathrm{W}$.) was in the vieinity of the area traversed by the 'Buccancer.'

Etidits araitger (Gieshrecht). (Pl. VIII. figs. 16-27.)
1892. Gaëtemus armiyer, (riesbreeht, Vauna und Flora des Golfes von Neapel (Copepoden), p. 204, pl. xiv. figs. $19,90,29,26,28, \mathrm{pl}$. xuxvi. figs. $2,6$.
Female. Length, exelusive of tail-seta, $2 \cdot 6 \mathrm{~mm}$. (about 1-10th of an inch). The male is rather smaller than the female. Body robust, composed of four segments, the first segment more than twice the entire length of the other three, rounded anteriorly and furnished with a prominent sharp-pointed rostrum. The postero-lateral angles of the last thoracic segment are produced backward into spiniform processes as loug as the first abdominal segment. Anterior antennor reaching to the extremity of the abdomen, alike in both sexes, and composed of 24 joints, which are sparingly setiferous; the pronstional lengths of the joints nearly as in the formula :-

The hasal joint of the posterior antenme wants the three setae shown in Brady's figure of EEtidius armatus; the first joint of the sceondary branch is small, the second larger, the third, fourth, and fifth small and bearing each a long plumose seta; the sixth joint is fully one third the length of the whole branch, and furnished with one plain and three long plumose terminal setæ. Mandibles and maxille as in. E. armutus; one of the two small intermediate digits of the maxilla-palp terminates in a spiniform plumose seta. Foot-jaws also similar to those of Etidius armatus, except that the two outer marginal lobes of the anterior foot-jaw terminate each in a stout clongate spine, ciliate on the inner edge ; and the inner distal angle of the hasal joint of the second foot-jaw forms a blunt, romed process, the end of which is ciliate and bears a few sete (fig. 2\%). The
first four pairs of swimming-feet resemble those of Atidius armatus, except that the second joint of the imer branch of the second pair is shorter than the other. Fifth pair in the male small, each composed of a basal joint and two 1-jointed branches; the outer branch is comparatively large and bears two small reequal tecth at the extremity; the inner branch is small and rudimentary, with a rounded end. Abdomen in both sexes composed of five (?) segments, the last segment very small, the other segments in the mate abdomen subequal ; in that of the female the first segment is large and tumid, the second smaller, while the third and fourth are about equal and smaller than the second. Caudal stylets short and broad, and furnished with four long and two rery small terminal plumose setre.

Habitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 and 460 fathoms, January $22 n d$ (day collection). Station 23, 135 fathoms, February 5th (day collection). Atidius armiger, of which only two or three specimens have been obtained, is quite distinct from A. armatus, being readily distinguished by the difference in the form of the male fifth feet, and by the peculiar spiny armature of the forehead and last thoracic segment.

Gemus Clausocalants, Giesbrecht, 1888.
Drepanopus, Brady (in part).
Clausocalanus furicatus (Brady).
1883. Drepanopus furcatus, Brady, Report of the 'Challenger' Copepoda, p. 77, pl. iv. figs. 1\& 2; pl. xxiv. figs. 12-15.
1892. Clausocalanus furcatus, Giesbrecht, Fauna und Flora des Golfes von Neapel (Copepoden), p. 194, pl. xxxri. figs. $32,33,35$.

Habitat. Station 2, 25 fathoms (night collection), January 1st. Lat. $3^{\circ} 58^{\prime}$ N., long. $3^{\circ} 42^{\prime}$ W., 25 fathoms (day collection), January 13th. Off São Thomé Island (lat. $0^{\circ} 34^{\prime} \mathrm{N}$., long. $6^{\circ} 30^{\prime} 4^{\prime \prime}$ E.), 10 fathoms, January 23 rd (day collection). Station 23, 10 fathoms, February 5th (day collection). Lat. $6^{\circ} 39^{\prime} 5^{\prime \prime}$ S., long. $11^{\circ} 24^{\prime} 7^{\prime \prime}$ E., surface, February Sth (night collection), de.

This species occured in 20 tow-nettings, 3 of which were surface and 17 under-swface gatherings. The under-surface gatherings were from various depths ranging from $2 \frac{1}{2}$ to 50 fathoms. The 3 surface tow-nettings were night collections; 11 of the undersurface were day and 6 were night collections, as shown by the formula :-

Tow-nettings $20\left\{\begin{array}{c}3 \text { surface } \\ 17 \text { under-surface }\left\{\begin{array}{c}\text { no day collections. } \\ 3 \text { night ditto. }\end{array}\right. \\ \begin{array}{c}11 \text { day ditto. } \\ 6 \text { night ditto. }\end{array}\end{array}\right.$

Clausocalanus latipes, n. sp. (Provisional name.) (Pl. VIII. figs. 28-37.)
Female. Anterior antennæ long and slender, provided with a very few short setre and
composed of 23 joints, the proportional lengths of the joints being nearly as shown in the formula :-

```
3.5.2.2.2.2.2.4.2.2.3.3.4.4.4.4.4.4.4.4.4.5.0
```


The posterior antemax nearly as in Drepanopus pectinctus. Mandibles well developed, strongly dentiferous on the biting-edge, and furnished with a large two-branched palp, one branch being 2-, the other 4 -jointed (hig. 29). Auterior foot-jaws 4-jointed, the last two rery small; marginal lobes six, five of them large, "ach with two (or three) plumose terminal setre: the other small, formine the base of a single plain seta; there plain setre spring from the last juint of this foot-jaw. The posterior fout-jaws are 7 -jointed ; the first and second joints are large, subequal, and longer than the entire length of the next three ; the thind to the last joints are small and furmished with a few plumose hairs (fig. 31). First pair of swimming-feet simitar to those of Drepenopus pectinatus, but there are longer spines on the outer distal angles of the first two joints of the outer branch, and the imner distal angle of the secoud hasal joint terminates in a short spine instead of a plumose hair. The three following pairs are also similar to Drepenopus pectinelus, except that the distal margin of the second basal joint is strongly dentienlated in the scoond pair, and in the third pair is furnished with a dew large spiniform teeth : the terminal spines of the outer hranches are long and broad, and fincly serrate on the outer margin. The fifth pair are rohnst, simple, and composed of two - -jointed branches of unequal length; in the short branch the last joint is much smaller than the other and terminates in three conical tooth-like prolongations; in the other branch, which is at least twiee the length of the short one, the last joint is rather longer than the first, and bears a small spine near the middle of the outer margin and three spiniform teeth at the extremity (fig. 35). The aldomen is composed of four segments, the first longer than the others, the next two subequal, the last small. Caudal stylets ahout as long as the last abdominal secment and bearing four plumose terminal hairs.

Ifabilut. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5>55^{\prime} 5 "$ E., 35 fathoms.
One speeimen only of this species has been obtained; it appears to be a female. White agreeing with Drepunopus in its more important details of structure, Clunsoculames latipes didiers from hoth the species described in the Report on the 'Challenger' Copepoda, especially in the momber and proportional length of the joints of the anterior antenne and in the form of the fiftll feet. It agrees in some respeets with Clensocolenus furcatus, Brady. but in that species, the inner branches of the second pair of swimmingfeet are 1-jointed, the fiftly pair and the anterior antenne also differ considerably, so that for the present it seems better to consider the species as distinet.

Ctausocalants arcutcorxis (Dana). (Pl. VIll. figs. 38-47.)
1849. Calanus arcuicornis, Dana, Amer. Journ. Sc. vol. viii.
1892. Ctunsocalamus arcuirornis, Gieshreelit, op. cit. p. 193, pls. 1, 2, 10, 36.

Length, not inchuding tail-sctie, 1.3 mm . Body elongate, composed of five segments, sECOND SEFILS.-ZOOLOGY, VOL. VI.
the first nearly twice the entire length of the other four. Forehead rounded, produced into a small, sharp-pointed rostrum. Anterior antenne slender, as long as the cephalothorax, 20 -jointed, and sparingly setiferous, the proportional lengths of the joints as in the formula :-

The first joint is stont and long, and the second considerably broader than those immediately following. The primary branch of the posterior antenne is short and 2-jointed ; the secondary branch is fully twice the length of the other, and composed of six joints; the second joint is long and about equal to the entire length of the next four ; the third, fourth, and fifth joints are very small (fig. 39). Mandible-palp small, one branch is 4-, the other 2-jointed (fig. 40). Maxille nearly as in Drepanopus pectinatus. Anterior foot-jaw rery small, with four (or five) marginal setiferons lobes. Posterior foot-jaw small, 7-jointed, and bearing a few spinons seter; the first and second joints are elongate, the third short, the fourth abont twice the length of the third, the fifth abont equal to the third and as long as the next two together (fig. 4t). The first fonr pairs of swimming-fect resemble those of Drepanopus pectinatus, except that the first two joints of the outer branch of the first pair have no spmes on the exterior distal angles. The fifth pair are simple and consist of one very short 2 -jointed branch, and one which is long and 4-jointed; the last joint of the short branch is rery small and terminates in three small spines; the extremity of the long branch terminates on one side in a digitiform lobe, which is opposed by a finger-like process, articulated to the hasal part of the lobe; both are fringed with fine cilia (fig. 45). Abdomen 5 -jointed, the last segment very small. Caudal stylets short, length about equal to the breadth, each furnished with four plumose terminal setie.

Hubitat. Station 2, 50 fathoms, January 1st (night collcetion). Station 9, 50 fathoms, Jannary 10th (day collection). Lat. $3^{\circ} 58^{\prime} \mathrm{N} .$, long. $3^{\circ} 42^{\prime} \mathrm{II}$., 号 and 50 fithoms, January 13th (day collection). Off Accra, 3 fathoms, Jannary 16th (night colleetion). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms, Jannary 2end (day collection). Off Sato Thomé Island, 20 fathoms, Jannary ewrd (day collection).

Males only of this species were obtained.

Genus Pilylorus, Brady.
Phyllopus, Brady, Report on the Copep. of the Chall. Exp. 1883.
Phyllopes bidentatus, Brady. (1’l. VI. figs. 20-2s.)
1883. Phyllopus bidentatus, Brady, Report Chall. Copep. p. 78, pl. v. figs. i-14.

Italitat. Station 2, 5 fathoms, Jamary 1st (night collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms, January "ond (day collection). Temperature of water at 360 fathoms about 13 F .

Three specimens only of this enrious form were obtained, and they were all more or
less damaged ; two of them were carefully dissected, from these dissections figures have been prepared of a few of the more important details, not represented in the 'Challenger' Report. I have also been enabled to add the following deseription:-Secondary braneh of the anterior antemne nearly twice the length of the primary branch, 8 -jointed, the last nearly as long as the preceding six joints, and furnished with fom terminal hairs. Both branches of the first four pairs of swimming-feet 3 -jointed, the middle joint of the outer brameh of the first pair shortest, bearing a comparatively long, stightly curved, setiferons sline on the exterior distal angle; the last joint has two shorter and more slender spines on its outer margin, and a long slender terminal spine, both branches furnished with numerons, long, plumose setce. In the second, third, and fourth pairs the inner are much shorter than the outer bunches; the three joints of the outer branches are each armed with a stont dagecr-like spine at the outer distal angles; the last joint has two similar additional spines inserted in excarations of the outer margin, and a hroad falciform terminal spine, finely serrate on the outer margin; both branches are well furmished with plumose setie. The fifth pair in the female resemble the figured example in the 'Challenger' Report, but their form seems to vary somewhat in different speeimens, both as regards the serration of the last joint, and also the comparative length and breatth of the joints. Abdomen in the female 4 -jointed, first joint mueh larger than the others and dilated. Candal stylets short, not divergent, each with five long, phmose terminal sete, the second from the inside longer than the others.

The month is a short tube; the front part projects outward and baekward so as to form an oblique opening. The edge of the upper part of the tube has a dense fringe of hairs, whieh cam be readily observed if the specimen be in a lavourable position. Judging from a carefnl examination of the 'Buceaneer' specimens, I am inclined to think that the figures in the 'Clallenger' Report represent a female instead of a male.

Genus Temora, Baird.

Temore, Baird, Brit. Entomostraca, 1850.
Diaptomus, Lubbock, Trans. Entom. Soc. 1856.
Temora styltfera (Dama).
1849. Calamss stylifer, Dana, Amer. Journ. Sci. vol. viii.
1856. Diaptomus dubius, Lubbock, Trans. Entom. Soc. vol. iv. n. s. p. 21, pl. ii. figs. 1-7.
1883. Temora dubia, Brady, Report Chall. Copep. p. 79, pl. xxv. figs. 1-1\%.

Hubitat. Station 2, surface and 25 fathoms, Jammary 1st (night eollections). Station 9, 25 fathoms, Jamary 10th (day collection). Station 11, 10 fathoms, Jamary 19th (day collcetion). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 360 fathoms, January 2Qd (day collection). Lagoon, Sĩo Thomé Island, surface, Jannary 27th (one day and one night collection). Libreville, Gaboon liver, surface, January 28th (day collection). Station 23, 10, 20, 135, and 185 fathoms, February 5th (day collections). Bananals

Creek, Congo River, surface, Febrnary 7 th (two day collections). Lat. $55^{\circ} 55^{\prime} 1^{\prime \prime} \mathrm{S}$., long. $11^{\circ} 30^{\prime} 7^{\prime \prime}$ E., Febrnary 18th (night collection).

Temorn stylifera was observed in 105 tow-nettings, 61 of them surface and 4 wndersurface gatherings: of the surface gatherings gev were collected during the diay and 5 36 during the night; of the under-surface gatherings, whiel ranged in depth from 2 to 360 fathoms, 37 were collected during the day and 7 during the night, as shown by the amnexed formula :-

Tow-nettings $105\left\{\begin{array}{l}61 \text { surface } \\ 44 \text { mder-surface }\left\{\begin{array}{l}25 \text { day collections. } \\ 36 \text { night ditto. }\end{array}\right. \\ 37 \text { day ditto. } \\ 7 \text { night dito. }\end{array}\right.$
This was one of the more common and generally distributed species in the 'Buccaneer' collection; it also appears to be one of the most common of the extra-European Copepoda.

Temora longicornis (MLüller). (Pl. VII. fig. 47.)
178.) ?. Cyclops longicornis, Müller, Entom. p. 115, t. xix. figs. f-9.
1850. Temora fimmarchica, Baird, Brit. Entom.]). 228, pl. xxviii. figs. I a-g.

1849\%. Calanus turbinutus, Daua, Amer. Journ. Se. vol. viii.
1857. Diaptomus longicaudatus, Lubbock, Ann. \&t Mag. Nat. Hist. ser. 2, vol. xx. pl. x. figs. 1], 12; pl. xi. figs. $12,13$.
1878. Temora longicornis, Brady, Monogr. Brit. Copep. vol. i. p. 54, pl. iii. figs. 10-19.

Mabitut. Lat. $7^{\circ} 33^{\prime} \mathrm{N}$., long. $15^{\circ} 18^{\prime} \mathrm{W}^{\prime}$., surface, midnight, Jamary 2nd. Station 9, 50 fathoms, January 10th (day collection). Off Acera, 3 fathoms, Janmary 15th (night collection). Same locality, January l6th, surface, night collection, and 3 fathoms, day collection. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $55^{-5} 55^{\prime \prime}$ E., 35 and 160 fathoms, Jannary 2 and (day collections). Librcville, Gaboon River, sufface, January 2Sth (day collection). Bananah Creek, Congo River, surface, February 6th (day collection). Loanda Harbour, surface, February 13th (day collection), and again on the 15th in the seaward part of the Harbour, also surface (day collection). Lat. $5^{\circ} 40^{\prime} \mathrm{S}^{\prime \prime} \mathrm{S}$., long. $11^{\circ} 33^{\prime} 4^{\prime \prime} \mathrm{E}$., surface, February 19th, \&c. (day collection).

This Temore was observed in 57 tow-nettings, 40 of which were surface and 17 undersurface gatherings; 16 of the surface gatherings and 12 of the under-surface were day collections, while 24 surface and 5 under-surface were night collections, as shown by the formula :-

Tow-nettings $57\left\{\begin{array}{l}40 \text { surface }\left\{\begin{array}{l}16 \text { day collections. } \\ 24 \text { under-surface }\end{array}\left\{\begin{array}{l}2 \underline{2} \text { day ditto. } \\ 5 \text { night ditto. }\end{array}\right.\right.\end{array}\right.$
The under-surface tow-nettings were from depths ranging from 3 to 50 fathoms, and one from 135 and another from 460 fathoms.

Temora longicornis was not only generally distributed throughout the area examined,
but was a moderately common species in some of the tow-nettings in which it oceurred. This species is readily distinguished from either Temore stytifere (Dana) or Tomora armatu, Clans, by having the last thoracie segment in both sexes rounded at the postero-lateral angles. The first pair of swimming-feet have the inner branches more or less distinctly e-jointed. The male fifth pair (fig. 17) difler somewhat from the same pair of feet in British specimens, but otherwise the 'Buccancer' specimens agree with those of the British seas.

Gemis Centropages, Kröyer.
Centropages, Kröyer, Nat. Tidskr. 1819 ; Bueek, Oversigt Norges Copep. 186ı; Brady, Monogr. Brit. Copep. 18:8.
Catopiu, Dana, Proc. Amer. Acaul. Sci. 1819
Calanopia, id. (in part) Crust. TT.S. Expl. Exped. 1852.
Ichthyophorba, Lilljeborg, De Crust. ex. ord. trib. 1853; Claus, Die freilebenden Copepoden, 186\%.
Cextropages brachlatus (Dima).
1859. Calanopia brachintu, Dana, Crust. UT.S. Expl. Exped. p. 1133, pl. lxvix. figx. 7 a, l,
1883. Centropmes brachiatus, Brady, Report Chall. Copep. p. 8 ? , pl. sxvi. figs. 1-z.
 Lat. $5^{\circ} 10^{\prime} \mathrm{N} .$, long. $3^{\circ} 50^{\prime} 2^{\prime \prime} \mathrm{T}$. ., sumfere (close inshore), Jannary 12th (night colkection). Station 21, surface, February th (day collection). Station 응, 20 fathoms, February 5th (day collection). Bamanalh Creek, Congo liver, surface, February 7th (two day collections). Loauda Harbour, surface, February 13th (day collection).

Centropages bruchiutus was observed in 37 tow-nettings, comprising 25 surface and 9 under-surface gatherings. The under-surface tow-nettings included two at 3 fithoms, two at 10 fathoms, one at 20 fathoms, two at 2.5 fathoms, and two at 50 fathoms. 14 of the surface and 6 of the under-surface gatherings were day collections, while 14 surface and 3 under-surface were night collections, as shown by the formula:-

Tow-nettings $37\left\{\begin{array}{l}28 \text { surlace }\left\{\begin{array}{l}14 \text { day collections. } \\ 14 \text { night ditto. }\end{array}\right. \\ 9 \text { mader-surface }\left\{\begin{array}{l}6 \text { day ditto. } \\ 3 \text { night dito. }\end{array}\right.\end{array}\right.$
This, though occuring in a considerable number of tow-nettings, was by no means a common species. The size of the 'Buccaneer' specimens agreed with those of the 'Challenger' collections, viz. S-100ths of an ineli=about 2 mm . (not 4.4 mm . as stated in the 'Challenger' Report).

Centropages furchtus (Dima).
185.2. Catopiá furcata, Dana, C'rnst. U.S. Expl. Exped. p. 11\%3, pl. 1xxix. figs. I a-d.
1883. Centropages furcatus, Brady, lieport Chall. Copep. p. 83, pl. xxviii. figs. 1-11.
 Lat. $5^{\circ} 10^{\prime} \mathrm{N} .$, long. $3^{\circ} 56^{\prime} 2^{\prime \prime} \mathrm{W}$., surface (close inshore), January 12th (night collection).

Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $5055^{\prime} 5^{\prime \prime} \mathrm{E}$,, 10 and 30 fathoms, January 22 nd (day collections). Libreville, Gaboon River, surface, Jamuary 28th (two day collections). Lat. $5^{\circ} 56^{\prime} 5^{\prime \prime}$ S., long. $11^{\circ} 17^{\prime} 2^{\prime \prime}$ E., surface, February Sth (night collection). Loanda Harbour (seaward), surface, February 15th, de. (day collection).

This Centropayes was observed in 49 tow-nettings, 33 of which were surface and 16 under-surface gatherings; 11 of the surface and 11 of the under-surface tow-nettings were day collections, and 22 surface and 5 under-surface were night collections, as shown ly the amexed formula :-

Tor-nettings $49\left\{\begin{array}{l}33 \text { surface }\left\{\begin{array}{l}11 \text { day collections. } \\ 22 \text { night ditto. }\end{array}\right. \\ 16 \text { under-surface }\left\{\begin{array}{c}11 \text { day ditto. } \\ 5 \text { night ditto. }\end{array}\right.\end{array}\right.$
The under-surface tow-nettings were from depths ranging from 3 to 50 fathoms. This species can be readily distinguished, even in the immature stages, by the characteristic armature of the last thoracic segment.

Centropages violaceus (Claus).
1863. Ichthyophorba riolacea, Clans, Die freilebenden Copep. p. 199, pl. xxxi. figs. 13, 14.
1883. Centropages violaceus, Brady, Report Chall. Copep. p. 83, pl. xxvii. figs. 1-14.

Ilabital. Station 2, 50 fathoms, January 1st (night collection). Station 9, 25 fathoms, Jimuary 10th (day collection). Off Sio Thomé Island (lat. $0^{\circ} 3 \beth^{\prime} 7^{\prime \prime}$ N., long. $6^{\circ} 31^{\prime} 6^{\prime \prime}$ E.), 10 fathoms, January 23rd (day collection). Lat. $1^{\circ} 47^{\prime} 7^{\prime \prime}$ S., long. $8^{\circ} 21^{\prime} 3^{\prime \prime}$ E., surface, February 4th, \&e. (night collection).

Centropages violaceus was obtained in 11 tow-nettings, one of which was a surface (night) gathering, aud the other 10 under-surface gatherings; 6 of the under-surface gatherings were day, and 4 were night collections, as shown by the formula :-

Tow-nettings $11\left\{\begin{array}{l}1 \text { surface } \\ 10 \text { under-surface }\left\{\begin{array}{l}0 \text { day collection. } \\ 1 \text { night ditto } \\ 0 \text { day collections. } \\ 4 \text { night ditto. }\end{array}\right.\end{array}\right.$
Four of the under-surface gatherings were from 10 fathoms, two from 15 fathoms, one from 20 fathoms, two from 25 fathoms, and one from 50 fathoms.

Tlas Centropayges was much rarer in the 'Buceanecr' collections than the other two species recorded in the 'Challenger' collection. On the other hand, it was the more common of the three species of Centropages observed by Dr. Brady. Centropages violuceus differs from the other two species in having the postero-lateral angles of the last thoracic segment rounded off instead of being produced into spinous processes. No indication of colour could be detected in the 'Buccancer' specimens. This was probably due to their long immersion in spirit, which had extracted the colour characteristic of the species.

Genus Temoropla, n. gen. (Provisional name.)
Anterior antenne ? 2』- or ? 23-jointed; the right antenna of the mate 19-jointed, hinged between the 15th and $16 \log ^{2}$ joints. Posterior antenme and month-organs as in Calamus. Inner branch of the first pair of swimming-feet e-jointed, of the second, third, and fouth pairs 3 -jointed. Fifth pain in the female simple, alike on both sides, and each composed of a single 3-jointed branch; in the male the fifth pair, which are prehensile, and each composed of a single hanch, are latge and conspienots. The female abtomen consists of four and the male of five semments; the first seogment in the female is considerably dilated.

Temoropha maymbaessis, n. sp. (Pl. YIII. figs. 18, 19; Pl. IX. figs. 1-12.)

Length 93 mm . Body clongateorate, composed of five segments; the first segument, which is about as long as the combined length of the next three, is indistinctly articulated at the upper half. F'orehead broadly triangular. Anterior antennas of the femate ? 22- or ? 23-jointed. ${ }^{*}$ The right anterior antema of the mate scarcely reaches to the end of the thorax, is springly setiferous, and 19-jointed, constricted between the 11th and 12th, and hinged between the 15th and 164 joints; the proportional lengths of the joints as in the formala :-

Posterior antenne and month-organs as in Calans. The inner branches of the first pair of swimming-feet are - jointed; the inner branches of the seeond, third, and fourth pairs 3-jointed ; the first joint is short, while the last is equal to the combined length of the preceding two joints. Fifth pair of feet in the female simple, each composed of a single 3-jointed branch, one branch being rather longer than the other; the first joint in both is somewhat dilated; the imner distal angle of the second joint is furnished with a spiniform seta meanly as long as the last joint; the last joint has a eonical and pointed extremity with a small tooth-like process on the imner margin. The fifth pair in the male is large and conspieuons; the right foot is composed of two moderately large joints, which decrease in breadth towards the extromity, and terminates in a long slender curved spine. The left foot, which consists of three broad juints, has an excaration at the apex in which the terminal spine of the foot probably interlocks, while a long eurved spine springs from the end of the first joint (Pl. IX. fig. 9). The abdomen in the female consists of fomp, in the male of five, segments; the first segment in the fomale is considerably swollen, and is prodnced rentrally and posteriorly into a large rounded process (Pl. IX. fig. 10). Caudal stylets short, each furnished with three stont plumose terminal seter, and a small seta on the inner margin.

Habitat. Lat. $1^{\circ} 55^{\prime \prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime \prime} 5^{\prime \prime}$ E., 35 and 360 fathoms (day collections). Station 23 (lat. $26^{\prime} 7^{\prime \prime}$ S., long. $10^{\circ} 1^{\prime} \mathrm{s}^{\prime \prime}$ E.), 235 fathoms (day collection).

[^10]About twenty specimens of this species were obtained in tow-nettings from the localities described; the specimens were all more or less imperfect, especially the anterior antemme and swimming-fect.

The specific name las reference to Mayumba, a place on the coast near Station 23, one of the two localities where the species was obtained.

Gemus Mectinocera, I. C. Thompson (1888).
1888. Mecymocera, I. C. Thompson, Joum. Limm. Soc. (Koology) vol. xx. p. 146.

Mectnocera clatsii, I. C. Thompson. (Pl. I. figs. 2̄-34; Pl. II. 7-10.)
1888. Mecynocera clausii, I. C. Thompson, Journ. Limm. Soc. (Zoology) vol. xx. p. 116 , pl. xi. figs. 1-4.
Length fully 1 mm . Female somewhat longer than the male. Body elongate, slender. Cephalothorax composed of six segments; viewed dorsally the first is almost cylindrical; forchead somewhat angularly rounded; the postero-lateral angles of the last segment are rounded. Anterior anteme fully twice the length of the animal, slender, 21 -jointed ; the 16th to the 20th joints are consideralbly longer than any of the others; several of the middle joints of both antenne in male and female are prorided with longitudinal rows of small spiniform tecth; two, or even three, rows were observed on some of the joints, on others ouly one row; the antenne are sparingly setiferous (Pl. I. fig. 31). The abnexed formula shows the proportional lengths of the joints :-

```
7.14.7.7.7.7.7.12.12.10.12.1%.14.17.18.20.24.2!.26.24.18.12. S. 14
```


The basal joint of the posterior antente stout, primary branch 2-jointed (exelusive of the basal joint), the first being nearly a third longer than the other; secondary branch 7 -jointed ; the second joint is longer than the first, and nearly equal to the entire length of the next four ; the third to the last joints very short (Pl. I. fig. 30). Mandible-palp well dereloped, 2-branched, basal part stout, distally narrowed and prodnced to form the base of the 1-jointed branch; the second branch, which occupies a submarginal position, is 4 -jointed (Pl. II. fig. 7). Foot-jaws and swimming-feet nearly as in Rhinculams, except that the inner bramehes of the first swimming-feet are 1-jointed, the immer branches of the second, third, and fourth pairs are 3 -jointed; the exterior distal angles of the joints of the onter branches are armed with short stout spines which are enrved inwarlly; the last joint of the outer braches of the fourth pair has a similar spine on the exterior margin (Pl. 1. fig. 33) ; the onter branches of all the first four pairs possess long delicate terminal spines. The fifth pair are 1-branched, alike on both sides and in both sexes; basal portion --jointed, not much stouter than the terminal portion, which is 3 -jointed. There is, so far as could be observed, no termiual spine. Caudal stylets somewhat divergent, and about two thirds the length of the last abdominal segment; caudal sctec four, long, plumose.

Mabitat. Station 2, 2.5 fathoms, collected January 1st. Lat. $634^{\prime} \mathrm{N} .$, long. $1239^{\prime} \mathrm{W}$., surface, collected Jannary 6th. Lat. $4{ }^{\prime} 31^{\prime} 6^{\prime \prime}$ N., long. 6 4 $4^{\prime \prime} 4^{\prime \prime}$ W., 50 fathoms, collected

January 11th. Off São Thomé Island (lat. 0 ($34^{\prime} \mathrm{N} .$, long. $630^{\prime} \mathrm{t}^{\prime \prime} \mathrm{E}$.), 20 fathoms, collected Jamaay 23rd. Lat. $426^{\prime} 7^{\prime \prime}$ S., long. $101^{\prime} 8^{\prime \prime}$ E., 235 fathoms, collected February 5th, ©c.

Necynocera Clausii was observed in 16 of the tow-nct collections, 1 only being a surface gathering; the deepest under-surface gathering in which it was observed was 235 fathoms.
Tow-nettings $16\left\{\begin{array}{l}1 \text { surface }\left\{\begin{array}{l}1 \text { day eollection. } \\ 0 \text { night ditto. }\end{array}\right. \\ 15 \text { under-surface }\left\{\begin{array}{c}12 \text { day collections. } \\ 3 \text { night ditto. }\end{array}\right.\end{array}\right.$
The 'Buecaneer' specimens of this species differed from Hecynocera Clausii, I. C. Thompson, as deseribed and figured in the 'Transactions' of the Limnean Society, vol. xx. p. 150, pl. xi.figs. 1-1. Becynocera Clausii is there described as wanting a fifth pair of feet, whereas the 'Buceaneer' specimens possess a fifth pair large enough to be easily observed without requiring to dissect the animal to see them.

Genus Phaërna, Claus.

Phaëmua, Claus. Die freilebenden Copepoden, 1863.
Phaénna spinifera, Claus. (Pl. VT. fig. 35 ; Pl. VII. figs. 1, 2.)
1863. Phuëma spinifera, Claus, Dic freilebenden Copepoden, p. 189, pl. xxxi. figs. 1-7.

Length 2.25 mm . Body globose (breadth about 1.1 mm .), composed of five segments, the first rather longer than the next two together. Anterior antenne as long as the eephalothorax, 2t-jointed. The proportional lengths of the joints are very nearly as shown in the formula :-

Sparingly setiferous; the basal joint in the female bears on its upper margin a single plumose seta*. The ends of the third, last, and of the basal joints bear eaeh a plumose hair on the underside. In the male the basal joint wants the plumose seta. The posterior antenne have the primary branch much shorter than the secondary; the secondary branch \tilde{b}-jointed ; the first and last joints are large, the three intermediate ones very small, both branches furnished with long plumose hairs. Mandibles elongate, bearing numerous small teeth at the distal ends; mandible-palp stout, 2-bramehed, both branches furnished with plumose hairs, the basal part with three short hairs on its inner aspect. Maxille large, foliaceous. Anterior foot-jaws short, truncate; joints crowded, not clearly defined, setiferous, the apical part bearing one long, faintly serrate, spiniform, eurved appendage; and a number of peculiar, eylindrical processes (sense-

[^11]organs:), densely ciliated at the extremity; posterior foot-jaw in the female slender, (0 -jointed, the last two joints very small. Three long setre, plumose along the upper edge, spring from the terminal joints; the basal joints are sparingly setiferous; the posterior foot-jaw is stouter in the male, and the terminal joints bear a much larger number of setre. First pair of swimming-feet 2 -branched, the outer 3 -jointed, the inner $\because-j o i n t e d$; both branches with numerous stout plumose setr, the terminal spine of the outer branch slender, and faintly serrate on the outer margin. The inner branch of the second pair 2-jointed, of the third and fourth pairs 3-jointed and armed on the side with fascicles of short, stout, and sharp-pointed spines; the outer branches foliaceous and bearing several strong spines on the exterior margin, one at the base of the first and second joints, and three on the last joint; the terminal spines of the outer branches of the second, third, and fourth pairs broad, falciform, the outer margin faintly serrate. The fifth pair wanting in the female, in the male simple, 1-branched, $5(?)$-jointed, the left branch longer and stouter than the right, with the last joint small and fringed with hairs; the right branch terminates in a slender spine. Abdomen in the male 5 -, in the female 4-jointed, the last joint the smallest. Caudal stylets short, divergent, and furnished with several plumose setre, the scoond seta from the inside being much longer than the others.

Mabitat. Station 9, 25 and 50 fathoms, Jamary 10th (day collections). Lat. $155^{\prime} 5^{\prime \prime}$ N., long. $55^{\prime} 55^{\prime \prime}$ E., 35, 60, and 360 fathoms, January 2?nd (day collections). Station 23, surface, 20 and 55 fathoms, February 5th (day collections). These were the only gatherings in which Phaëma spinifera was obtained.

The ciliated processes of the anterior foot-jaws resemble somewhat the worm-like sense-organs of the same appendages in Scolecithrix, but iustead of being produced so as to form lengthened hair- or "worm-"like processes, as in that genns, they are cylindrical and truncate, and furnished with a terminal fascicle of delicate cilia.

Subfamily Pontelline, Dana.

Genus Labidocera, Lubbock, 1853.

Pontella, Dana (in part), Amer. Journ. Sei. $18 \downarrow 6$; Claus, Die freilebenden Copep. 1863; Brady, Monogr. Brit. Copep. 1878 ; id. Report Chall. Copep. 1883.
Labidocera, Lubboek, Ann. \& Mag. Nat. Hist, ser. ?, vol. xi. (1853).
Labidocera detruncata (Dana), var. intermedia. (Pl. VI. figs. 36-38; Pl. VII. figs. 3, 4.)

Length 3 mm . Cephalothorax elongate-ovate, the postero-lateral angles of the last thoracic segment produced, acute. Anterior anteunæ in the lemale 23 -jointed, the upper margin of the first eight or nine joints furnished with moderately short, plumose setie, and the lower margin with a fringe of delicate hairs extending to the 12th joint. Right anterior antenure of the male 17-jointed, hinged between the 13th and 14th
joints, the upper margins of these joints mimutely denticulate (a $\frac{1}{4}$-inch objective is required to see the dentienlation distinetly). The 12 th joint is not denticulate. Mandible strongly toothed; the distal end is covered exteriorly with numerous short spinous sete arranged in oblique rows ; the two inner teeth of the mandible are large and wide apart. The posterior loot-jaws are somewhat similar to those of Labidocere acute, Dana. The third segment of the right fifth foot of the male has the base prodneed into a long stont spine, and at the distal end is furnished with a long curved and slender appendage, bearing two short claw-like processes at its extremity. The left foot is $\begin{gathered}\text { g-jointed ; the second joint is shorter than the first, the third is about equal }\end{gathered}$ in length to the second and somewhat triangular in shape; the apex terminates in three teeth, the middle one being the lougest. The fifth pair in the female are intermediate between Labidoceren detruncata and Labidoceren acutifrons, Dana. Abdomen in the male 1 -jointed, in the female 3 -jointed; the middle segment in the female large and tumid, the last segment of the male ablomen smaller than the other three, which are subequal in length.

The form here described differs from Labidocera detrencate, as described and figured in the 'Challenger' Report, in the following particulars:--the right anterior male antenna differs in the proportional length of the joints and in the absence of the prominent dentienlations on the 12 th, 13 th, and 1 Ith joints, but especially on the 12 th, and also in the postero-lateral angles of the last thoracic secment being acutely and strongly produced so as to resemble, in this respect, Labidocere acutifrons. The fifth pair of feet in the male of the variety here described resemble Dana's figure very closely, much more so than that of the specimen figured in the Report on the 'Challenger' Copepoda.

Mabitat. Lat. $\mathrm{J}^{5} 55^{\prime}$ N., long. $1420^{\prime} \mathrm{W}$., surdace, January Gth (one day and one night collection). Off Sĩo Thomé Island (lat. $\left.0 \quad 32^{\prime} 7^{\prime \prime} \mathrm{N} ., \mathrm{long} .631^{\prime} 6^{\prime \prime} \mathrm{E}.\right)$, 10 fathoms, Tamaary 23 p (day collection). Lagoon, São Thomé Islaud, surface, Jannary 27 th and 2Sth (one day and one night collection). Lat. $130^{\prime} 3^{\prime \prime}$ S., long. S $8^{\prime} 6^{\prime \prime}$ E., surface, February 3 rd (night collection). Lat. $455^{\prime} 9$ ' S., long. $104 \bar{y}^{\prime} 3^{\prime \prime}$ E., surface, Feb-
 (night collection). Lat. $639^{\prime} 5^{\prime \prime}$ S., long. 11 ひ! 「"' E., surface, February Sth (night collection).

This was comparatively a rare species in the 'Buccaneer' collection. The abore is a full list of the localities where it was obtained.

Labidoceria Darwinil (Lubbock). (Pl. V1. figs. 39-12; Pl. Vil. figs. 5, 6.)

1853. Labidoctru Darwinii, Lubbock, Am. \& Mag. Nat. Hist. ser. :2, vol. ii, p. 29, pl. i. figs. 1-11.

1892 ?. Labidocera Latbockii, Giesbrecht, Pelag. Copep. (iolfes ron Neapel, p. 459, pls. 23, 25, 11.
Length, male $2 \cdot 2 \mathrm{~mm}$. female $2 \cdot 4 \mathrm{~mm}$. The forehead is broadly rounded, and does not possess any angular median projection. The last thoracic segment has the lateral angles considerably produced, and in the male more so on the right side than the left, lout the
same on both sides in the female. Anterior antenne 21 -jointed ; the two basal joints are moderately stout and large, several of the succeeding joints are very short, while from the 16 th to the end all the joints, but especially the 18 th and 19th, are elongate and slender. The approximate proportional lengths of the joints are shown in the formula :--

The middle joints of the right male antenna are slightly swollen; the 3rd joint has a number of indistinct articulations; the 9 th and 10 th joints, between which is a distinctly hinged artieulation, are furnished with marginal appendages that are toothed along the upper edge; the free portion of the appendage of the 9th joint extends backward the whole length of the preceding joint, while that of the 10th joint projects only a little forward beyond the joint to which it belongs; the 7th joint is about twice the length of the preceding one, and equal to the next; the 9 th is a little shorter than the Sth, and about half the length of the 10th; the 11th is about two thirds the length of the $10 t h$, and equal to the next two together. The marginal teeth on the appendage of the 9 th joint spring from the distal end of a quadrangular base; the basal parts of the teeth are closely applied to each other, end to end, as shown in the enlarged drawing ; the marginal teeth on the appendage of the 10th joint are somewhat conical in shape, and are slightly curved forward. The apical portion of the posterior foot-jaw is 4-jointed (Pl. VI. fig. 39). The first joint of the right fifth foot of the male (fig. 41) has a broad triangular outline, and part of the outer angle is, as it were, cut off to form an attachment for the next joint; the last joint is considerably swollen, so that the inner margin forms an elevated arch; a stout curved and spoon-like claw is articulated to the exterior portion of the joint, and the elaw is opposed by a produced basal process so as to form a prelensile organ elosely resembling the beak of a bird, and giving to the whole joint somewhat the appearance of an enlarged " bird's-head process" observed in species of Polyzoa. The last joint ol the left foot has a bifid apex and a small bluntpointed tooth on its outer margin; part of its inner surface is covered with fine cilia, While the inner angle of the sccond joint is produced in the form of a ringed (? sexual) process. Fifth pair in the female simple, the basal joints stout, with a small seta on the proximal half; onter branches elongate, attenuated towards the pointed apex, and furnished exteriorly with a comparatively large subapical spine, and with a minute spine on the interior edge. The inner branehes are small, curved, stoutly spiniform, and not half the lengtlo of the outer branch. The abdomen in the male is composed of four, in the female of two segments, as shown in Pl. VI. fig. 12 and Pl. VII. fig. 5. In the female the eaudal stylets are unequal in longth ; the fourth caudal seta, counting from the outside, in both male and lemale, but especially the former, is considerably longer than the others (fig. 42). In all the female specimens obtained an apparently structureless membrane of an irregular outline covered the greater portion of the abdomen, and extended beyond the stylets to about halfway over the candal setre, as shown in fig. 12.

Habitat. Libreville, Gaboon River, in surface tow-net material collected after midday, January 28th.

Though the Labidocera now described differs in one or two points from Sir John Lubboek's Labidocera Darwinii, especially in the number of joints of the apical portion of the posterior foot-jaws, yet its agreement with that species is closer than with Labidocere acutifions, Dana; the 'Buccancer' specimens have therefore been ascribed provisionally to Lubbock's species.

Labidocera acutifrons (Dana).
1852. Pontella acutifions, Dana, Crust. U.S. Expl. Exped. p. 11 19, pl. lxxx. figs. $11 a-h$.
1883. Pontella acutifrons, Braily, Report Chall. Copep. p. 91, pl, xxxv. figs. 1-13.

Habitat. Lat. $5^{\circ} 10^{\prime}$ N., long. $350^{\prime} 2^{\prime \prime}$ W., surface (close inshore), January 12th (night collection). Near Appi (Porto Novo), surfuce, January 1Sth (day eollection). Libreville, Gaboon River, surface, January 2Sth (two day collections). Bananah Creek, Congo River, surface, Fehruary 7 th (day collection). Lat. $7^{\circ} 54^{\prime} 6^{\prime \prime}$ S., long. $12^{\circ} 14^{\prime \prime} 7^{\prime \prime}$ E., surface, February 9th (night eollection).

This Labidocere was obtained in 21 tow-nettings, 20 of which were surface and 4 under-surface gatherings; one of the under-surface gatherings was from $2 \frac{1}{2}$ fathoms (day collection), one from : fathoms (night collection), one from 10 fathoms (day collection), and one from 50 fathoms (day collection). 10 of the surface-gatherings were day, and 10 were night collections, as in the formula :-
Tow-nettings $24\left\{\begin{array}{l}20 \text { surface }\left\{\begin{array}{l}10 \text { day collections. } \\ 10 \text { night ditto. }\end{array}\right. \\ 4 \text { under-surface }\left\{\begin{array}{l}3 \text { day ditto. } \\ 1 \text { night collection. }\end{array}\right.\end{array}\right.$
Labidocera acutifions was comparatively a rare speeies, though generally distributed throughout the area examined.

Labidocera acuta (Dima).
1859. Pontelle acutu, Dana, Crust. U.S. Expl. Exped. p. 1150, p1. lxxx. figs. 12 a-c.
1883. Pontella acuta, Brady, Report Chall. Copep. p. 89, pl. xxxvi. figs. 1-12.

Inalitat. Libreville, at the mouth of the Gaboon River. Only one or two specimens of what appeared to be this species were obtained.

Genus Poxtella, Dana, 1816.
Pontic, Milne-Edwards, 1 Iist. Nat. des Crust. (1828).
Pontella, Dana (in part), Amer. Journ. Se. (2) vol. i. (1816) ; Brady (in part), Report 'Challenger' Copepoda, 1883; Giesbreeht, Fauna nud Flora des Golfes von Neapel (Pelagisehe Copepoden), 1892.

Pontella inermis, Brady.
1883. I'ontella inermis, Brady, Report Chall. Copep. p. 95, pl. xlv. fige. 10-15.

Habitat. Lat. $510^{\prime} \mathrm{N} .$, long. $3 \mathfrak{y}^{\prime} 0^{\prime \prime}$ W., surface (close inshore), January 12th
(night collection). Station 21 (off the mouth of the Congo), surface. February bith (two day collections). Also in surface gatherings collected on the Sth Febrnary at the following localitics:-Lat. 5 5 $50^{\prime} 5^{\prime \prime}$ S., long. $1117^{\prime} 2^{\prime \prime}$ E.; lat. $554^{\prime} 4^{\prime \prime}$ S., long. $10 \quad 50^{\prime} 7^{\prime \prime} \mathrm{E}$.; lat. $6^{\circ} 3^{\prime} 3^{\prime \prime}$ S., long. $117^{\prime \prime} 5^{\prime \prime}$ E. ; lat. $629^{\prime} j^{\prime \prime}$ S., long. $1124^{\prime} 8^{\prime \prime}$ E.; lat. $639^{\prime} 5^{\prime \prime}$ S., long. $1121^{\prime} 7^{\prime \prime}$ E.; and on the 9th February at lat. $7^{\circ} 3 S^{\prime}$ S., long. 12 $3^{\prime} 3^{\prime \prime}$ E.

Pontefla inermis was observed only in tow-nettings from the localities described above. They were all surface gatherings, and comprised four day and five night collections.

Pontella securifer, Brady.
1883. Pontella securifer, Brady, Report Chall. Copep. p. 96, pl. xlv. figs. 19.

Habitat. Lat. $3^{\circ} 57^{\prime} 2^{\prime \prime}$ N., long. $7^{*} 12^{\prime} 8^{\prime \prime}$ W., 2 fathoms, Jamary 9th (night collections). Lat. $0^{\circ} 22^{\prime} 4^{\prime \prime}$ N., long. $7 \quad 59^{\prime} 8^{\prime \prime}$ E., surface, January 29th (day collection). Station 23, surface, day collection, February 5th. Lat. $550^{\prime} 5^{\prime \prime} \mathrm{S} ., \operatorname{long} .11 \quad 17^{\prime} 2^{\prime \prime}$ E., surface, February Sth (niglit collection), also on the same date at lat. $6^{\circ} 3^{\prime} 3^{\prime \prime}$ S., long. $117^{\prime \prime} 5^{\prime \prime}$ E., surface (day collection) ; lat. $63^{\prime} 23^{\prime \prime} 3^{\prime \prime}$ S., long. $113^{\prime} 3^{\prime \prime}$ E., surface (day collection); lat. $629^{\prime} 4^{\prime \prime}$ S., long. $11^{\circ} 24^{\prime} 8^{\prime \prime}$ E., surface (night collection). On the 9th February at lat. 738^{\prime} S., long. $123^{\prime} 3^{\prime \prime}$ E., surtace (night collcetion) ; lat. $830^{\prime} 8^{\prime \prime}$ S., long. 1257^{\prime} E., surface (day collection) ; and on Pebruary 18th at lat. 553 S., long. $1131^{\prime} 1^{\prime \prime}$ E.

All the tow-nettings in which Pontelle securifer was obtained were surface gatherings, and comprised fire day and four night collections. This species is readily distinguished from the other Pontelle by the remarkable "lnatchet-shaped" appendage of the right male antenne. A fer specimens only of this interesting species were obtained.

Pontella (?) mediterranea (Claus), var. Gaboonensis, nov. var. (Pl. V. figs. 43-48.)
1863. Pontellina mediterranca, Claus, Die freilebenden Copepoden, p. 211, t. ii. figs. 8-10, t. iii. fig. 8, t. xxxvi. figs. 11, 12.
Male. Length 2.5 mm . Rostrum with prominent frontal eye as in Pontella securifer, Brady. The posterior thoracic angles scarcely produced. Anterior antenne not reaching to the end of the thomx; that of the left side 24 -jointed; the first and second joints are moderately stout, the third to the eleventh are short, while the 17th, 18th, 19th, and 22ud are longer than any of the others with the exception of the basal joints, as shom by the annexed formula :-

Left anterior 22.14.4.4.4.4.4.4.5.5.4.s.s.8.10.14.15.18.19.14.13.15.10.13

Several of the small proximal joints are furnished with moderately long plumose setæ on the upper edge, and a fringe of tine hairs or cilia on the lower margin (fig. 44). The sixth, seventh, and cighth joints of the right antenna are abruptly and considerably dilated; the first of the three, which is also the shortest, bears a stout elongate spine on its upper edge (fig. 45). The tenth and eleventh joints, which are long, and connected together ly a hinged articulation, are finely toothed along the upper margin; the denticulations of the tenth joint appear to be bifid, as shown by the figure; the penultimate
joint is as long as the preceding and fully twice the length of the terminal joint. The joints of the apical portion of the posterior foot-jaws gradually decrease in length towards the extremity; the first joint is ibout twice the length of the third, the second is as long as the third and fourth together, the terminal joint is very small (fig. 46). Inner branches of the first pair of swimming-feet 3-jointed, and not longer than the first two joints of the outer branch. Tmer branches of the second, third, and fourth pairs 2-jointed. The basal angle of the short, tumid, terminal joint of the right fifth foot is produced into a moderately long digitiform process, which appears to interlock with the spoon-like apical part of the stout angnlarly curred terminal claw. The last joint of the left foot is fumished with three stont apical spines, one of which is short, while the longer one of the other two is aloout equal in length to the terminal joint (fig. 48). Abdomen composed of four (? fire) segments, the first and third segments are considerably longer than the others. Caudal stylets longer than the third abdominal segment; the fonth seta of each stylet (comnting from the ontside) is about twice the length of the others.

Halitat. Libreville, at the mouth of the Gaboon River, in two surface gatheringsone being collected near the lighest point reached.

Figure 47 shows the fifth feet of an immature female from the same locality. Only three female specimens were obtained, which were all immature.

The Pontella here described scems to be nearly identical with Pontellina meditemroner, Clans, except that Clans's specimens were larger- 4 mm . There is also a difference in the number of joints that prececte the three swollen ones of the right male antenna: Claus describes the three swollen joints as "rom dreizehnten bis funfzehnten Gliede," but in the 'Bnceancer' specimens it is the sixth to the eighth joints that are swollen. MLoreover, there is some difference in the armature of the prehensile part of the right fifth foot; in the 'Buccancer' specimens the " eight large and munerous small boat-like knobs" described by Claus are wanting. But as these differences are comparatively unimportant, and may be clue to local canses, there appears to be no sufficient reason to consider the 'Buccancer' specimens distinct from Pontella mediterranea, Clans, except as a local variety.

Gienus Pontellopsis. Brady.
(Pontellopsis, Brady, 'Challenger' Copepoda, p. 85, 1883.) ? Monops, Lubbock, 185.3.

Pontellopsis villosa, Brady. (Pl. VI. figs. 29-34.)
Pontellopsis villosa, Brady, op. cit. p. 86, pl. xxxiv. figs. 10-13, pl. xxxv. figs. 14-20.
Mrale. Length 1.55 mm . Right anterior antenna somewhat like that of Pontella plumose, Dana, but differing in the armature and in the number and proportional length of the joints (fig. 31). The left anterior antema, the posterior antemme, mouth-organs, and swimming-feet are similar to those of the female (see also pl. xxxv. figs. $1 \not \pm-20$,
of the 'Challenger' Copepoda). The annexed formula shows the proportional lengths of the joints of the left anterior antemna, which is 1S-jointed :-

The fifth pair of feet are nearly like those of Pontella plumosa; the most obvious difference between them is in the size and proportional length of the joints. Abdomen stout, short, and composed of five segments; the first is rather longer than the combined length of the next two ; the sceond, third, fourth, and fifth segments are nearly equal in length. Caudal stylets about equal in length to the three preceding abdominal segments.

Pontellopsis villosa was obtained in 21 tow-nettings from rarious parts of the area traversed by the 'Buecaneer,' between lat. $5^{\circ} 58^{\prime}$ N., long. $1^{\circ} 4^{\prime} 10^{\prime \prime} \mathrm{W}$., and lat. $5^{\circ} 9^{\prime} \mathrm{S}^{\prime \prime} \mathrm{S} .$, long. $11^{\circ} 10^{\prime} 4^{\prime \prime}$ E., all of which, except one from 10 fathoms, were surface-gatherings. The number of day and night collections are as follows :-

$$
\text { Tow-nettings } 21 \begin{cases}20 \text { surface } & \left\{\begin{array}{r}
9 \text { day eollections. } \\
11 \\
\text { night ditto }
\end{array}\right. \\
1 \text { under-surface (10 fathoms) } \begin{cases}1 \text { day eollection. } \\
0 & , \text { ditto }\end{cases} \end{cases}
$$

The genus and species were described by Dr. Brady from female specimens, of which only three were obtained. In the 'Buccaneer' collections a considerable number' of speeimens were observed, but comparatively few of them were females, and none of them reached the dimensions of those described in the 'Challenger' Copepoda; the females also wanted the peculiar lateral aldominal appendage possessed by the 'Challenger' specimens; otherwise, however, the 'Buccancer' specimens (females) agree in every respeet with those described and figured in the 'Challenger' Report. The last three thoracic segments of all the 'Buceancer' specimens possess a brownish coloured mark of an irregular outline on each side of the median dorsal line, as shown in figure 29. The abdomen in the females is also commonly distorted, and the first segment is furnished with two small protuberances; the form and size of the caudal stylets are also more or less unequal.

Dr. Giesbrecht* considers Monops, Lubbock, to be synonymous with Pontellopsis, Brady, and as Monops is prior to the other he substitutes it for Pontellopsis.

Genus Pontellina, Dana, 1852.

Pontella, Brady (in part.), Report on the 'Challenger' Copepoda, 1883.
Pontelliza, Giesbrcelit, Fauna und Flora des Golfes ron Neapel (Pelagische Copepoden), 1802.
Pontellina plumata, Dana.
1852. Pontellina plumata, Dana, Crust. U.S. Expl. Exped. p. 1135, pl. 1xxix. figs. 10 a-d.

* 'Fauna und Flora des Golìes ron Neapel (Telagische Copepoden),' p. 486.

1852. Pontella turgida, ó, Dana, loc. cit. p. $1136, \mathrm{p}$. Mxix. figs. $11 a, h$, figs. $12 a, b$.
1853. Pontella plumatu, Brady, Report Chall. Copep. p. 9:, pl. xxxrii. figs. 1-11.

Habitat. Station 3, 25 fithoms, January 2nd (day collection). Station 9, 25 fathoms, Jannary 10th (day collection). Lat. $\left.1^{\circ} 55^{\prime} 5\right)^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 10, 20, 30, 260, and 360 fathoms, January 22ud (day collections). Station 28, 10 and 185 fathoms, February 5th (day collection). Lat. $8^{\circ} 30^{\prime} 8^{\prime \prime}$ S., long. 1257^{\prime} E., surface, February 13th (day collection), \&e.
Pontelline plemate ocoured in 67 tow-nettings, 39 of which were surface and 28 under-surface gatherings. The under-surface gatherings ranged from $2 \frac{1}{2}$ to 360 fathoms; 16 of the surface and 21 of the under-surface were day collections, while 23 surface and 7 under-surface were night colleetions, as shown by the annexed formula :-

Tow-nettings $67\left\{\begin{array}{l}39 \text { surfuee }\left\{\begin{array}{l}16 \text { day collections. } \\ 23 \text { night ditto. }\end{array}\right. \\ 28 \text { nuder-surface }\left\{\begin{array}{c}21 \text { day ditto. } \\ 7 \text { night ditto. }\end{array}\right.\end{array}\right.$
This species was abundant in the 'Buceaneer' collection, both sexes being frequent. Its distribution was eo-extensive with the area examined.

Family CYCLOPID.E.

Genus Otthosa, Baird.
Oithona, Baird, Zoologist, 1843.
Ofthona Cinalengerii, Brady.
1883. Oithone Challengeriit, Brady, Report Chall. Copep. p. 97, pl. xl. figs. 1-10.

Halitet. Station 2, 5 fathoms, January 1st (night collection). Station 9, 50 fathoms, Jannary 10 th (day collection). Station 18, surface, February 3rd (day collection). Station 23 , surface, February 5th (day collection). Lat. 553^{\prime} S., long. $1131^{\prime} 1^{\prime \prime}$ E., surface, February 18th (night collection), de.
O. Chellengerii secmed to be distributed all over the area examined; in some townettings it was rather rare, but in others frequent. Considerable eare was necessary in diagnosing the species, owing to the close resemblance between it and others of the same genus, and to their being so long immersed in spinit, which rendered it very difficult to make ont the number of joints in the antemas.

Oithona plumifera, Dima.

1852. Oithone phumifera, Dana, Crust. C'.S. Expl. Exped. p. 1 100, pl. \%6.

Habitat. Lat. $431^{\prime}\left(6^{\prime \prime} N\right.$. , long. $64^{\prime} 4^{\prime \prime}$ W., 25 fathoms, Jannary 11th (day collection).
 long. 7 4 5^{\prime} E., 20 fathoms, February 3rd (day collection). Station 21 , surface, February second series.-ZOOLOGy, Vol. Vi.

4th (day collection). Station 22, 20 fathoms, February 4th (day collection). Station 24, surface, February 6th (day collection). Lat. $7 \quad 38^{\prime}$ S., long. $123^{\prime} 3^{\prime \prime}$ E., surface, February 9 th (night collection).

This Oithone has long densely plumose sete of a persistent purplish colour, which are sufficiently conspicuous to enable the species to be readily distinguished. Oithona plumifera, though frequent in the tow-nettings in which it was observed, appeared to be somewhat rare gencrally, as the seven collections noticed above were the only ones in which it was obtained.

Otthona minuta, n. sp. (Pl. IX. figs. 14-25.)
Length, female •64 mm., male 5 mm . Body moderately stout, orate. Anterior antemme not reaching to the end of the thorax : in the female composed of nine distinet joints; the basal joint, which forms about a third part of the whole lengtl of the antenna, is indistinctly divided into seren uncqual portions by very faint lines that do not appear to be true joints. If these indistinct articulations be included the female antenne will consist of fifteen joints, the proportional lengths of which are nearly as shown in the formula :-

$$
\frac{(32 \cdot 4 \cdot 4 \cdot 13 \cdot 4 \cdot 4 \cdot 4) \cdot 14 \cdot 24 \cdot 34 \cdot 10 \cdot 16 \cdot 6 \cdot 12 \cdot 11}{(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7) \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15}
$$

The figures in parentheses refer to the indistinct pseudo-articulations observed in the elongate basal joint. Male antennæ 11-jointed, hinged between the ninth and tenth joints (fig. 16). Posterior antenne nearly as in Oithona spinirostris, Claus (fig. 17) The principal branch of the mandible-palp is armed with two stout, curved, claw-like apieal appendages bearing minute marginal spines; the accessory branch is 1 -jointed and furnished with several long plumose setre (fig. 19). The hiting part has on one side a short, stout, submarginal tooth, and on the other side a spiniform seta at the apical angle fully twice the length of the apical teeth (fig. 18). Anterior and posterior foot-jaws nearly as in Oithona Challengerii or Oithona spinirostris, as are also the swimming-fect. The feet of the fifth pair in the female are hisetose, with moderately long phomose seter; those of the male very minute, with two rery small setae. Abdomen of the female $1-$, of the male 5 -jointed; stylets as long as the last abdominal segment; the last abdominal segment and stylets in the male are a third shorter than in the female, the tail-setre in the male are also much shorter than in the female (figs. 24, 25).

This minute but distinct Oithona was obtained in a tow-net gathering collected at Bananah Creek, Congo River, Fel)ruary 7th; the sp. gr. of the water was only 1.00870. In two tow-net gatherings from the seaward portion of Loanda Harbour, February 15th, surface-temperature of the water at noon $79 \cdot 2 \mathrm{~F}$: : the Loanda Harbour tow-nct gatherings were eollected during the afternoon. Oithona minute was moderately common in these last two gatherings, and many of the females carried ovisacs.

Oithora setigera，Dana．
1852．Oithona setigera，Dana，Crust．L＇．S．Expl．Exped．p．1101，pl． $\boldsymbol{\sigma} 6$.
Ilubitet．In tow－net gatherings from 50 fathoms，lat． $358^{\prime} \mathrm{N}$ ．，long．＇3 $42^{\prime} \mathrm{W}$ ． （temperature $61^{\circ} \cdot 1.5 \mathrm{~F} .$, sp．gr． $1 \cdot 02 \mathrm{~g} 31$ ），collected between S A．s．and 1 p．m．，Jannary 13th；and from 360 fathoms，lat． $155^{\prime} 5^{\prime \prime} \mathrm{N} .$, long． $55_{5}^{\prime \prime} 5^{\prime \prime \prime}$ E．（temperature about 13 F．），collected January 2ond．Oithona setigern was also obtained in a few other gatherings，but was much less frequent than Oithona Challongerii．

> Subfamily Longipeidinfe, Boeck.
> Gemus Longipedin, Claus (1863).

Longipedia minor，T．\＆A．Scott．（Pl．XlI．figs．10－13．）
188．2．Longiperliu coromata，Gieshrecht，lie freileb．Copepoden der Kieler Föhrde，p．99，pls．i．，iv．，xii． 1893．Lonyiredia coronatu，var．minor，T．\＆A．Scot，Amm．Scott．Nat．Hist．rol．ii．pt．2，p． 93.
1893．Lengipertia coronate，var．minor，T．Scott，xi．Ama．Iept．Fishery Board for Scotland，pt．iii． p．200，pl．ii．figs．11－20．
Habitat．Lat． $155^{\prime} 5^{\prime \prime} \mathrm{N}^{\prime}$ ．，long． $\bar{y} 55^{\prime} 5^{\prime \prime} \mathrm{E}$ ．， 460 fathoms，tow－nct gathering，collected January 22nd．Loanda Harbour，in three surface tow－net collections，February 1⿹勹口th． Four or five specimens in all were obtained；they differed considerably from Longipedien coronater as described by Drs．Clatus and Brady．

Gemus Microsetella，Brady \＆Robertson（1873）．

Microsetella，Brady \＆Robertson，Anu．\＆t Mag．Nat．Hist．ser．4，vol．xii．p． 130 （1873）．
Ectinosoma，Brady（in part），Mon．Brit．Copepoda，vol．ii．p．13；id．Report on the＇Challenger＇ Copepoda，p． 100 （1883）．

Microsetella atlantica，Brady \＆Robertson．
1873．Microsctella atlantica，Brady \＆Robertson，Amu．\＆Mag．Nat．Hist．ser．4，vol．xii．p．130， pl．i．．figs．11－16．
1880．Eetinosoma atlanticrm，Brady，Mon．Brit．Copep．viii．p．13，pl．xxxviii．figs．11－I9．
1883．Ectinosoma atlenticum，id．Report Chall．Copep．p．100，pl．iv．figs．10－I I．
Itabitat．Lat． 733^{\prime} N．，long． 1518^{\prime} W．，surface，January Ond（night collection）．Lat．
 long．5＇55 J＇${ }^{\prime \prime}$ E．， 160 fathoms，January 22nd（day collection）．Lat． $647^{\prime} \mathrm{J}^{\prime \prime}$ S．，long＇． $11.30^{\prime} 6^{\prime \prime}$ E．，surface，Felruary Sth（night collcetion），\＆c．

Wicrosetellu atlantica was observed in 40 tow－nettings， 19 of which were surface and 21 mder－surface gatherings； 4 of the surface and 15 of the under－surface gatherings were day collections，while 15 of the surface and 6 under－surface were night collections，as shown by the annexed formula：－

Tow－nettings $40\left\{\begin{array}{l}19 \text { surface } \\ 21 \text { moder－surface }\left\{\begin{array}{c}4 \text { day collections．} \\ 15 \text { night ditto．} \\ 6 \text { night ditto }\end{array}\right.\end{array}\right.$

The under-surface tow-nettings included eighteen gatherings from $2 \frac{1}{2}$ to 50 fathoms, and one at 185,235 , and 460 fathoms. This species appeared to be distributed all over the area examined, and was comparatively frequent in some of the gatherings; females with ovisacs were not uncommon.

Canthocamplus roseus, Dana, probably belougs to this species. Dana's description (so far as it goes) and figure agree with Microsetella atlentich, but the description is too meagre to admit of a satisfactory comparison. There is a difference between the two as regards size and colonr, but such differences are not of much value unless allied with structural differences.

Gemus Ectinosoma, Bocck.
Ectinosoma, Boeck, Oversigt Norges Copepoder, 1864.
Ectinosoma, Brady (in part), Mon. Brit. Copep. vol. ii. p. 10.
Ectinosoma Christalit, n. sp. (Pl. LX. figs. 26-35.)
Length 1 mm . Body robust; anterior antenne short, stont, furnished with numerous long sete: 6 -jointed, the third joint is somewhat longer than either the preceding or following; the last is smaller than the others and about two-thirds the length of the penultimate joint, truncate at the apex, and furnished with three long apical setre. The long middle joint of the posterior foot-jaw is setose on the upper edge, and a long plumose seta that extends beyond the apex of the foot-jaw springs from the upper distal angle of the first joint; last joint short, provided with three sete (fig. 3y). The second basal joints of the first pair of swimming-fect are furmished interiorly with a setose spine that extends nearly to the middle of the second joint of the inner branches; the outer branches, which are comparatively short, reach only to the end of the second joint of the inner bramehes, and the spines on the exterior edge are elongate and sharp-pointed, otherwise the first pair closely resemble those of Ectinosome spinipes. The second basal joint of the fourth pair is somewhat produced and armed exteriorly with an elongate setose spine; the branches of the fourth pair are nearly of equal length, and armed similar to the first pair, except that the exterior marginal spines of the outer branches are not elongate nor setose. Fifth pair nearly as in Ectinosome melaniceps, Bocck. Caudal stylets about equal in length to the last abdominal segment; the inner of the two prineipal caudal setre considerably longer than the other.

Ilubitut. Station 3 (lat. $71^{\prime} 1^{\prime \prime}$ N., long. $1.554^{\prime} \mathrm{W}$.), 25 fathoms, collected between 9 A.Mr. and 5.30 p.3i., January 2nd.

Several specimens, all females, were obtained in this gathering. The species is named after Professor Chrystal, who designed a tow-net used in collecting some of the material from which the Copepoda deseribed in this Report were obtained.

Genus Bradya, Bocek, 1872.
Bradya, Bocek, Nye Slegter og Arter af Saltrands-Copepoler, 18%.
Bradya brevicornis, sp. 11. (Pl. IX. figs. 36-13.)
Length 88 mm . Somewhat similar in form to Bradya typica, Boeck. Anterior
anteme short, stout, upper edge fringed with long setre, 7 -jointed, the second joint shorter than, and having the upper distal angle produced so as to extend considerably orer, the next joint; the fourth joint is much shorter than either the preceding or following joints; the last joint is very small and bears two long terminal sete. In the 2-jointed secondary branches of the posterior antenme the distal joint is about twier the length of the proximal one (fig. 35). The anteri or foot-jaws are short and stout. The small terminal joint of the posterior foot-jars bears two long, stout, blunt-pointed spines, ciliate on both edges, and a long, slender seta; a long, plain seta springs from the end of the first joint (fig. 1.0). The first four pairs of swimming-feet are nearly as in Bradye typica; the fifth pair are longer than broad, the apex of the second joint is obliquely truncate and fumished with two setre, while the imner distal angle terminates in a stout conical spine. Candal stylets about once and a half the length of the last abdominal segment. The inner of the two principal tail-setse is about twice the length of the other; a small spiniform seta springs from the outer margin and near the distal end of each stylet.

Habitat. In a surface tow-net gathering from a lagoon, São Thomé Island, collected Jannary 21st.

Subfamily Tachidifef, Boeck.
Genus Euterpe, Claus.
Euterpe, Clans, Die freilebenden Copepoden, I86:3 ; Brady, Monog. Brit. Copep. 1880.
Edterpe gracilis, Clans, var. armata, n. var. (Pl. XII. figs. $1 \neq-23$.)
Length 9 mm . Body as in Euterpe gracilis, but with the rostrum more pyramidal, slightly curved. Anterior antenme 7 -jointed, shorter than the first body-segment. The proportional lengths of the joints as in the formula :-

$$
\frac{5.10 .8 .9 \cdot 6.5 .!}{1}
$$

The fourth joint bears one and the last joint two slender sensory hairs at their distal end. The last three joints also bear a number of long plain setre. Posterior antenne 1.jointed, the first two short, the third and fourth longer, subequal; a small 1-jointed scondary brameh springs from near the end of the second joint. The wouth-organs and swimming-feet are similar to those of Euterpe gracilis, but with the following differences:The second joint of the inner branches of the first pair of swimming-feet bears a moderately long and stont setiferous terminal spine, which is curved outwards; near the middle of the same joint is a curved transverse row of seta extending from the outer margin to fully halfway across the joint. The extremity of the outer branches of the second pair is furnished with a long spine, fincly serrate on the outer edge, a shorter setiferous spine, a long slender plumose seta, and several small setose spines; the inner branches also bear a row of small spines at their extremities in addition to the plomose hairs. The inmer branches of the thind and fourth pairs are each armed with a long, stout, strongly seti-
ferous, and straight terminal spine, in addition to several smaller spines and a slender plumose seta. The extremity of the outer branches bears a long eurved spine, serrate on the onter edge, two smaller dagger-like spines, and a plumose hair; these smaller spines and the spines at the outer distal angles of the first and second joints are strongly serrate on both margins. A row of spinous setæe extends obliquely aeross the lower middle portion of the last joint of the inner branches of the fourth pair as well as round the extremity of the joint. The fifth pair as in Euterpe gracilis, but with only one short and three long dagger-like terminal spines. A moderately long seta springs from the external margin and near the base of each branch, and a row of small spines extends obliquely from the marginal seta to fully halfway across the segment; moreover, the extremity and inner margin of each branch are fringed with short spinons setæ. Ovisac single, large, containing numerous ova.

Habitat. Station 9, 50 fathoms, January 10th (day collection). Off Accra, surface, 1 day and 1 night collection ; 3 fathoms, 1 day and 1 might collection, January 16th. Lagoon, Saio Thomé Island, surface, Jamary 27 th (night collection). Station 23, 233 fathoms, February 5th (day collection). Loanda Harlour, surface, February 15th (day collcetion).

This species was obtained in 29 to w-nettings, 10 of which were surface and 13 undersurface gatherings; 4 of the surface gatherings were collected during the day and 12 during the night, while 10 of the under-surface were collected during the day and 3 during the night, as shown by the annexed formula :-

Tow-nettings $29\left\{\begin{array}{l}16 \text { surface }\left\{\begin{array}{c}4 \text { day collections. } \\ 12 \text { night ditto. } \\ 13 \text { under-surface }\left\{\begin{array}{c}10 \text { day ditto. } \\ 3 \text { night ditto. }\end{array}\right.\end{array} \text { 有 }\right.\end{array}\right.$
The under-surface gatherings were from depths ranging from $2 \frac{1}{2}$ to 235 fathoms.
The form here described, though agreeing generally with Euterpe grucilis, differs in several important points, as, for instance, in the proportional length of the joints of the anterior antemne, in the imer branches of the third and fourth pairs of swimming-feet being furnished with prominent, strongly setifcrous, terminal spines, and in the fifth pair possessing four instead of five terminal spines. These differences, which are sufficiently characteristic to allow of the varicty being readily distinguished, may ultimately be considered of specific value; meanwhile, however', I prefer to consider the "Buceancer " specimens as constituting a variety of Euterpe gracilis.

Subfamily Auymonine, Bocek.
Genus Amrmone, Claus.
Amymone, Die freilebeuden Copepodeı, 1863 ; Brady, Monog. Brit. Copep. 1880.
Ampione Andretit, 11. sp. (Pl. XI. figs. 44-47; Pl. X. fig. 1.)
Length 55 mm . Cephalothorax somewhat similar in form to Amymone spherica, Claus, except that the last thoracic segment is more produced and does not bear any spine-like
processes. Anterior antenne not longer than the first thoracic segment, 8 -jointed, the proportional lengths as follows:-

$$
\frac{24 \cdot 24 \cdot 18 \cdot 13 \cdot 6 \cdot 5 \cdot 3 \cdot 8}{1 \quad 2}
$$

The fourth joint bears a long sensory hair at its distal end, and two similar but rather small hairs spring from the extrmity of the last joint. Posterior antenne slender, 3 -jointed, the second and third joints subequal, the last terminating in one long and one short, stout, claw-like seta; the first joint bears at its distal end a small 1-jointed secondary branch possessing four apical setæ. The terminal joint of the first foot-jaws is slender, and furnished with sereral long plumose hairs and at the extremity with three stout spiniform sete. A stout setiferous process springs from the end of the second last joint and reaches to the end of the spiniform setre just described. Second foot-jaws g-jointed, long, and powerfnl. The hands possess strong curved terminal claws, bearing below the middle portion one long and one short spinous seta. The hasal part of the hands is produced outward into a stout, curved, spiniform process; the hollow formed by this spiniform process bears a peeuliar dilated appendage, furbished with several small spine-like tubercles on its outer surface. The inner margin of the hand is doubly and finely serrate. The integument is closely beset with minnte tubercles, much more prominent and distinct than those of A. sphericu.

Habitat. Lagoon, São Thomé Islaud, surface, January 27 th (night collection). Specifie gravity of the water 1.0237 to 1.0255 . One specimen only of this curions species was obtained : I was able to prepare the foregoing deseription without dissecting it.

The posterior foot-jaws in this species form powerful grasping-organs. The produced base of the hand acting as a sort of thumb and the terminal claw as a finger, with the dilated appendage in the hollow at the base of the hand acting as an interlocking arrangement, form together an elaborate and efficient instrument for grasping purposes, such as I have not observed in any other described species. This curious and interesting genus is represented in rarious and widely distant localities. It has heen observed in various parts of the North Sea, as at Heligoland, Christiania, and several places on the English and Scotch consts; at Messina, Naples, and other localities on the Mediterranean coast (Claus) ; in the Gule of Mexico (Hermich); and on the West Coast of Africa, as now recorded.

The species is named after my son Andrew Scott, who has assisted me so well with the preparation of this Report, and who discovered the only specimen of this genus obtained in the 'Buccancer' tow-nettings.

> Sulfamily Stentelitie, Brady (1860)。
> Gemus StexheliA, Bocek (1861).
> Stenhelia, Boeck, Oversigt Norges Copepoder, 1864.

Stenhelia accraensis, n. sp. (Pl. X. figs. 2-12.)
Length S5 mm. Body moderately robust; first cephalothoracie segment considerably
longer than the entire length of the other four ; rostrum prominent. Anterior antenne short and stout, 9 -jointed ; the upper distal angle of the fourth joint is produced forward over the next, while the terminal joint is about as long as the total length of the preceding four' the relative lengths of the joints are nearly as shown in the formula :-

$$
\frac{10 \cdot 8 \cdot 5 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 2.9}{12345 \frac{15}{8}}
$$

Mandibles and maxille nearly as in Stenhelia hispida. Foot-jaws nearly as in Stenhelia ima. The swimming-feet are also nearly as in the last-named species, except that the proportional lengths of the joints are somewhat different; the first joint of the imer branches of the first pair is not longer than the outer branches and not much longer than the combined length of the second and third joints. The inuer branches of the fourth pair are somewhat longer than the outer branches. The fifth pair closely resemble those of Stenhelia ima (fig. 11). Caudal stylets somewhat widely apart, about equal in length to the last abdominal segment, and furnished with four apical setre (fig. 12).

Habitat. Accra, in a shore gathering, collected January 16th.

Subfamily Canthocamptine, Brady (1880). Monograph of the British Copepoda, vol. ii. p. 47.

Genus Laopionte, Philippi (1810).

Laophonte, Philippi, Archiv für Naturgesehichte, 1810.
Cleta, Clans, Die freilebenden Copepoden, 1863. Asellopsis, B. \& R., Ann. \& Mag. Nat. Hist. vol. xii. 1873.

Laophonte serrata (Clans). (Pl. XIT. figs. 21-28.)
1863. Cleta serrata, Claus, loc. cit. p. 123, to xv. figs. 13-20.
1880. Laophonte serrata, Brady, op. cit. vol. ii. p. 71, pl. lxxii. figs. 1-14.

Hubitut. Accra, in a shore gathering, collected January 16th. This, though apparently widely distributed, is nevertheless a rare species. It has been obtained in a few British localities, but always sparingly.

The strong conieal tooth-like process on the second joint of the anterior antenuæ and the serrated margin of the thind joint (fig. 25) are well-marked characters of the species.

Laophonte longtpes, m. sp. (Pl. X. figs. 13-23.)
Length - 6 mm . Body elongate; anterior antenne 7-jointed; the first three joints are together about equal to twice the entire length of the other four, and the last is about equal to the combined length of the two preceding joints. The relative lengths of the joints are nearly as follows:-

$$
\frac{6.7 \cdot 7 \cdot 2 \cdot 2 \cdot 2 \cdot 4}{123+567}
$$

The upper distal portion of the fourth joint is produced and forms the base of a sensory filament and one or two setie. The secondary branch of the posterior antemse is very short and provided with four setae-three terminal and one subteminal. Mouth-organs nearly as in Lecophonte similis, Clans. 'The outer branches of the first pair of swimmingfeet - jointed, not reaching to the middle of the imer branches; the first joint is abont two-thints the length of the second. The inner branches of the fourth pair, which reach nearly to the end of the seeond joint of the outer bramehes, have the first joint fully half as long as the second, but the first and second joints of the onter buanches are about equal in lengtly. Fiftlı pair nearly as in Laophonte curticuuld. Candal stylets somewhat divergent; length about three times the breadth; principal tail-setee clongate, two-thirds the length of the amimal.

Hubitat. In a shore gathering from Sün Thomé Lsland, collected Jannary 2⿹\zh26灬 hat low water; and in a tow-nct wathering from 20 fathoms off sino Thomé, collected Janmary e3rd.

Lhophonte pegmei, n. sp. (Pl. N. figs. 21-30.)
Length $\cdot 16 \mathrm{~mm}$. (1-5th of an inch). Body elongate, slender. Anterior antenne T-jointed, nearly as in Laophonte brecicomis; the annexed formula shows the proportional lengths of the joints:-

$$
\begin{aligned}
& 5 \cdot 7 \cdot 7 \cdot 2 \cdot 2 \cdot 3 \cdot t \\
& 1 \geq 3+567
\end{aligned}
$$

The posterior antemme and mouth-organs are also nearly as in Lrophonte brevicomis, exeept that the posterior foot-jaws have the second joint finely ciliate on the inner adge and furmished with a small seta nom the middle of the exterior edge. Innor bramehes of first swimming-feet small, 2 -jonted; inner branches of fourth pair very short, searcely longer tham the first joint of the outer brmehes, 2 -jointed; the first joint is very small, and the apex of the second is provided with one stont terminal and two subterminal sete. The outer branches are armed with a stont apical spine (fig. 2S). Feet of the filth pair nearly as in Laophonte curticauda, Bocck; outer margin and surface of basal joints ciliate. Candal stylets somewhat divergent; their breadth is nearly equal to half the length, and each is provided with two stout apical setre, the imer one being nearly double the length of the other.

Habitet. Shore, Sino Thomé Island, in the same gathering as the last.
Lhophonte breviconsis, n. sp. (Pl. X figs. 31-37.)
Leugth : is mm. Body slender. Auterior anteme (j-jointed, the fourth and fith joints very short; the upper portion of the fourth is produced so as to extend to near the extremity of the following joint and form the base of a moderately stont sensory filament. The relative lengths of the joints are nearly as shown in the annexed formula :-

$$
\frac{10 \cdot 7 \cdot 7 \cdot 2 \cdot 2 \cdot 8}{1=3} 4
$$

Second joint of posterior font-jaws with a row of very fine cilia on the upper maremin ; second series.-Zoology, rol. vi.
both the two joints and the terminal claws appear to be otherwise destitute of spines or sete. Outer branches of first pair of swimming-feet 2-jointed, fully half the length of the first joint of the inner branches, the joints subequal ; the length of the first joint of the imer branch is equal to nearly four times its breadth; the terminal claw is stout, and fully two-thirds the length of the first joint and nearly twice and a half the length of the second (fig. 34). The imner branches of the fourth pair, which are seareely equal in length to the first joint of the outer branches, are composed of two nearly equal joints -the first being the smaller of the two and possessing a moderately long seta on its inuer edge; the last joint is furnished with two coarsely plumose terminal set:e and a similar seta on the inner and onter margin ; the joints of the 3-jointed outer branches are subequal in length, but the middle one is the shortest of the three (fig. 35). The second joint of the fifth pair, which is considerably smaller than the basal joint, is broader at the distal than the proximal end, and furnished with six sete round the exteriorly oblique apex; the basal joint is somewhat truncate at the apex and provided with three plain apical setae and two coarsely phumose setic on the lower portion of the inner margin (fig. 36). Caudal stylets about equal in length to the last abdominal segment and comparatively wide apart. Each stylet is furnished with one long and stout and a few small sctre; the length of the prineipal seta is equal to about once and a half the combined length of the stylet and last abdominal segment, and has the extremity curved outwards (fig. 31).

Mabilut. In a shore gathering at Accra, collected January 16th.

Genus Cletodes, Brady ($\mathbf{1 8 7 2}$).

> Cleforles, Brady, Nat. Hist. Trans. Northumb. \& Durham, 1872.
> Lilljeborgia, Claus, Dic Copepoden-Fauna von Nizza, 1866 .
> Orthopsyllus, Brady \& Robertson, Amu. \& Mag. Nat. Ilist. vol. xii. 1873.

Cletones linealis (Claus). (Pl. NII. figs. 29-32.)
1860. Lilljeborgia lineuris, Clans, Die Copepoden-Fama von Nizza, p. 22, t. ii. figs. 1-8.
1873. Orhopsyllus linearis, B. \& R.: Am. \& Mag. Nat. Itist. vol. xii. p. 138.
1880. Cletodes linearis, Brady, Brit. Copep. vol. ii. p. 95, pl. Mxx. figs. 1-1t.

Hubitat. Acera, in a shore gathering, collected January l6th. Loanda Marbour, in a surface tow-net gathering, collected February 13 th.

This species, though numerically scarce, appears to have an extensive distribution. In 'British Copepoda' Professor' Brady records it from Scilly Islands, also from Newry and Roundstone, Ireland, and Claus has recorded it from Nice.

Subfamily Harpacticine, Boeck (in part).
Oversigt Norges Copepoder, 1864.
Geuus Dactylortis, Clans (1S63).
Dactylopus, Claus, Die freilebenden Copepoden, 1863.
Dactylopus, Brady, British Copepoda, 1880.

Dactylopus latipes, n. sp. (Pl. N. figs. 3S-43.)
Length 1.25 mm . (1-20th of an inch). Body moderately robust. First segment of the eephalothorax once and a half the entire length of the other four segments; rostrum slightly curved, sfont, of moderate length. Anterior antenne short, stout, 9 -jointed; first joint large, the fourth providd with a long sensory filament ; the proportional lengths of the joints nearly as in the formula :-

$$
\frac{15 \cdot 2 \cdot 7 \cdot 6 \cdot 3 \cdot 4 \cdot 2 \cdot 1 \cdot 8}{1 \because 3+5}
$$

Second foot-jaws short and stont; a plumose seta springs from near the immer distal angle of the first joint; the imer margin of the second joint is eiliate, and a small seta springs from the side and near the middle of the same joint (fig. 10); the terminal elaw is provided with a slender seta near the base. First pair of swimming-freet nearly as in Dactylopus tisboides, Claus. The filth pair consists of large foliaceous plates partly orerlapping each other and forming, apparently, a kind of ovigerous ponch for the protection of the ora (fig. 42 ; see also fig. 38). Abrominal segments fringed with small teeth; their general surface is also more or less hispid. Caudal stylets about equal in length to the last abdominal segment and rather longer than broad. The inner of the two principal tail-sete is equal to the entire length of the abdomen and stylets.

Inubitut. Acera, in a shore gatheringg with Ductylopus propinquus, Laophonte serrata, Stenhelia, \&e., collected January 16th.

Dactilopes propinquets, n. sp. (Pl. X. figs. 44-52; Pl. NI. figs. 1-3.)
Female. Length 5 mm . (1-50th of an inch). Body moderately stont. Anterior antenne short and stout, 6 -jointed; the upper portion is produced and forms the base of a long sensory filament. The annexed formula shows the proportional lengths of the joints :-

$$
\frac{8.5 \cdot 8 \cdot 2 \cdot 4 \cdot 6}{1-345}
$$

Posterior antennæ nearly as in Dactylopus lisboilles, Claus (Pl. X. fig. 47). The first joint of the posterior foot-jaws hears two small spinous setr on the inner margin and another at the immer distal angle; a row of small spinous setee extends diagonally from near the outer edge at the proximal end to the upper edge near the distal end of the second joint; the terminal claw is stout and provided with a small seta on its inner aspeet. The outer branches of the first swimming-feet consist of three nearly equal joints-the midde one being somewhat shorter than the first or third, the last two joints of the inner branches very short and armed with one stont terminal claw and a long seta; the exterior margin of both the last two joints bears several small spiniform teeth (fig. 49). The inner branches of the second, third, and fourth pairs are somewhat shorter than these of Dactylopus Stromii (Baird), but otherwise they resemble very closely the same swimmingfeet of that species. The second joint in the fitth pair, whieh does not extend much beyond the aper of the basal joint, is subquadrangular in outline and furnished with five
long sete on its onter nearly straight margin, and another on the inner lateral margin ; the broadly triangular portion of the basal joint bears one apical and two subapical stout plain setee, and two slender sete spring from the anterior margin (fig. 50). Caudal stylets very short, fringed with long slender serre ; the longer of the two principal terminal seter is fully twice the length of the abdomen. Orisacs two.

Habitut. Accra, in a shore gathering collected January 16th. Off Sĩo Thomé Island, in a tow-net gathering from 20 fathoms, collected January $23 r d$, and in a tow-net gathering from a lagoon by the shore of São Thomé Island, collected January 23 rd.

A form, which is probably the male of the Dactylopus now deseribed, occurs in the same gatherings with it. The only important difierence is in the anterior antenuæ, which are somewhat longer and 8-jointed; they are hinged between the fifth and sixth joints. But though the anterior antenne of the male usually consist of the same number of joints as in the female, and frequently of a fewer number, it occasionally happens that they are composed of more joints-as, for instance, in Ilyopsyllus coriaceus (Brady and Robertsou*) and Ilyopsyllus affinis, deseribed in this Report, in both of which the male antemse consist of a greater number of joints than those of the female.

The first swimming-feet of the mate of Dactylopus propinquus are similar to those of the female already described; the scoond pair rescmble those of the male of Dactylopus Stromii (Baird). The first abdominal segment is provided with a pair of trispinose appendages as shown in Pl. XI. fig. 3 (see also Pl. X. fig. 4. 1).

Genus Thatestris, Claus.

Thalestris, Claus, Die freilebenden Copepoden, p. 128 (1863).
Thalestris forficula, Claus. (Pl. XII. figs. 33-41.)
1863. Thalestris forficuld, Clans, Die freilebenden Copepoden, p. 191, pl. xvii. figs. 7-11.

Hetritut. In a shore gathering from Acera, collected January 16th.
The lengith (5 mm .) of the 'Buccmeer' specimen is less than that stated by Claus, which is Smm . The anterior antenux are 8 -jointed; the relative leugth of the joints being nearly as shown by the aunexed formula :-

```
9.8.1.5.4.4.3.4
123+515% 8.
```

The secondary branch of posterior antenne 2-jointed. First pair of swimming-feet elongate, the inner hranches considerably longer than the onter; terminal elaws short and stout. Tnuer branches of the second, third, and fourth pairs shorter than the outer branches: in the fourth pair the inner branches reach ouly to about the end of the second joint of the outer branches, while the outer branches are loug and slender, with a long slender terminal spine, ciliate on the outcr edge (fig. 39). Second joint of the fifth pair

[^12]elongate, larger than the basal joint and furnished with six plain setretwo apical, two subapical, and two on the lower half of the outer margin (tis. 10). Caudal stylets very short; the basal part of the principal caudal setse is distimetly gibhous, as shown in fig. 41. Claus also, op. cit., describes and figures this character of the tail-setie. He obtained Thutestris forficule at Messinal.

Genus Ilyorsyluts, Brady id Robertson.

Myopsyllus, Brady \& Robertson, Amm. \& Mag. Nat. Hist. s. t, vol. xii. p. 13: (1873).
Ifyopsyllus afeinis, 11. sp. (Pl. AT. higs. 4-17.)
Length 5 mm . Body tumid, similar in form to Tlyopsyllus coriucens, B. \& R. ; rostrum broadly triangular, furcate at the apex.

Anterior antenne 5-jointed in the female, s-jointed in the mate; the produced upper distal portion of the dilated lasal joint is more or less hispid and fimished with sereral spiniform sete; a curved fold fringed with long stout serme oceurs near the distal and of the base, and extends from the upper margin downards about two-thirds the breadth of the joint. In the female the three apical joints are of nearly equal length. The proportional langths of the joints are nearly as shown in the formula :-

$$
\begin{aligned}
& \text { Female: } 20.10 .8 .7 . \mathrm{S} \\
& \text { Male: } \quad \begin{array}{l}
122 \quad 34548 \\
5.20 .5 .9 .7 .10 .6 .5
\end{array} .
\end{aligned}
$$

The third and fourth joints in the male are each provided with a long "olfactory" appendage, as are also the female antenne, and these olfactory filaments appear to have a small joint near the proximal end, as shown by the figs 1 and 5 ; posterior antenne and mandibles nearly as in Mlyopsyllus corinceus. Fig. 10 represents what appear to be the maxilla and oral aperture. Figs. 11 and 12 represent what appear to be the anterior and posterior font-jaws as observed in the dissections of the animal. The first four pairs of swimming-feet resemble those of Ilyopsyllus coriuceus, except that the middle joint of the onter hrmehes of the first pair is somewhat longer than either the first or third joints. Fifth pair small, simple, obliquely truncate at the apex, with the lateral angles somewhat produced and bearing each a small spiniform seta, and a similar seta springs from the distal half of the outer margin : a transverse curved row of small spines extends wearly across the basal part of each foot (iig. 15). Ablominal segments fringed with stout eilia. Caudal stylets short, breadtlo about equal to the length, each furnished with two very short seta and a long one, which is slightly spathulate at the base.

Habitat. In a shore lagoon at São Thomé Island, among species of Conferva.

Genus Matracticus, Milne-Edwards (1838).

Harpacticus chellfer, ? var. (Pl. XII. figs. 42-46.)
17\%G. Cyclops chelifer, Miuller, Zool. Dan. Prodr. 2 k 13 ; Entomostraca, p. 114, t, xix. figs. 1-3.
1850. Arpucticus, Baird, Brit. Entom. p. 212, t. xxix. figs. 2, 3, 3 a-g.
1863. Herpacticus, Clans, Die freilebenden Copepoden, p. 135, t. xix. figs. 12-19.
1880. Harpacticus, Brady, Brit. Copep. vol. ii. p. 146, pl. lxv. figs. 1-15, pl. lxiv. figs. 10, 11.

A form of Harpacticus closely resembling Harpacticus chelifer was obtained in a shore gathering collected at Acera, Jamary 16th, and in a tow-net gathering from 185 fathoms at Station 23, collceted Fehruary 5th.

The chicf point of difference seems to be the absence of the curved spines or "claws" on the imner distal margin of the last joint of the posterior foot-jaws; the inner margin of these foot-jaws is also not concave as in II. chelifer, but in all other respects the ' Buccaneer' specimens elosely resemble that species.

Genus Miracla, Dana.

Miracia, Dana, Procecd. Amer. Acad. Sci. 1849.
Miracla efferrata, Dana.
ILabitat. Station 2, 50 fathoms, January 1st (night collection). Station 9, surface, 25 and 50 fathoms, January 10th (day collections). Station 14, 10 fathoms, Jamuary 21st (night collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 10 to 360 fathoms, Jannary 22nd (day collections). Lat. $6^{\circ} 3^{\prime} 3^{\prime \prime}$ S., long. $11^{\circ} 7^{\prime} 5^{\prime \prime}$ E., surface, February 8 th (day collection).

This Miracio was observed in 19 tow-ncttings, 18 of which were surface and 31 undersurface gatherings. The under-smface gatherings were from 3 to 360 fathoms, 8 of the surface and 21 of the under-surface tow-nettings were day collections, while 10 surface and 10 under-surface were night collections, as shown by the formula:-

$$
\text { Tow-nettings } 49\left\{\begin{array} { l }
{ 1 8 \text { surface } \{ \begin{array} { l }
{ 8 \text { day collections. } } \\
{ 1 0 \text { night ditto. } }
\end{array} } \\
{ 3 1 \text { under-surface } }
\end{array} \left\{\begin{array}{l}
21 \text { day ditto. } \\
10 \text { night ditto }
\end{array}\right.\right.
$$

It was of frequent occurence in several of the gatherings, and many of the specimens camied ovisacs.

Mreacla minor, n. sp. (Pl. XI. figs. 18-30.)
Length 93 mm . General form as of Briracia efferata, but not lalf the size. Anterior antenne S-jointed, slender in the female; the proportional lengths of the joints are as follows :-

$$
\frac{18 \cdot 15 \cdot 13 \cdot 19 \cdot 14 \cdot 20 \cdot 11 \cdot 15}{1} \frac{34}{5}
$$

The joints bear from one to four setre each, exeept the last, which has one on the upper and four on the lower side; it has also three terminal setie. The seta which springs from the upper distal angle of the third doint is longer than those on the other joints except the last, and a long sensory filament springs from the upper distal angle of the fourth joint. In the male antenna the first three joints are short, the third beines shorter tham either of the other two ; the fourth is dilated and longer than the preeeding three together; the fifth is short; the sixth long and slender; the seventh is very smatl; the eighth a little longer than the seventh and lurnished with four terminal sete; the male antenne hinged hetween the fifth and sixth joints. The following are the proportional lengths of the joints :-

$$
\begin{aligned}
& \text { 10.9.t.24.9.11.2.5 } \\
& 1 \geq 3+5675^{\circ}
\end{aligned}
$$

Posterior anteme 4 -jointed-the last joint as long as the preceding two together, and ciliated along one of its margins. A small l-jointed seeondary appendage, furnished with two stont terminal sotee and a few marginal cilia, springs from the end of the second joint. Mouth-organs as in Miraciu efferate, except that the posterior foot-jaws are B-jointed and nearly alike in both sexes, but that of the male has a longer terminal claw; in neither, however, is the teminal claw so short as in Mirncin efferete. The first pair of swimming-feet has the imer branches searecly so long as the outer ones; the second joint of the outer branches is furuished with a moderately long plumose hair on the imner distal angle; the imner margin is fringed with short stout set:e, as are also the ends of the first and second joints. The second pair in the female resembles the third and fourth pairs, but are rather smaller. The inner branches of the second pair in the male are 2-jointed; the last joint bears one short terminal spine, and one on the lower half of the onter margin; on the imer margin are two long plumose hairs. The third and fouth pairs are similar in both sexes; the imner branches being shorter than the outer; all the joints of both branches are fringed with hairs on the external margin; the imener distal angle of the last joint bears a long, slender, non-plumose hair (or spine). The fiftlo feet small, foliaceons, 2 -jointed ; the proximal joint in the male is armed with two spinous sete ; the distal bears one long setiferous spine and two short spines, also a small hair on the immer aspeet, as shown in the figure. In the femate the proximal joint is armed with one long setiferous spine and four small spinous setec (one of which is rery minute); the distal joint is somewhat cylindrical in form, and is furnished with several setiferous spines at the extremity. Abdomen in the male 5 -, in the female 4-jointed-the first two joints being coaleseent in the female. The posterior margin of the last three segments, in both sexes, fringed with small spinous sete. Caudal stylets rather longer than the last abdominal segment, each furnished with one moderately long setiferous and two shorter spines, besides several spinous setre on the onter aspect near the middle of the stylet. At the extremity are one long and stont and one short setiferous spine and a number of spinous setre; the long terminal setiferous spine is fully half as long again as the stylet.

Mabitat. Station 23, 235 fathoms, Tebruary 5th (day collection).
Several specimens, a few earying ovisacs, were obtained in this gathering, which was the only one in which Hirucia minor was observed. It differs from both Dana's species, especially in the number and proportional lengths of the joints of the anterior antemues.

> Genus Macinatiopus, Brady.
> Machuiropus, Brady, Report on the 'Challenger' Copepoda, 1883.

Machatropus myoides, Brady.
1883. Muchairopus idyoides, Brady, Report 'Challenger' Copep. p. 101, pl. xli. figs. 1-12.

Hubitat. The shore of Sĩo Thomé Island, Jannary 31st (day eollection).
This collection, which contained a very small quantity of weed and sand, yielded a number of Hurpacticide, including two specimens of the Muchuiropus. The 'Challenger' specimens (" two or three only were found ") were from Betsy Core, Kerguelen Island.

The full and carefully figured details which accompany the description of this species make its identification comparatively easy and certain.

Genus Egisthus, Giesbrecht, 1891.

Ayistluns, Giesbrecht, Fauna und Flora des Golfes ron Neapel (Pelagische Copepoden), p. 573 (1892). Thurmatopsyllus *, Scott, MS name, 1892.
Body slender, elongate, and with a more or less sharp-pointed rostrm. Anterior antemse slender, in the female about equal in length to the first body-segment, G-jointed; in the male the anterior anteme are longer, and consist of a greater number of joints. Postrrior antenne somewhat similar to those of Mirecie, 3-jointed, and with a small 1-jointed secondary hranch. Mandibles well dereloped, the broad biting apex irregularly toothed; mandible-palp (?) absent or very rudimentary. Posterior foot-jaws 5 -jointed, the three apical joints very small; a long, stout, curved spine springs from the inner distal angle of the second joint; in the male the posterior foot-jaws are smaller than those of the female. Both branches of the first fom pairs of swimming-feet 3 -jointed and of nearly equal length; in the first pair in the female the articulation between the second and third joints is imperfect and indistinct. Fitth pair simple, l-brauched, 1- (or indistinctly 2-) jointed in the female; distinctly - 2 -jointed in the male. The tail-seter of the species for which the gemus is instituted are extremely long, and may or may not form a generic character. (Note. -This description was written before I saw Ciesbrecht's work.)

Egisthus longikostris, n. sp. (Pl. NI. figs. 31-44.)
Body elongate, slender, gradually tapering towards the posterior end; forehead produced into a long pointed rostrim. Caudal stylets short, each terminating in an

[^13]axtremely long, slender, jointed, setiferous spine, bearing a plumose seta at its extremity (fig. 31). Length, exclusive of caudal spines, 2.4 mm .; length to the extremity of the caudal spines 12.5 mm . ($\frac{1}{2}$ an inch). Anterior anteune (female) slender, about equal in length to the first cephalothoracic segment, 6 -jointed, sparingly setiferous, penultimate joint very short. The upper distal end of the first joint is produced to form a broadly conical tooth provided with an apical seta. A long "olfactory" appendage springs from the end of the third joint. The relative lengths of the joints are nearly as follows :-
\[

$$
\begin{gathered}
10 \cdot 12 \cdot 13 \cdot 8 \cdot 1 \cdot 3 \\
1 \\
\hdashline 3
\end{gathered}
$$
\]

Anterior antemme of the male very long and slender, fully twice the length of those of the female, T-jointed, penultimate joint extremety long; the olfactory appendage that springs from the distal half of the fourth joint and the principal apieal seta are also very long. The amexed formula shows the relative lengths of the joints:-

$$
\begin{array}{cccccc}
12 \cdot 13 \cdot 5 \cdot 15 \cdot 6.33 \cdot 12 \\
1 & \because & 3 & 4 & 5 & 6
\end{array}
$$

Both the male and female antenne are geniculate between the first and second joints (fig. 3t). Second and third joints of the posterior antenne elongate: secondary branch very short, with two apical sete. Mandibles broad, with the truncate distal end irregularly toothed and bearing a pectinate stout seta at the outer angle (fig. 36) ; no trace of a palp was observed. The maxille have a well-developed biting part and a small secondary appendage bearing three apical setio. Anterior foot-jaws small; first joint armed with two stout spines, setose on both edges, and a small spine and a seta; the very small terminal point bears three apical setre. The last three joints of the second foot-jaws are very small and furnished with several long seter; the inner distal portion of the elongate second joint is produced and forms the lase of a long, stout, curved spine; there is a small setiferous process on the inner margin of the proximal end (fig. 39). The posterior foot-jaws in the male are somewhat similar to those of the female, but smaller and less setiferous (fig. 40). The middle joint of the second, third, and fourth pairs of swimming-fect shorter than the first or third; the marginal spines of the outer branches stout, dagger-shaped, and serrate on both margins; terminal spines elongate, falcate, scrrate on the outer edge, the inner edge eiliate. Fifth pair of feet simple, each foot armed with three long dagger-shaped spines on the outer margin and two at the apex: both edges of these spines are serrate except near the base: there are two plumose setar near the middle of the imer margin, and a plain seta near the base of the outer margin of each foot, as shown in fig. 13.
llabitat. In a tow-net gathering from 360 fathoms. Lat. $1755^{\prime \prime} 5^{\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., collected Jannary 22nd ; and in tow-net gatherings from 185 fathoms and 235 fathoms, Station 23, collected February 5th.

Several specimens of this remarkable species were obtained. They do not agree with Eyisthus aculeatus, Giesbrecht,--e. g. the fifth pair of thoracic fect, \&ce.

Genus Clytremnestra, Dana.

Ctytemmestra, Dana, Proc. Amer. Acad. Sci. 1849.
Gomiopsyllus, Brady, Report 'Challenger,' Copepoda, 1883.
Gomiopelte, Claus, Arb. Zool. Inst. Wien, 1889.
Saphir, L. Car. 1890.
Head and first thoracic segment coalescent. Forehead usually subrostrate. The joints of the cephalothorax much constricted in front, dilated behind so as to form prominent lateral triangular processes. Anterior antennæ 6- to S-jointed, geniculate in the male. Posterior antennæ 3(or 4?)-jointed; secondary branch wanting, or very small and rudimentary. Mandible slender, apex obseurely digitiform; the palp absent or very rudimentary. Naxillæ also rudimentary. Anterior foot-jaw small, clawed at the apex. Posterior foot-jaw clongate, 2- or 3 -jointed; terminal claw, in the male, long and powerful, in the female small. First pair of swimming-feet 2-branched, inner branch 3 -jointed, the outer with one to three joints. The second, third, and fourth pairs nearly alike, 2 -branched, both branches 8 -jointed. Feet of fifth 1air 1-branched, the branches similar and 1-jointed, and the same in both sexes.

Clytemnestra rostrata (Brady). (Pl. XIL. figs. 47-57; Pl. XIII. figs. 1-3.)
1883. Gomiopsyllus rostratus, Brady, Report on the 'Challeuger' Copepoda, p. 107, pl. xiii. figs. 9-16.
1819. Clytemnestra (\%) scutcllata, Dana, Proc. Amer. Acad. Science.
1860. Clytemnestru (?) temuis, Lubboek, Trans. Limm. Soc. vol. xxiii. p. 180, pl. xxix. figs. 6, 7. 1889. (?) Gomiopelte grucilis, Claus, Arb. Zool. Inst. Wien, t. ix.

Length about 1.25 mim. The body is usually more or less curved inwards. The forehead is subtruncate, with middle part produced forward so as to form a prominent rostrum. Postero-lateral angles of the first four thoracic segments extended backward into angular processes; the last thoracic segment smaller than either the preceding one or the first abdominal segment, its postero-lateral angles not produced. Abdomen 5-jointed in the male, 4 -jointed in the female; the first abdominal segment in the female composed of two coalescent segments, with usually a pellueid spot in the median dorsal line (Pl. XII. fig. 45). Body, seen dorsally, clongate, narrow, and tapering gradually from the head backwards. Caudal stylets short, about as long as the last abdominal segment, each furnished with a few short marginal hairs, and in the male with two long plumose terminal setre. The plumose sete are wanting in the femate and are replaced loy two or three plain and very small hairs. Anterior antenne in both male and female 7 -jointed, the proportional lengths of the segments being nearly as follows:-

$$
\begin{array}{lc}
\text { Male. } & \frac{12}{1} 19 \cdot(;) \cdot 2 \cdot \cdot 3 \cdot 18 \cdot 25 \\
4 & 5 \\
\text { Feruale. } 12 \cdot 20 \cdot 16 \cdot 15 \cdot 15 \cdot 17 \cdot 22
\end{array}
$$

The anterior antenne of both male and female are sparingly setiferous. There is a hair-like filament on the upper margin and near the middle of the third joint in both sexes, while the upper distal angle of the fourth segment and the extremity of the last
bear each two similar filaments or "sensory hairs," one of which on both segments is longer and stouter than the other. In the male the third $(\%)$ and last joints are hinged, and the fifth bears a spiniform appendage. The posterior antenne are of moderate length and 3-jointed (Claus says 4 -jointed, and the basal joint of some of the 'Buceaneer' specimens has a faint line, requiring the $\frac{1}{4}$-inch objective to see it, crossing the basal segment near the middle, which may be a pseudo-joint; but there are certainly only three distinct joints in all of the 'Buccanecr' specimens examined), having at the distal end of the first segment a 1 -jointed rudimentary branch bearing two long terminal plumose sefa. The lower margin and the distal half of the surlace of the last segment of the primary branch is setose ; the upper edge of the same segment bears one, and at the extremity five sete. Mandibles small, basal part somewhat dilated, the upper part slender, with the (xtremity fureate or obseurely digitiform ; the mandible-palp absent or very rudimentary (no palp was observed in any of the 'Buccancer' specimens, though they were dissected with the greatest possible care). Taxille ruthmentary, bearing two terminal spiniform sete, and one seta near the middle of the basal part. Anterior footjaws small; the end joint with three terminal spiniform sete, the middle one being the longest. There is at the end of the lasal segment a proportionally large marginal process bearing three terminal spiniform lairs, which imparts to the imterior foot-jaws the appearance as if they were ${ }^{-}$-hranched; a long, slender, marginat hair springs from the proximal hatf of the basal joint. Posterior foot-jaws in the male large, composed of two long segments and a long, curved, terminal claw, nearly as long as the second joint, and forming a powerful prehensile organ; the upper margiu of the second joint is finely serrate. The posterior foot-jaw in the female, which is also - -jointed (Pl. XII. fig. 56), is shorter and more slender than that of the male, the terminal claw being also short and feeble, the length of the whole appendage being little, if at all, longer than the first joint of the male appendage (Prof. Brady describes, loc. eit., the posterior foot-jaws as possessing a rudimentary third joint, but no such joint was observed in the 'Buccancer' specimens). First pair of swimming-feet $\ddot{2}$-branched, imer brathehes 3-jointed, the last joint being the shortest; outer branches l-jointed, rather lowger than the first joint of the imer branches. $11 l$ the joints are furnished with long phumose lairs; a single plamose hair springs from the outer margin of the second basal joint. Second, third, and fourth pairs nearly alike, also ab-banched, both branches abjointed, joints subectual; the outer branches rather shorter than the inner ones, all well furnished with long plumose setæ. Fifth pair of feet l-branched, "-jointed, slender, the secont joint twice the length of the first, bearing a long, slender, setiferous, terminal spine, and a similar one on the inner margin near the extremity of the joint; four short ppinous hairs spring at irregular intervals along the outer margin ; there is also a slender hair on the onter margin and near the distal end of the first joint. The preecding deseription of the five pairs of feet applies to both sexes. Ora not apparently enclosed in a sac, but forming a single chnster somewhat similar to that of Euchete murine.

Habitat. Station 2, surface, January 1st (night tow-netting). Station 9, 50 fathoms,

January 10th (day tow-netting). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime \prime}$ E., 460 fathoms, Jamary 22nd (day tow-netting). Station 23, 10, 185, 235 fathoms, February 5th, \&e. (day tow-nettings, and a surface night tow-nctting).

This interesting species was obtained in 31 tow-nettings, 16 of these being surface and 15 under-surface collections. One of the surface and 9 of the under-surface townettings were day collections, while 15 surface and 6 under-surface were night collections, as shown in the formula :-

Tow-nettings $31\left\{\begin{array}{l}16 \text { surface } \\ 15 \text { under-surface }\left\{\begin{array}{l}1 \text { day collection. } \\ 15 \text { night collections. } \\ 9 \text { day ditto. } \\ 6 \text { night ditto. }\end{array}\right.\end{array}\right.$
The under-surface tow-nettings ranged from 3 to 460 fathoms.
Clytemuestra rostrata was of more or less frequent oceurence in nearly all the townettings in which it was olserved. Specimens carrying ora were not uncommon in some of the collections.

The form here described, ineluding its real and supposed varictics, has been the subject of a good deal of misunderstanding and controverse, due in great part to the meagreness and insufficieney of Dana's deseription and figures. Nevertheless, after having carefully dissected and examined a large number of specimens, I have no doubt whatever that the speeies under consideration belongs to Dana's Clytemnestra, and I hesitate to ascribe it to his Clytemnestra scutellata only because of the difference in number of the joints of the inner branches of the first pair of swimming-feet, which in C. scutcllutu, as deseribed by Dana, are 3-jointed, but which in the 'Buccaneer' specimens are 1-jointed; and also because of the very marked difference in the form of the dorsal aspeet between the 'Buccancer' specimens and Dana's figure of Clytennestre scutcllata. Dana's figure represents the thoracie as decidedly broader than the abdominal part of the body, whereas the form of the 'Buceancer' specimens is elongate-narrow, with the breadth gradualty diminishing from the head to the last abdominal segment, and in this respect they agree with Goniopsyllus rostrutus, Brady, and Goniopette gracilis, Clans. Further; the 'Buccaneer' specimens differ from Goniopsyllus rostratus, as figured and deseribed by Prof. Brady in the 'Challenger' Report, in two important points: first, the posterior antemne of the 'Buccancer' specimens possess a rudimentary but yet distinet secondary branch bearing two plumose hairs, while in Goniopsyllus rostratus the secondary branch is wanting, being represented by a single plumose hair attached to the end of the hasal joint of the primary branch; second, the imer branches of the first pair of swimming-feet in Goniopsyllus rostratus are described as 3 -jointed, whereas in the 'Buccanecr' specimens they are only 1 -jointed, and are so in both the male and female. On the other hand, the species deseribed and figured by Prof. Claus as Goniopelte gracilis agrees, so far as 1 can make out, in every essential particular with the 'Bucenneer' specimens, so that the 'Buccancer' speeimens appear to belong to Gomiopelte gracilis, Claus, rather than to Gowiopsyllus rostratus, Brady.

In an interesting paper by Prof. Clans in the 'Zoologischer Anzeiger',' No. 378
(Nov. 30, 1891), he discusses somerrhat fully the classification of the species now under consideration, as well as that of its allied forms, and also the various opinions expressed by different writers bearing on the same question. In this paper Prof. Clans shows, more or less conclusively, that Sapplier rostratus, L. Car., is synonymous with Goniopsyllus rostratus, Brady, and also that Clytemnestre Hendorfll, Poppe, is equivalent to Goniopelte gracilis, Claus. In a concluding note, referring to the likelihood that Goniopelte may be synonymous with Goniopsyllus, he says: "But if it is desirable,-which I could not advise, taking into account the different points,- that the two forms Goniopelte and Goniopsyllus should be made only different species of the same genns, Clytemnestra, for reasons given in my work on Copepods, would not be valid as a generic name. It must in that ease be Goniopsyllus, Brady." With all deference, however, to what Prof. Clans has stated, I prefer meantime to restore Dana's generic name, Clytemmestra; for, though his description be imperfect, there need be no uncertainty as to his figures.
(Note.-The preceding remarks on Clytemestra were mritten at the close of 1891, and long before I saw Giesbrecht's Monograph of the Neapolitan Copepoda.)

Genus Setella, Dana.

Setella, Dana, Crust. U.S. Expl. Exped. $185 ̃ 2$.
Setella grachlis, Dana.
1852. Setella gracilis, Dana, Crust. U.S. Expl. Experd. p. 1198, pl. Ixsxr. figs. 3 a, g.
1883. Sctelle gracilis, Brady, Report Chall. Copep. p. 108, pl. 1. figs. 1-10.

Habitat.—Station $\because, 5$ fathoms, January 1st (night collection). Station 9, 50 fathoms, January 10th (night collection). Lat. $1^{\circ} 55^{\prime} 55^{\prime \prime} \mathrm{N} .$, long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 160 fathoms, January 2end (day collection). Station 18, surface, February 3rd (day collection). Lat. $6^{\circ} 47^{\prime} 5^{\prime \prime}$ S., long. $11^{\prime} 30^{\prime} 6^{\prime \prime}$ E., surface, February 8 th (day collection), \&c.

Setella gracitis was obtained in 85 tow-nettings, 34 of which were surface and 51 mader-surface gatherings. The under-surface gatherings were from various depths, from $2 \frac{1}{2}$ to 460 fathoms. 11 of the surface and 34 of the under-surface tow-nettings were collected during the day, and 23 of the surface and 17 under-surface were night collections, as shown by the formula :-

Tow-nettings $85\left\{\begin{array}{l}34 \text { surface }\left\{\begin{array}{l}11 \text { day collections. } \\ 23 \text { night ditto. }\end{array}\right. \\ 31 \text { under-surface }\left\{\begin{array}{l}3 \pm \text { day ditto. } \\ 17 \text { night ditio. }\end{array}\right.\end{array}\right.$
A considerable proportion of the specimens carried ovisacs. The size of the specimens varied sufficiently to lead me to think that there were more than one species of Setelle in the collection; but careful dissection showed little, if any, structural differcnce among the specimens, and any structural difference observed was easily accounted for by difference in maturity or sex.

Section II. PCECTLOSTOMA, Thorell.

Family CORYCÆIDÆ, Dana.

Genus Coriceets, Dana.

Coryceus, Dana, Proc. Acad. Nat. Sci. Philadelphia, 18 t5.
Coryceus, Brady, Report on the Copeporla of the 'Challenger' Espedition, 1883.
Coryceus varius, Dana.
1852. Coryceus varius, Daua, Crust. U.S. Expl. Exped. p. 1211, pl. lxxxv. figs. 4 a-i.
1850. Coryceus styliferus, Lublock, Trans. Entom. Soc. iv. N. S. pl. v. figs. 7, 8.
1863. Coryceus. furcifer, Claus, Die freilebenden Copep. p. 157, pl. xxiv. figs. శ-12.
1883. Coryceus varius, Brady, Report Chall. Copepoda, p. 111, pl. lii. figs. 1-14.

Habitat. Station 2, 25 fathoms, Jannary 1st (night collection). Station 9. 50 fathoms, Jamary 10th (day eollection). Lat. $1^{\prime 2} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 460 fathoms, January 22nd (day collection). Station 18, surface, February 3rd (day collection). Bananah Creek, Congo River, surface, February 7th (day eollection), \&e.
This Coryceus was observed in 110 tow-nettings, comprising 18 surface and 62 undersurface gatherings. The under-surface gatherings ranged in depth from 2 to 460 fathoms. 23 of the surface and 44 of the under-surface tow-nettings were day collections, while 25 surface and 18 under-surface were night collections, as shown by the annexed formula :-

$$
\text { Tow-nettings } 110\left\{\begin{array}{l}
48 \text { surface }\left\{\begin{array}{l}
23 \text { day collections. } \\
25 \text { night ditto. }
\end{array}\right. \\
62 \text { under-surface }\left\{\begin{array}{l}
44 \text { day ditto. } \\
15 \text { night ditto. }
\end{array}\right.
\end{array}\right.
$$

This was the most common species of Corycous in the collection, both as regards its general distribution throughout the area examined and its frequeney in the tow-nettings in whiclı it oceurred.

Coryceus pellectidus, Dana.
1852. Coryceus pellucidus, Dana, Crust. U.S. Expl. Nxped. p. 1292, pl. Mrxxvi. fig. 6.
1863. Coryccus rostratus, Clans, Die freilebenden Copeporen, p. 157, pl. xxviii. fig. 5.
1883. Coryceus pellucillus, Brady, Report Chall. Copep. p. 112, pl. lii. figs. 15-19.

Habitat. Station 2, 50 fathoms, January 1st (night collection). Station 9, surface, 25 and 50 fathoms, January 10th (day collections). Lagoon, Sĩo Thomé Tsland, surface, January 27 th (one day and one night collection). Station 18, surface, Febrnary 3rd (day eollection). Lat. $73 S^{\prime}$ S., long. $123^{\prime} 3^{\prime \prime}$ E., surface, Felornary 9th (night collection), \&e.

This Coryceus, whieh was a moderately common species in the coilcetion, oceurred
in 81 of the tow-nettings, which comprised 42 surface and 3! under-surface gatherings. The under-surface tow-nctises ranged in depth from 2 to 360 fathoms. 1.5 of the surface and 30 under-surface tow-nettings were day collections, while 27 surface and 9 under-surface were night collcetions, ass shown in the formula :-

Tow-nettings s $\left\{\begin{array}{l}1.2 \text { surface }\left\{\begin{array}{l}15 \text { day eollections. } \\ 27 \text { night dito. }\end{array}\right. \\ 39 \text { under-surface }\left\{\begin{array}{l}30 \text { day ditto. } \\ 9) \text { night dito. }\end{array}\right.\end{array}\right.$
The distribution of Corycreus pellucillus was co-extensive with the area examined. The long spine-like and strongly setiferous hairs of the posterior foot-jaws form an easily recognized character of this species.

Conycees limbatles, Brady.
1883. Coryceus limbatus, Brady, Ficport Chall. Copep. p. 114, pl. xix. figs. 18-29.

Habitat. Station 2 , night collection. Jannary 1st. Station 9, 50 fathoms, January 10th (day collection). Station 11, 10 fathoms, Jannary 19th (day eollection). Lagoon, São Thomé Island, surface, Jannary 27 th (night collection). Lat. $7^{\circ} 35^{\prime} \mathrm{S} .$, long. $1 \underline{\text { º }} 3^{\prime} 3^{\prime \prime} \mathrm{E}$., surface, February 9th (night eollection), \&e.

Coryceus limbatus was obtained in 25 tow-ncttings, 10 of which were surface and 15 under-surface gatherings. The depth of the under-surface tow-nettings ranged from $2 z^{2}$ to 50 fathoms, exclusive of tro, one of which was from 260 fathoms and one from 360 fathoms. 4 of the surface and 10 of the under-sturface tow-nettings-ineluding the two specially referred to-were day collections, while 6 of the surface and 5 of the undersurface were night collections, as shown by the formula :-

Tow-nettings $25\left\{\begin{array}{l}10 \text { surface }\left\{\begin{array}{l}4 \text { day collections. } \\ 6 \text { night ditto. }\end{array}\right. \\ 15 \text { under-surfaee }\left\{\begin{array}{c}10 \text { day ditto. } \\ 5 \text { night ditto. }\end{array}\right.\end{array}\right.$
This Coryceus, though generally distributed over the area cxamined, was nevertheless a comparatively rare species, only a few specimens at most being observed in any onc of the tow-nettings in which it occurred.

Coriceus renustus, Dana.
1852. Corycreus venustus, Dana, Crust. U. S. Expl. Exped. p. 1222, pl. Ixxxvi. figs. 4 a-d.
1883. Corycteus remustus, Brady, lieport Chall. Copep. p. 115, pl. liv. figs. 8-10.

Hubitat. Station 2, surface, January 1st (night colleetion). Station 9, surface and 25 fathoms, January 10th (day eollections). Lat. $155^{\prime} 5^{\prime \prime}$ N., long. $5055^{\prime} 5^{\prime \prime}$ E., 30 and 460 fathoms, Jamary 2end (day collections). Lat. $623^{\prime} 3^{\prime \prime} \mathrm{S}$., long. $113^{\prime} 8^{\prime \prime}$ E., surface, February Sth (day collection).

This species-one of the rarer of the Coryceide in the collection-was obtained in 24. tow-nettings, 13 of which were surface and 11 under-surface gatherings. The
surface tow-nettings comprised 7 day and 6 night collections, and the under-surface 7 day and 4 night collections, as shown in the formula :-
Tow-hettings $21\left\{\begin{array}{l}13 \text { surface }\left\{\begin{array}{l}7 \text { day collections. } \\ 6 \text { night ditto. }\end{array}\right. \\ 11 \text { under-surface }\left\{\begin{array}{l}7 \text { day ditto. } \\ 4 \text { night ditto. }\end{array}\right.\end{array}\right.$
The under-surface tow-nettings included four at 10 fathoms, one at 15 fathoms, one at 20 fathoms, two at 25 fathoms, one at 30 fathoms, one at 50 fathoms, and one at 460 fathoms.

Coryceus speciosus, Dana.
1852. Coryceus speciosus, Dana, Crust. U.S. Expl. Exped. p. 1299, pl. lxxxi. figs. 4 a-d.
1883. Coryceus speciosus, Brady, Report Chall. Copep. p. 115, pl. liv. figs. 8-10.

Mabitat. Station 2, 5, 20, and 50 fathoms, January 1st (night collection). Station 9, surface, 25 and 50 fathoms, January 10 th (day collections). Lat. $1^{\prime 5} 55^{\prime \prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E} ., 10,20,30,60,260,360$, and 460 fathoms, Jannary 22nd (day collections: the nets were fixed at intervals on a deep-sea line and exposed simultaneonsly from 11 a.m. to 2.23 р.м.). Station 23, surface, 10, 20, 135, 185, and 235 fathoms, February 5th (day collections: nets fixed on deep-sea line and exposed simultaneously from 11 a.m. to 3.30 p.m.). Lat. $7^{\circ} 54^{\prime} 6^{\prime \prime}$ S., long. $1214^{\prime} 7^{\prime \prime}$ E., surface, February 9th (day collection), ©c.

This fine and well-marked species was observed in 86 tow-nettings, 32 of which were surface and 54 under-surface collections. The depth of the under-surface tow-nettings ranged from 2 to 460 fathoms. 17 of the surface and 39 of the madersurface tow-nettings were day collections, while 15 surface and 15 under-surface were night collections, as shown in the annexed formula :-

Tow-nettings $86 \begin{cases}32 \text { surface } & \left\{\begin{array}{l}17 \text { day collections. } \\ 15 \text { night ditto. }\end{array}\right. \\ 54 \text { under-surface }\left\{\begin{array}{l}39 \text { day ditto. } \\ 15 \text { night ditto. }\end{array}\right.\end{cases}$
Coryceus speciosus was one of the more common species of the Coryccide observed in the collection, but it was not obtained in any gathering from localities where the water was of a decidedly brackish character, as at Banamah Creek. The remarkably divergent caudal stylets made this an easily recognized species; several specimens were obtained with ovisacs.

Cortceus obtusus, Dana.
1852. Coryceus obtusus,Dana, Crust. U.S. Expl. Exped. p. 121 1, pl. Lxxxv. fig. 6.
1857. :Coryceus anglicus, Lubboek, Amn. \& Mag. Nat. Mist. vol. xx. pl. xi. figs. 14-17.
1883. Corycreus obtusus, Brady, Report Chall. Copep. p. 116, pl. xlvi. figs. $7-9$.

Habitat. Station 2, 50 fathoms, Jamary 1st (night collection). Off Accra, 3 fathoms, January 16th (day collection). Lagoon, São Thomé Island, surface, January 27the (uight collection). Loanda Harbour, surface, February 13th (day collection).

Corycaus oblusus was obscrved in 39 tow-ncttings, 23 of which were surface and 16 under-surface gatherings; 7 of the surface and 10 of the under-surface tow-nettings were collected during the dar, while 10 of the surface and 6 of the under-surface were night collections, as shown in the annexed formula:-

Tow-nettings $39\left\{\begin{array}{l}23 \text { surface } \\ 16 \text { under-surface }\left\{\begin{array}{c}7 \text { day collections. } \\ 16 \text { night ditto. } \\ 10 \text { day ditto. } \\ 0 \text { night ditto. }\end{array}\right.\end{array}\right.$
The under-surface tow-nettings ranged from $2 \frac{1}{2}$ to 50 fathoms, and one at 185 fathoms. The hook-like process at the base and on the under surface of the first abdominal segment scems to be peculiar to this species and forms one of its distinctive characters.

Gemus Copllia, Dana.
Copilia, Dana, Proc. Amer. Acad. Sei. 1849 ; Brady, Report on the Copepoda of the 'Challenger' Expedition, 1883.

Copilia mrabilis, Dana.
1852. Copilia mirabilis, 1)ana, Crust. U.S. Expl. Exped. p. 1232, pl. lxxx. figs. 14 a-g.
1856. Suphirina stylifera, Lubbock, Trans. Entom. Soe. vol. iv. p. 28, pl. iv. figs. 9, 10 of.
1863. ? Copilia denticulata, Claus, Die freilebenden Copepoden, p. 161, pl. xxv. figs. 14-20.
1883. Copilia mirabilis, Brady, Report Chall. Copepoda, p. 117, pl. liii. figs. 1-11.

Habitat. Station 2, surface and 50 fathoms, January 1st (uight collection). Station 9, surface and 25 and 50 fathoms, January 10 th (day collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{N} .$, long. $555^{\prime} 5^{\prime \prime}$ E., 10, 20, 30, 60, and 360 fathoms, January 20nd (day collection). Station 23, surface, February 5 th (day collection).

Copilia mirabilis was observed in 70 tow-nettings, 24 of which were surface and 46 under-surface gatherings. The under-surface gatherings ranged in depth from 2 to 300 fathoms. 12 of the surface and 33 of the under-surface tow-ncttings were day collections, while 12 surface and 13 under-surface were night collections, as shown by the annexed formula :-

Tow-nettings $70 \begin{cases}21 \text { surface } & \left\{\begin{array}{l}12 \text { day collections. } \\ 12 \text { night ditto. }\end{array}\right. \\ 46 \text { under-surface }\left\{\begin{array}{l}33 \text { day ditto. } \\ 13 \text { night ditto. }\end{array}\right.\end{cases}$
This species was of frequent occurrence in several of the tow -nettings.
Copilia quadrata, Dana.
1819. Copilia quadrata, Dana, Proe. Amer. Acad. Boston, vol. ii.

18G6. Saphirinella pellucille, Clans, Die Copepoden-Fanna von Nizza.
1892. C'opilia quartruta, Giesbrecht, Fanna und Flora des Golfes von Neapel (Pelagische Copepoden), p. 658, pl. 2. fig. 3, pl. 50. figs. $1,10,13,16,22,98,33,36,41$.

SECOND SERIES.-ZOOLOGY, VOL. VI.

Habitat. Station 23 (lat. $426^{\prime} 7^{\prime \prime}$ S., long. $101^{\prime} \mathrm{S}^{\prime \prime}$ E.), 30 fathoms, in a tow-net gathering collected between 11 A.m. and 3 p.м. A few specimens (male and female) were observed; they were readily distinguished by being larger and much broader in proportion to the leugth than the others.

PCobilila denticulata, Clams.
1863. Copilia denticulata, Claus, Die freilebenden Copepoden, p. 161, pl. xxv. figs. 14-20.

One or two specimens (8) of a Copilia apparently belonging to this species oceurred in a few of the tow-net gatherings along with Copilia mirabilis.

Copilia Fultoni, n. sp. (Pl. XI. figs. 4.⿹-50; Pl. XII. figs. 1-3.)
Length, including caudal stylets, $5: 3 \mathrm{~mm}$. ($\frac{10}{47}$ of an inch), the length of the caudal stylets is about 1.6 mm . The tirst eephalothoracie segment is equal to about four-tenths of the entire length of the animal, including the stylets. Anterior antenna as in Copiliat mirebilis, Dana, 6 -jointed, the proportional lengths of the joints as in the formula :-

$$
\begin{gathered}
40 \cdot 35 \cdot 17 \cdot 35 \cdot 17 \cdot 16 \\
1=3
\end{gathered}=3 \quad 6 .
$$

Posterior antenm and mandibles also nearly as in Copilia mirabilis, except that the third joint of the posterior anteme is scarcely two-thirds the length of the preceding joint, and the marginal spine of the second joint is much smaller than that on the interodistal angle of the first joint (Pl. XI. figs. 17-48). The maxilla consist cach of a single broadly spatulate joint hearing three apical spines (Pl. XI. fig. 49). Anterior footjaws stont, 1-jointed, and provided with two terminal spines and two lateral spiniform setre (Pl. XI. fig, 50). Posterior foot-jaws e-jointed and armed with a stont, nearly straight claw (Pl. XII. fig. 1). Swimming-feet as in Copilita miralilis. Fifth pair rudimentary, each consisting of one small joint provided with a terminal spine and two small setre. The abdomen is 4-jointed and is about equal to the combined length of the last three thoracie segments; the postero-distal angles of the first abdominal segment each bear two small spiniform seta, and the last joint is about equal to the combined length of the two preceding joints. The second last thoracie segment only is produced into a median dorsal spine.

IFabitat. Station 23, in a tow-net gathering from 30 fathoms, collected February 5th. Only three specimens were obtained.

The comparatively short posterior abdominal segment distinguishes this species at a glance from Copilia mirabilis, Dana. It differs from Copilia Brucii, I. C. Thompson, by the evenly rounder outline of the first body-segment, in the proportional length of the joints of the posterior antenne, in the sceond last thoracic segment being produced into a median dorsal spine, and in the presence of a filth pair of feet, besides one or two other points shown by the drawings.

In the Report on the 'Challenger' Copepoda the abdomen of Copilia is, in the
definition of the genus, stated to consist of five segments, and in the drawings of Copilie mirobilis the fourth pair of swimming-feet are represented as attached to what is deseribed as the last thoracie seoment; if this be correct, then, should a fifth pair of feet be present, they would necessarily be attached to the same segment as the fourth pair, which would be very umusual, the fifth pair only being usually attached to the last segment of the thorax. In the species now deseribed, if the abdomen be held to consist of five sespments, the appendages of the first segment are not a fifth pair of feet, and the fourth pair are attached to what, in that case, is the last thoracie segment, and a separate segment, for the support of a fifth pair of feet, is entirely absent. In these cireumstances I prefer to consider the abdomen as consisting of four segments and that the fourth pair of swimming-feet are appendages of the sceond last segment of the thorax, and further that the rudimentary appendages of the next, or last, thoracic segment are a fifth pair of feet, because such an arrangement of the parts is more in harmony with those of elosely allied gencra.

Genus Lubbockia, Claus.
Lubbockia, Clans, Die freilebenden Copepolen, 186:3; Brady, Report on the Copeporla of the 'Challenger' Expelition, 1883.

Lubbockia squtllimana, Clans.
1863. Lubbockia squillimanu, Clius, Die frcilebenden Copepolen, p. 164, pl. xxr. figs. 1-5.
1883. Lubbockia squillimana, Brady, Report Chatl. Copep. p. 118, pl. liii. figs. 12-16, pl. liv. figs. 1-i.

Habitat. Station 3, 100 fathoms, Jannary End (day collection). Station 9, 25 fathoms, Jannary 10th (day collection). Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. j̀ $\overline{5} \bar{y}^{\prime} 5^{\prime \prime}$ E., 360 fathoms, January 2end (day eollection). Station 23, surface and at 10 fathoms, February 5th (day collection). Lat. $S^{\prime} 3 j^{\prime} S^{\prime \prime}$ S., long. $125^{\prime} 7^{\prime \prime}$ E., surface, Febrnary 9 Oth (day collection), \&e.

Lubbockia squillimana was observed in 39 tor-nettings, 18 of which were surface gatherings and 26 under-surface. The under-surface gatherings were from various depths from 10 to 360 fathoms; 3 of the surface and 18 of the under-surface townettings were day collections, while 10 surface and S muder-surface were night collections, as in the formula :-

Tow-nettings $39\left\{\begin{array}{l}13 \text { surface }\left\{\begin{array}{c}3 \text { day collections. } \\ 26 \text { might ditto. }\end{array}\right. \\ 20 \text { mer-surface }\left\{\begin{array}{c}18 \text { day ditto. } \\ \text { S night ditto. }\end{array}\right.\end{array}\right.$
Though generally distributed thronghout the area represented in this Report, and though observed in a considerable number of gatherings, Lubbockio was of less frequent occurrence in the tow-nettings in which it was obtained than some other species with a more restricted distribution. Specimens of both sexes were collected, but lemales were much more common than males; several females carrying ovisacs were taken.

Genus Onceea, Philippi.

Oncea, Philippi, Wiegmann's Archiv, 1843. Antaria, Dana, Proc. Amer. Acad. Sci. 1849.

Oncea obtusa (Dana).
1843. Oncet venusta?, Philippi, Wiegmann's Archiv, pl. 111. fig. 3.
1852. Anteria obtusa, Dana, Crust. U.S. Expl. Exper. p. 1थ30, pl. lxxxvi. figs. 13 a-c.
1883. Oncaa oltusa, Brady, Report Chall. Copep. p. 120, pl. li. figs. 1-11.

Mabitat. Station 2, surface, 5, 25, and 50 fathoms, January 1st (night collections). Station 9, surface, 25 and 50 fathoms, January 10th (day collections). Lat. $155^{\prime} 5^{\prime \prime} \mathrm{N}$., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., 10, 20, 30, 260, 360, and 460 fathoms, January 2ond (day collcetions). Bananah Creck, Congo River, surface, Febrnary 7th (day collection). Loanda Harbour, surface, February 13th (day collection).

Oncee outuse was observed in 119 tow-nettings, 60 of which were surface and 59 under-surface gatherings. The under-surface tow-nettings ranged in depth from 2 to 460 fathoms. 26 of the surface and 47 of the under-surface gatherings were day collections; 34 of the surface and 18 of the under-surface gatherings were night collections, as shown by the formula:-

Tow-nettings $119\left\{\begin{array}{l}60 \text { surface }\left\{\begin{array}{l}26 \text { day collections. } \\ 34 \text { night ditto. }\end{array}\right. \\ 59 \text { under-surface }\left\{\begin{array}{l}41 \text { day ditto. } \\ 15 \text { night ditto. }\end{array}\right.\end{array}\right.$
This was one of the most common and most gencrally distribnted species in the 'Buccancer' collection ; many of the specimens carried ovisacs, and though the collection had been for several years in spirit a considerable proportion of the Oncere retained much of the vivid coloration so characteristic of the species.

Oncea gractlis (Dana). (Pl. XIII. figs. 1-12.)
1853. Antaria gracilis, Dana, Crust. U.S. Expl. Exped. p. 1299, pl. Isxxvi. fig. 11 a.

Length $1 \cdot 1 \mathrm{~mm}$. Cephalothorax narrow, orate. Abdomen clongate, slender; the breadth of the first abdominal segment is somewhat less than two-thirds its length, and one-third the length of the abdomen, exclusive of the stylets; the second segment is scarcely half the length of the first, and equal to the eombined length of the next two ; the third segment is nearly twice the length of the last, while the caudal stylets are somewhat longer than the last abdominal segment (fig. 12). The anterior antenne are similar to those of Oncea obtuse, but are more slender; the relative lengths of the joints are nearly as in the formula :-

$$
\frac{4 \cdot 4 \cdot 13 \cdot 2 \cdot 1 \cdot 3}{1-2} \cdot \frac{3}{4} .
$$

The last joint of the posterior antenne about as long as the preceding one, but more slender and furnished with four long, stout, apical setre, and another seta near the base. Mouth-appendages nearly as in Onceet obtusa, except that the last joint of the posterior foot-jaw is elongate and armed with a long, powerful, nearly straight terminal claw,
which is finely serrate on the imner edge (fig. 10). First swimming-feet also similar to that species, but more slender, and provided with much longer terminal spines,-the terminal spine of the outer branch is equal to about three times the length of the joint from which it springs. The terminal spines of the three pairs (both branches) are also long. The imner branch of the fourth pair is much shorter than the outer branch, and its three joints are nearly equal in length; the terminal spine is long and setiform. Fifth pair of feet as in Oncou oblust.

Hebilut. Station 2, 50 fathoms, collected January 1st, between 7.20 and 8.20 p.m. Station 9, 50 fathoms, collected January loth, during the day. Off Appi* (near Porto Novo), surface, collected Janurry 1Sth (day). Lat. $3^{\circ} 55^{\prime} 3^{\prime \prime} \mathrm{N}$., long. $4^{\circ} 7^{\prime} 3^{\prime \prime}$ E., 30 fathoms, collected Jamary 20th. Lat. $2^{\circ} 34^{\prime} 9^{\prime \prime} \mathrm{N} ., \operatorname{long} .5^{\circ} 22^{\prime} 2^{\prime \prime} \mathrm{E}$.,
 collected January 22nd. Station 23, in two gatherings at 30 and 85 fathoms, collected February 5th. All the gatherings execpt the first one were collected during the day.

Though I have included this species moder Oncra, it nevertheless differs very markedly from the very common Oncea obtusu, Dima. The last joint of the posterior antenne is elongate and slender ; the imer branch of the fourth pair of swimming-feet is considerably shorter than the outer branch, and eonsists of three nearly equal joints; the aldomen is long and slender, and the last three segments are much longer, comparatively, than in Oncau oblusa. These differences, taken together, should jerhaps be considered of more than merely specific ralue, but I prefer meantime to refer the species above described to Oncreu.

Note.-The species described above agrees in sereral points with Conca rapax, Gieshrecht (Mon. Pelag. Copep, of the Gulf of Naples), and should perhaps be ascribed to that genus.

Oncela medterranea (Claus). (Pl. XIII. figs. 13-17.)
1863. Antaria mediterranea, Claus, Die freilebenden Copepoden, p. 159, pl. xxx. figs. 1-7.

Length 55 mm . (1-30th of an inch). Somewhat like Oncaa obtusa in general form, but with a proportionally shorter abdomen. Abdomen, including caudal stylets, equal to about two-fifthis the length of the cephalothorax; leugth of first abdominal segment equal to about twice the breadth, and to fully twice the entire length, of the remaining segments; and, together with the caudal stylets, the length of the last aldominal segment is rather greater tham that of the two preceding segments added together. Caudal stylets about twice as long as broad, and nearly equal in length to the last two abdominal segments. Anterior antenme slender; the proportional lengths of the joints are nearly as shown in the formula :-

$$
\frac{2.3 .8 .2 .1 \cdot 2}{1-3+5}
$$

[^14]Last joint of the posterior antemase fully three-fourths the length of the preceding joint. Mouth-organs similar to those of Oncere obtusa, except that the last joint of the posterior foot-jaw is broadly ovate; the tringe of hairs on the imer margin extends backwards from the apex nearly thre-fourths the length of the joint, and is bounded at the proximal end hy a small spine (fig. 16). The swimming-fect are similar to those of Oncea obtusa, but the joints, especially of the onter branches of the first pair, are proportionally longer, and the length of the terminal spines of both branches of all the swimming-feet is much greater than those of that species: in the first pair the 1erminal spine of the outer branches is equal to the combined length of the second and last joints ; in the fourth pair the terminal spines of both branches are equal to the entire length of the branches they spring from ; the terminal spines of the inner branches are also serrate on both branches. The fifth pair, like those of Onceer obtusa, are very small and rudimentary. One or two females only of this species were obtained.

ITabitat. Station 9, 50 lathoms, collecter January 10th. Lat. 1 55' $5^{\prime \prime}$ N., long. $555^{\prime} 5^{\prime \prime}$ E., 360 fathoms, collected Jannar? 2end.

This species, though closely resembling onceat obtusu, appears to be quite distinct from it; the following are some points in which it differs from that species:-the last joint of the scoondary branch of the posterior antenne is considerably longer; the joints of the outer branches of the first swimming-feet are proportionally longer; the abdomen is shorter, being only equal to abont two-fifths of the length of the cephalothorax; and the terminal spines of the swimming-feet, and especially of the fourth pair, are of much greater length than those of Oncrea obtusa. Oncrea mediterranea (Claus) seems to agree much closer with this species than with Oncrea obtusa (Dana), and I have therefore ascribed it to the species deseribed by Dr. Clans.

Genus IIersiliones, Canu, 1888.

Hersiliodes Livingstoni, n. sp. (1’1. XIII. figs. 31-38.)
Length, exelusive of tail-sete, 1.63 mm . Viewed dorsally the body is broadly ovate, and much constricted near the posterior and ; it is composed of six segments, the first being nearly equal to the entire length of the other five; the fifth segment is short, and considerably narrower than that which precedes or follows it; the breadth of the last segment is greatest posteriorly. Forehcard rounded. Anterior antemme stont, 7jointed, and bearing numerons setae; the proportional lengths of the joints are nearly as shown in the formula :-

$$
\frac{15 \cdot 25 \cdot 12 \cdot 18 \cdot 14.11 \cdot 11}{4} .
$$

Posterior antemme stout, t-jointed, the first joint being nearly equal to the combined length of the other three; the third joint bears two stout curved spines at the exterior distal angle, while the truncate extremity of the last joint is armed with form clongate curved spines and a few seteo (fig. 33). The mouth is in the form of a small conical tube, the margin of which is fringed with cilia. The mandible is armed exteriorly with a stout, somewhat curved tooth, having a double row of serratures along
its inner margin, and interiorly with three setiferous spines. Maxillse simple, torminating in two sery short and rounded spiniferous bobes (fig. 34). The anterior foot-jaws are furnished with a short, stont, and slightly eursed terminal claw, which is provided with several setiferons spines at the base, white two stout setiferons spines spring from the end of the first joint and close to the basal part of the claw. The posterior foot-jaws are large; they are fumished with several spiniform plumose setæ on the inner margin, and terminate in stout, clongate, and strongly curved claws, from the base of which spmgs a strong and curved claw-like spine (fig. 35). Both branches of the first four pairs of swimming-feet 3 -jointed; joints short and broad. The exterior margin of the outer branches of the first pair is furnished with four spines,-one on rach of the first and second, and two on the last joint. Round the end and inner margin of the last joint there are six long plumose setæ, white one long seta, also phumose, springs from the inner distal angle of the second joint. The first and second joints of the imer branches have no spine on the outer margin; the outer distal angle of the second joint lorms a tooth-like proeess; the last joint is furnished with a stout pine on the lower half of the exterior margin, -the margin being hollowed out to reeeise the base of the spine; there are also five plumose setre round the end and inner edge of the last joint. The extremities of both branches of the scoond, third, and fomrth pairs are armed with one long and one short spine; the long spine of the outer branches is ciliate along the inner edge (tig. 37). The foot of the fifth pair consists of a broad foliaceous joint, rounded at the extremity, and furnished with one long terminal and three smatl submarginal setre (fig. 38). Abdomen composed of four segments; the first is considerably dilated, the first, third, and fourth are about equal in length, but the second is rather longer. Caudal stylets half as long again as the last abdominal segment, somewhat divergent, and furnished with two long and three short terminal sete: there is also a small submarginal spine about one-third the length of the stylet from the extremity (fig. 31).

Malitat. Loanda Harbour ; surface tow-net gathering, collected Febriary 15.

Genus Pachysomi, Claus.
Pachysoma, Claus, Die frcilebenden Copepoden, 1863.
Pachysoma punctatum, Claus. (Pl. NIII. figs. 18-2\%.)
1863. Pachysoma prenctatum, Claus, op. cit. p. 163, pl. xxy. figs. 6-11.

Length 2.5 mm . Body rotumd; forehead produced into a small triangular pointed rostrum. Anterior antemre very short, stout, 7 -jointed, the third and fourth joints shorter than the others; the proportional lengths of the joints are as follows :-

$$
\frac{30 \cdot 25 \cdot 9 \cdot 12 \cdot 22 \cdot 20 \cdot 15}{1} 2.3435 .
$$

Posterior antenne nearly as in Lichomolgus, t-jointed, the thind joint short, the others of moderate length and subequal (fig. 20). Mandibles small, stylet-shaped, ciliate along one edge; the maxillte consist of small 1-jointed appendages bearing two long apical
setec. Anterior foot-jaw's rudimentary, 1-jointed, with a moderately stout terminal elaw and a small seta (fig. 23). Basal joint of postcrior foot-jaws greatly dilated; second joint stont, bearing two marginal spiniform sete and armed with a strong curved terminal claw, which is provided with a small seta near the base and on the inner aspect. Swimming-feet nearly as in Lichomolgus, both branches 3-jointed; the setre on their inner margins are stout and densely plumose; the inner branehes are considerably longer than the outer (fig. 21). Fifth pair rudimentary and provided with one small marginal and two apical plumose sete. Abdomen short, eomposed of four segments; first segment large, the next three much shorter and narrower ; in the male the posterolateral angles of the first abdominal segment carry two plumose setre. Candal stylets about equal in length to the first abdominal segment; apical sete three, and one on the outer edge about one-third the length of the stylet from the proximal end. The strueture of the integument is shown in fig. 18.

Habitat. Station 9, in a tow-netting from 25 fathoms. Lat. $234^{\prime} 9^{\prime \prime}$ N., long. $522^{\prime} 2^{\prime \prime}$ E., 20 fathoms. Station 14, in two tow-net gatherings from 10 and 20 fathoms. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $555^{\prime} 5^{\prime \prime}$ E., 20 fathoms, and lat. $0 \quad 21^{\prime} 1^{\prime \prime}$ N., long. $70^{\prime} 33^{\prime \prime}$ E., 20 fathoms.

Though observed in these six separate tow-net gatherings, very few specimens were obtained.

Genus Lichonolgus, Thorell. Lichomolgus, Thorell, Om Krustaeeer i Aseidier, p. 74 (1859).

Lichonolgus congoensis, n. sp. (Pl. XIII. figs. 39-4S.)
Length fully 1 mm . Cephalothorax moderately robust. Anterior antenne fully half the length of the first eephalothoracic segment, 7 -jointed, nearly as in Lichomolgus fucicolus; the relative lengths of the joints are shown in the formula :-

$$
12 \cdot 26 \cdot 8 \cdot 17 \cdot 18 \cdot 15 \cdot 10
$$

Posterior antennæ 4-jointed ; first, second, and fourth joints elongate, subequal ; third joint very short and bearing two stout setæ on the upper distal angle; the last joint is armed with two slender eurved terminal spines and two setæ; there is also a small seta on the inner margin near the apex (fig. 41). The mandible eonsists of a comparatively broad and apparently abruptly bent process, the truncate apex of whieh is furnished with a comb-like fringe of short setre; a stout stylet-like appendage, finely erenate on the upper edge, springs from the outer distal angle, and is closely applied to the anterior edge of the appendage, and extends some distance beyond its fringed apex (fig. 42). The maxille are simple 1-jointed appendages, bearing a few apical setæ (fig. 48). Foot-jaws nearly as in Lichomolgus fucicolus, except that the posterior footjaw is armed with a long curved spine on the inner margin of the proximal half of the second joint (fig. 45). The four pairs of swimming-feet are also nearly as in Lichomolgus fucicolus, exeept that there are stout dagger-shaped spines on the extcrior margin and
apex of the outer hranches; the apex of the imer branches is also provided with similar spines; the inner branch of the fourth pair is 2-jointed (fig. 46). Fifth pair subquadrangular, rather longer than broad, and furmished with two stont terminal spines. Abdomen scarcely equal to half the length of the ecphalothorax. Caudal stylets about as long as broad, and three-fourths the length of the last abdominal segment. The fourth tail-seta, counting from the outside, is stouter and rather longer than the others.

Mubitat. Bananah Creek, Congo River, in a surface tow-nct gathering, collected February 6th. Only two specimens (females) were obtained.

Gemus Pseldaxtifessics, Claus.
Pseudanthessius, Clans, Arl. Zool. Inst. Wien, 1889.

Pseudantiessits propinqutes, n. sp. (Pl. XIII. figs. 49-56; Pl. XIV. figs. 1, 4.)
Length 1.3 mm . (1-18th of an inch). Anterior antemæ 7 -jointed; the formula shows the proportional lengths of the joints:-

$$
\frac{12 \cdot 21 \cdot 0 \cdot 12 \cdot 12 \cdot 11 \cdot 8}{1} \frac{5}{3}
$$

The short penultimate joint of the posterior anteme bears a long slender spine on its upper distal angle; the last joint is prorided with a stout curred apical spine and five setæ. Mandibles somewhat as in Lichomolgus congoensis, but the stylet-like appendage is longer and strongly dentate on the upper edge, the basal tooth being much larger than the others (Pl. XIII. fig. 52). Naxille armed with three stont terminal spines, two of which are serrate on both edges, and a small marginal seta (Pl. XIII. fig. 53). Anterior foot-jaws stout, 1-jointed, and provided with four strong terminal spines, the two larger of which are furnished with several tootll-like processes. Posterior foot-jaws in the female short, 3 -jointed ; the second joint carries two short, stout, marginal spines, and the last joint, which is small, carries one terminal and four lateral setre (Pl. XIII. fig. 51). In the male the posterior foot-jaws are more slender; the first and second joints are fully twice as long as broad, and the inner margin is fringed with cilia; the last joint is very short and forms the base of a stont, elongate, curved claw, which is furnished with two small setee near the base. The fourth pair of swimming-feet are nearly as in Pseurdanthessius Thorelli (Brady), but the margins of the 1 -jointed inner branches we not ciliate; a moderately long plumose seta spriugs from the proximal half of the inner edge (? and probably also from the outer edge opposits to the other) (Pl. XIV. fig. 3). The first three pairs of swimming-feet are nearly as in Lichomolgus fucicolus. The fifth pair consist each of a moderately stout joint, furnished with two apical spines. Abdomen, inclusive of stylets, nearly equal to three-fourths the length of the cephalothorax: in the male the first segment is as long as the next two together; in the female the first segment is rather more than half the length of the abdomen, the remaining three segments are as in the male. Caudal stylets once and a half the length of the last abdominal segment, and furnished with one seta near the middle of the outer margin and four apical setie.

Habitat. Loanda Harbour, in a surface tow-net gathering, collected February 15th. Very few specimens were ohtained.

SECOND SERIES.-ZOOLOGY, VOL. VI.

Genus Sapifrixa, Thompson.

Saphirina, Thompson, Zoological Rescarehes, 1829

Saphirina ovalis, Dana.
1859. Saphirina oralis, Dana.
1883. Saphirina ovalis, Brady, Report Chall. Copep. p. 123, pl. xlvii. figs. 1-12.

ILubitat. Station 2, January 1st (night collection). Lat. 1 55' $5^{\prime \prime} \mathrm{N} .$, long. 5 55' $55^{\prime \prime} \mathrm{E}$., 10 and 30 fathoms, January 22nd (day collections). Station 21, surface, February 4 th (day collection). Station 21, surface, Fcbruary (ith (day collection), ice.

This Saphirine was obtained in 27 tow-nettings, 10 of which were surface and 17 under-surface gatherings. The meder-surface tow-nettings ranged from 2 to 50 fathoms, with the exception of one which was from 185 fathoms. 2 ol the surface and 13 of the under-surface were day collections, while 8 surface and t under-surface were night collections, as shown in the formula :-

Tow-nettings $27\left\{\begin{array}{l}10 \text { surface. } \\ 17 \text { under-surface }\end{array}\left\{\begin{array}{c}2 \text { day collections. } \\ 8 \text { night ditto. }\end{array}\right\} \begin{array}{c}13 \text { day ditto. } \\ 4 \text { night ditto. }\end{array}\right.$
Only one or at most very few specimens were observed in any one of the tow-nettings. The females of Saphirino ovalis were usually readily distinguished from other Saphirines by the numerous, circular, opaque white spots scattered somewhat symmetrically over the entire dorsal surface, and which imparted a rather clegant appearance to the specimens. (It will be understood that the ornamentation described is that of specimens which have been several years in spirit.)

Note.--This appears to be the species described by Giesbrecht as Stphirina stellate and $=S$. orelis of Dr. Brady's 'Challenger' Copepoda, but not S. ovelis, Dana.

Saphirina infequlis, Dama. (Not S. nigromaculata, Claus.)
1852. Saphirina incequalis, Dana, Crust. U.S. Expl. Exped. p. 12H, pl. lxxxvii. fig. 7.
1800. Suphirina elegans (f) , Lubbock, Trans. Limn. Soc. vol. xxiii. p. 12, pl. xxix. figs. 18, 19.
1883. Suphirina imequalis, Brady, Report Chall. Copep. p. 124, pl. xlviii. figs. 1-5.

Inabitut. Station 9, 25 fathoms, Jamary 10th (day collection). Station 11, 10 fathoms, January 19th (day collection). Station 14, 20 fathoms, January 21st (night collection). Station 18, surface, February Brd (day collection). Station 24, surface, February 6th (day collection). Lat. $540^{\prime} \mathrm{S}^{\prime \prime} \mathrm{S}$., long. $1133^{\prime} 4^{\prime \prime}$ E., surface, February 19th (day collection), (Ec.

Saphirint incequalis was obscred in 41 tow-nettings, 22 ol which were surface and 19 under-surface gatherings; S of the surface and 14 of the under-surface gatherings were day collections, while 14 of the surface and 5 of the under-surface were night collections. The under-surface tow-nctings ranged from $2 \frac{1}{2}$ to 25 fathoms, with the exception of one which was from 360 fathoms.

Tow-nettings $41\left\{\begin{array}{l}2 \mathfrak{2} \text { surface }\left\{\begin{array}{l}\text { S day eollections. } \\ 1 \text { \& night ditto. }\end{array}\right. \\ 19 \text { under-surface }\left\{\begin{array}{c}1+\text { day ditto. } \\ 5 \text { night ditto. }\end{array}\right.\end{array}\right.$
This was the most common of the Saphirines in the 'Buceaneer' collections.
Saphimina serrata, Brady.
1883. Saphirina serrata, Brady, Report Chall. Copep. p. 125, pl. xlix. figs. 1, ㅇ.

Mrbitat. Station 9, 9.5 tathoms, Jannary 11th (day collection). Lat. $155^{\prime \prime} 5^{\prime \prime}$ N., long.万5 $55^{\prime} 5^{\prime \prime}$ E., 260 fathoms, January ${ }^{2}$ 2nd (day collection). Station 23 , surface and 10 fathoms, February bth (day collections). Lat. 5 b $10{ }^{\prime} \mathrm{S}^{\prime \prime} \mathrm{S} .$, long. $11^{\circ} 33^{\prime} \mathrm{x}^{\prime \prime}$ E., surface, Felmuary 19th (day collection), \&e.

This species oceurred in 20 tow-nettings, 10 of which were surface and 10 under-surface gatherings. The surface comprised 5 day and 5 night collections; the under-surface 8 day and 2 night collections, as shown in the formula :-

Tow-nettings $20\left\{\begin{array}{l}10 \text { surface }\left\{\begin{array}{l}5 \text { day collections. } \\ 10 \text { under-surface }\end{array}\right. \\ \left\{\begin{array}{l}5 \text { night ditto. } \\ 2 \\ 2 \\ \text { nimh ditto }\end{array}\right.\end{array}\right.$
The under-surface tow-nettings included one at 3 fathoms, three at 10 fathoms, one at 15 fathoms, two at 20 fathoms, one at 25 fathoms, one at 50 fathoms, and one at 260 fathoms. The distinct, though fincly serrate, margins of the abdominal segments (except the first) in the female constitute one of the most prominent characters of the species. S. servate was one of the less common of the Saphirines in the collection.

Saphirisi opalina, Dana.
1859. Suphirinu opaline, Dana, Crust. U.S. Expl. Exp. p. 1254, pl. Isxxviii. fig. 4.
1860. Sophirina Thomsoni, Lubbock, Trans. Limn. Soc. vol. xxiii. p. 186, pl. xxix. figs. 22, 23.
1883. Sephieina opalina, Brady, Report Chall. Copep. p. 196, pl. xlix. figs. 3-6.

Habitut. Station !, 25 fathoms, January 10th (day collection). Off São Thomé Island
 20 fathoms, February Jth (day collection). Lat. $\overline{3} \quad 35^{\prime} \mathrm{S}$., long. 12 $3^{\prime} 3^{\prime \prime}$ E., surface, February 9th (night collection), \&e.

This Saphirine was obtained in 5 surface and S under-surface tow-nettings. The 8 under-surface gatherings comprised two at 10 fathoms, one at 15 fathoms, two at 20 fathoms, and two at $\because 5$ fathoms. The annexed formula shows the number of day and night collections:-

Tow-nettings $18\left\{\begin{array}{l}5 \text { surface }\left\{\begin{array}{l}1 \text { day collection. } \\ 4 \text { night collectious. }\end{array}\right. \\ 8 \text { under-surface }\left\{\begin{array}{l}5 \text { day ditto. } \\ 3 \text { night dito. }\end{array}\right.\end{array}\right.$
This species was readily distinguished from other Saphirines by the peeuliar form of the rery short caudal stylets.

Saplitrina opaca, Lubbock.
1856. Saphirina opaca, Lubbock, Trans. Ent. Soc. vol. iv. p. 27, pl. v. figs. 9-11.
1883. Suphirina opaca, Brady, Report Chall. Copep. p. 127, pl. xlix. figs. 14-17.

Habitut. Lat. 358^{\prime} N., long. 3 42' W., 25 fathoms, Jamary 13th (day colleetion). Off São Thomé Island (lat. $0^{\prime} 46^{\prime} 6^{\prime \prime}$ N., long. $6^{\circ} 22^{\prime}$ E.), 10 fathoms, January 23 rd (day collection). Off the Gaboon River (lat. $0^{\prime} 22^{\prime} 8^{\prime \prime} \mathrm{N} ., \mathrm{long} .8^{\circ} 10^{\prime} 7^{\prime \prime} \mathrm{E}$.), surface, Jamary 28th (two night colleetions). Station 23, 10 fathoms, February 5th (day collection).

This comparatively large species was obtained in 18 tow-nettings, 7 of which were surface and 11 under-surface gatherings. The under-surface tow-nettings included one at $2 \frac{1}{2}$ fathoms, six at 10 fathoms, one at 15 fathoms, one at 20 fathoms, one at 25 fathoms, and one at 30 fathoms. 1 surface and 9 under-surface gatherings were collected during the day, while 6 surface and 2 under-surface were night collections, as shown by the anuexed formula :-

Tow-nettings $18 \begin{cases}7 \text { surface } & \left\{\begin{array}{l}1 \text { day eollection. } \\ 6 \text { night collections. }\end{array}\right. \\ 11 \text { under-surface } & \left\{\begin{array}{l}9 \text { day ditto. } \\ 2 \text { night ditto. }\end{array}\right.\end{cases}$
The large size, elongate form, and the produced imer angle of the candal stylets serve to distinguish this from most of the other Saphirines in the collection. A few specimens carried ovisaes.

Saphirina splendens, Dama.
185․ Saphirina splendens, Dana, Crust. U.S. Expl. Exped. p. 1216, pl. Ixxxvii. fig. 9.
1883. Sapherina splendens, Brady, Report Chall. Copep. p. 127, pl. xlix. figs. 11-13.

Habitat. Station 3, 25 fathoms, January zud (day collection). Lat. $431^{\prime} 6^{\prime \prime} \mathrm{N} .$, long. ($l^{\prime} 44^{\prime \prime}$ W., 50 fathoms, Jannary 11th (day collection). Off the Gaboon River (lat. $0^{\text {P }}$ $22^{\prime} 8^{\prime \prime}$ N., long. $8^{\prime \prime} 25^{\prime} \mathrm{E}$.), surface, Jannary 29th (night collection). Station 23, surface and 10 fathoms, February 5th (day colleetion). Lat. 7 '35 S., long. 12 3' $3^{\prime \prime}$ E., surface, February 9th (night collection), ©c.

Saphirint splendens occurred in 16 tow-nettings- 6 surface and 10 under-surface. The surface tow-nettings comprised 3 day and 3 night eollections, the under-surface 9 day collections and 1 night collection. The under-surface tow-nettings ineluded one at $2 \frac{1}{2}$ fathoms, four at 10 fathoms, one at 15 fathoms, two at 25 fathoms, and two at 50 fathoms. The amexed formula shows the number of day and night collections:-

Tow-nettings $16\left\{\begin{array}{l}6 \text { surface }\left\{\begin{array}{l}3 \text { day collections. } \\ 3 \text { night ditto. }\end{array}\right. \\ 10 \text { under-surfa ce } \begin{array}{l}9 \text { day ditto. } \\ 1 \text { night collection. }\end{array}\end{array}\right.$

Sapilirina metallina, Dana. (Pl. XII. fig. 4.)
1852. Saphirina metallina, Dana, Crust. U.S. Expl. Exped. p. 124?, pl. kxxvii. fig. 5.
1860. Saphirina cylindrica, Lubbock, Trans. Limn. Soc. vol. xxiii. p. 181, pl. xxix. figs 13-15.
1883. Saphirina metallina, Brady, Report Chall. Copep. p. 128, pl. 1. figs. 11-17.

Mabitat. Station 2, 5, 25 , and 50 fathoms, January 1st (night collections). Station 3,
 360 fathoms, January 22nd (day collections). Station 23 , sufface, one day and one night collection ; also in one at 20, 85,135 , and 235 fathoms, February 5 th, ©c. (day collections).

Saphirina metullina occurred in 29 tow-nettings; only if of these were surface, the other 25 being under-surface and ranging in depth from 5 to 360 fathons. The surface gatherings couprised 1 day and 3 night collections, and the under-surface 19 day and 6 might collections, as shown by the amexed formula :-

Tow-nettings $29\left\{\begin{array}{l}4 \text { surface }\left\{\begin{array}{c}1 \text { day collection. } \\ 3 \text { night collections. }\end{array}\right. \\ 25 \text { under-surface }\left\{\begin{array}{c}19 \text { day ditto. } \\ 6 \text { night ditto. }\end{array}\right.\end{array}\right.$
The form of the caudal stylets in this species makes it readily distinguished from all other Saphirines. A peculiar appendage of the caudal stylets is, by deep staining, brought prominently into riew. The outline of the appendage may be perceived without staining by observing the diffraction of light around its elges, but it is only by allowing the speciwen to be well soaked in the stain (Kleinenber,g's hematoxylin does very well to stain with) that the appendage can be seen to advantage. It is then observed to possess a narrow oral outline with an acute apex; a thickened part extends from base to apex like the midrib of a leaf. The whole appendage has thas the appearance of a seta possessing delicate wing-like expansions. Such a leafflike appendage (cercophyllum) has not been noticed in any other species of Saphirinc in the 'Buccancer' collections. These cercophylle probably enable the animal to move with greater rapidity through the water, and thus to be more successful in the struggle for existence. By possessing greater celerity in its movements it would be able to escape more readily from its enemies and be more certain of success in attacking its prey. Whether the cercophylla are used as an additional motive-power or not is at present conjectural, but the stady of the animal in the living state should tend to throw some light on the use of these curious organs.

Saphirina sinuticauda, Brady.
1883. Saphirina sinuicautlu, Brady, Report Chall. Copep. p. 129, ph. xlix. figs. 7-10.

Habitat. Lat. $234^{\prime} 9^{\prime \prime}$ N., long. $5^{\circ} 22^{\prime} 2^{\prime \prime}$ E., 20 fathoms, January 21st (night collection). Station 24 , surface, February Gth (day collection).

This was one of the rarest of the Saphirines observed in the 'Buccancer' collections, and is distinguished from the other species by the form of the inner branch of the second swimming-foot and of the caudal lamelle. Only two or three specimens in all were obtained.

Geuus Sapimrinelfa, Claus.
Suphirinella, Claus, Die freilebenden Copepoden, 1863.

Saphirinella stilifera (Lubbock).
1856. Saphirina stylifera, Lubbock, Trans. Ent. Soe. vol. iv. p. 28, pl. iv. figs. 9, 10.
1866. Sephlirinella stylifera, Claus, Die Copepoden-Fauna von Nizza, p. 17, pl. i. figs. 13, 11.

Itabitat. Station 2, 5, 25, and 50 fathoms, Jannary 1st (night collections). Station 3, 25,50 , and 100 fathoms day tow-nettings, and 50 fathoms night tow-netting, January 2ud. Lat. $1^{\prime} 55^{\prime} 5^{\prime \prime}$ N., long. 5 5'5'5" E., 10, $20,30,60,260$, and 360 fathoms, Jannary 2 and (day collections). Station 23, surface, 20, 55, 185, and 235 fathoms, Febrnary 5th (day collections).

Saphirinella stylifera was obtained in 58 tow-nettings, 37 of which were day and 21 were night collections. 17 of the collections were under-surface, the others were surface gatherings, as shown by the annexed formula :-

Tow-nettings is $\left\{\begin{array}{l}11 \text { surface } \\ 47 \text { under-surface }\left\{\begin{array}{l}4 \text { day collections. } \\ 7 \text { night ditto. } \\ 33 \text { day ditto. } \\ 14 \text { night ditto. }\end{array}\right.\end{array}\right.$
The under-surface tow-nctings included gatherings from 5 to 360 fathoms, in nearly all of which Stophiriuelle was more or less frequent.

Many specimens of Suphirinelle were obtained, but they all appeared to belong to the one species Saphirinella stylifera (Lubbock). Very few specimens were observed in the 'Challenger' collections, which is the more remankable considering the number of gatherings and the extensive area represented.

Note.-Saphirinella: It has been shown by Dr. Giesbrecht that Saphirinella is only the male form of Copilie, and that Sopherinelle slylfera, Lubbock, is the male of Copilice mirabilis, Dana.

Saphifella, not. gen. (Provisional name.)
Anterior antenna nearly as in Saphirim, 5-jointed. Posterior antennæ 3-jointed. Mandibles stout, each bearing a strong terminal conical tooth, sermate on both margins, and a stout plumose terminal spine. Maxille broadly subquadrangular and furnished with a few terminal sete. Posterior foot-jaws stout, 3 -jointed, and armed with a moderately strong terminal claw. The swimming-feet are 2 -branched, each branch consists of a single broadly foliaccons joint; fifth pair rudimentary or obsolete.

Saphitelda abyssicola, n. sp. (Pl. XIII. figs. 57, 58; Pl. XIV. figs. 5-10.)
Length 1.2 mm . Cephalothorax rohust; the first segment, which is about as long as broad, is fully two-fifths the length ef the whole animal; the triangular postero-distal angles of the seeond segment are extended backwards to near the end of the fourth
segment. Anterior antennse nearly as in Saphivina, short, stont, byointed, the third and fourth joints shorter than the others; the proportional lengths of the joints are shown by the annexed formula :--

$$
\begin{gathered}
12 \cdot 1!\cdot 10 \cdot 8 \cdot 12 \\
1 \because: 34
\end{gathered}
$$

The posterior antemme consist of three nearly equal joints, and are furnished with one or two marginal and a number of apical sete, two of the apical setre and one subapiend heing strongly curved, long, and spiniform (Pl. XIII. fig. 55). Mandibles stout, armed with a strong terminal conical tooth; serrate on both elges, and a stout plumose spine; there are also two stont subapical phmose setre (Pl. XIV. fig. 6). Maxille broadly subquadrangular, bearing one submarginal and a few terminal seter (Pl. XIV. fig. 7). The basal joint of the anterior loot-jaws is considerably dilated, and is provided with two stout plumose spines on the inner distal angle; the last joint is small, about once and a half longer than broad, and hears four spines on its truncate apex (PI. XIV. fig. 8). Posterior foot-jalr stout, B-jointed, the last joint very small and furmished with a moderately strong and nearly straight elaw and a long, spiniform, plain seta; the first joint bears three setæ on its inner distal angle, and there are two setie near the middle of the second joint (Pl. NIV. fig. 9). Swimming-feet stout, 2 -branched; each branch consists of a single broadly foliaceous joint; the outer hranch of the first pair carries four stout dagger-shaped marginal and subterminal spines, serrate on both edges, and three terminal phomose setas; the inner branch carries three similar spines, two plain apical seta, and a seta near the hase of the inner margin. The sceond pair of feet are like the first, but the three dagger-shaped spines on the inner branch are replaced by phomose sete. Only two pairs of feet were observed; the others were wanting. The last segment of the abdomen is about twice and a half longer than broad. Caudal stylets very short, each bearing a long, slender, sabre-like spine and a few very small setæ.

ILabitut. Lat. $155^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime} \mathrm{E}$., in a tow-net gathering from 260 fathoms, collected January 2end.

Section III. SIP HONOSTOMA, Thorell.

Family ARTOTROGIDE.

Cyclopicera, Brady (1572).
? Cyclopicera lata, Brady. (Pl. NIII. figs. 2j-30.)
1868. Ascomyzon eckinicola, Norman, Brit. Assoc. Report, p. 300.
1872. Cyclopicera lata, Brady, Nat. Hist. Trans. Northmmb. and Durham, vol. iv. p. 433, pl. avn. figs. 3-8.
1880. Cyclopicera lata, Brady, Mon. Brit. Copep. vol. iii. p. 56, pl. 1xxxix. fig. 1: ; pl. xc. figs. 11-14

Length $\cdot 7 \mathrm{~mm}$. Body subrotund; first body-segment shorter than broarl and aljout
equal to half the entire length of the animal, exclusive of caudal stylets; forchead broadly rounded. Anterior antenne slender, shorter than the first body-segment, 20-jointed; the second to the ninth joints and also the eighteenth and twentieth, which are all of nearly equal length, are shorter than the others, as shown in the amnexed formula :-

$$
\frac{10.4 .3 .3 .3 \cdot 2 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \cdot 7 \cdot 7 \cdot 7 \cdot 6 \cdot 7 \cdot 8 \cdot 10 \cdot 4 \cdot 6 \cdot 3}{1-34516891011121314151617181920}
$$

An olfactory filament springs from the end of the screnteenth joint. Posterior antennæ and mouth-organs nearly as in Antotrogus Boeckii, except that the mandibular stylets are considerably longer and their terminal sctre shorter; the terminal claw of the posterior foot-jaws is also longer in the 'Buccanecr' specimens. The five pairs of swimming-feet also resemble those of Artotrogus Boeckii. In the fourth pair (fig. 26) a long, stout, plumose seta springs from the exterodistal angle of the first basal joint, and the outer distal angle of the second joint of the imner branch is bidentate. The abdomen consists of three segments, and the caudal stylets, which are about three times as long as broad, are equal in length to the last ablominal segment.

Hubitat. Acera, in a shore gathering, collected January 16th. One or two specimens only were obtained.

Artotrogus, Bocck (1859).

Artotrogus (pars) and Asterocheres, Boeck, Tvende nye parasitiske Krebsdyr, 1839. Ascomyzon, Thorell, Om Krustaccer i Ascidicr, 1859.
? Artotrogus abyssicolus, n. sp. (Pl. XII. figs. 5-9; Pl. XIV. figs. 11-18.)
Female. Length 1.1 mm . Cephalothorax robust; the first segment, which is considerably dilated and equal to about four-ninths the length of the entire animal, is anteriorly three-lobed; the two side-lobes are rounded, but the middle one is broadty triangular; the last thoracie segment is very small and searcely so broad as the first segment of the abdomen. The abdomen is clongate and slender, and nearly of equal breadth throughout; first segment about equal to the length of the next two together, the remaining segments become gradually shorter. Caudal stylets about half the length of the last abdominal secrment, and furnished with five moderately long setre. Antęrior antenns short, S-jointed, the last joint longer than any of the others; a long sensory filament springs from the end of the sixth joint; the relative lengths of the joints are shown in the formula:-

$$
\frac{27 \cdot 12 \cdot 6 \cdot 12 \cdot 8 \cdot 18 \cdot 10 \cdot 34}{123456}
$$

Posterior antenne 4-jointed, the second and third joints subequal and longer than the first or fourth; the last joint bears three spines-two terminal, one of which is moderately long and one short, and a marginal spine; a small l-jointed secondary branch springs from near the end of the second joint. The mandible consists of an elongate basal
joint furnished with two long, slender, terminal sete. The first joint of the anterior foot-jaws is stout and without spines or setie; the apical portion of the foot-juw is long and slender, the proximal half being about four times longer than broad and finely ciliate on the inner aspect, while the distal hall forms a strongly curved claw ; no articulation was observed between the claw and the broadened basal part. Posterior foot-jaw 4-jointed, sceond joint large, third and lourth much narrower and shorter; the second, third, and fourth are each provided with a small spine on the inner aspect; terminal claw equal to fully twiee the length of the last joint, stout and slightly curved. Swimming-feet nearly as in Artotrogus (Pl. XIV. figs. 17,18). No fifth pair were observed. Siphon as in Artotrogus.
 collected January 2ond. Station 23 , in a tow-net gathering from 235 fathoms, collected February 5th.
Sereral specimens of what may be the male (immature) of this species occurred in the same gatherings; they differed in the following points:-Body clongate ovate; abdomen long and very slender, and apparently (b-jointed, the first segment being distinctly constricted in the middle (Pl. XII. fig. 9). The anterior antenne consist of four moderately stout, short joints, and an extremely long, slender, apieal part without articulations (Pl. NII. fig. 6). The approximate proportional lengths of the basal joints and long apieal part are as follows :-

$$
\frac{25.8 .8 \cdot 4.250}{1-345}
$$

The posterior foot-jaws are more slender (Pl. XII. fig. 8). All the other appendages elosely agree with the foregoing description.

Caliges, Müller.

Caligus (?) Thymai, Daha. (Pl. NTV. fig. 21.)
1853. Caligus Thymmi, Dana, Crust. U.S. Expl. Exped. p. 1353, pl. xciv. fig. 3 a.

Habitat. Station 9, in a tow-nct gathering from 25 fathoms, collected about midday, January 10th. One specimen only.

This specimen, which is doubtfully referred to Caligus Thymmi, Dana, differs trom that species chiefly in the form and comparative length of the posterior part of the abdomen. In the 'Buccaneer' specimen this part is somewhat narrower and longer proportionally tham Dana's figure represents Cerligus Thymni to be.

Caligus Merrayanus, in. sp. Provisional name. (Pl. NiV. fig. 19.)
Length 3 mm . Frontal plate produced and much narrower anteriorly. Fourth pair of feet elongate and rather slender. The first abdominal (senital) segment in the female, which becomes wider posteriorly, is about one-and-a-hall times longer than it is broad at the middle, and equal to about half the length of the cephalothoras. The
posterior part of the abdomen, exclusive of caudal stylets, is about half as long as the genital segment, and the breadth less than half the length. A small sucker-like appendage springs from each side of the median ventral line and at the posterior end of the genital segment. Caudal stylets very short.

Hubitut. Loanda Harbour, in a surface tow-net gathering, during the afterioon of February 15th. One specimen only obtained.

The outline of the frontal plate, in this species, somewhat resembles an equilateral triangle, from the apical part of which a portion equal to about two fifths of the height has been cut off, while the sucker-disks are situated near the middle of what remains of each side. The species is named in compliment to Dr. Nuray of the 'Challenger' Expedition, who has done so much to foster and encourage the study of marine zoology.

Caligus bengoensis, n. sp. Provisional name. (Pl. XIV. fig. 20.)
Length about 2.4 mm . Frontal plate about one fifth of the length of the eephalothorax, narrower anteriorly. Sucker-disks forming almost a complete circle. The length of the genital segment of the abdomen is about equal to one-and-one-third times its breadth; the following segment is shorter than broad, and in length equal to about half the breadth of the genital segment; the last abdominal segment is longer than the preceding one, and about as broad as long. Caudal stylets half as long as the last abdominal segment. The fourth pair of feet are moderately stout.

Habitut. Loanda Harbour, in a surface tow-net gathering, but not the same as that in which Caligus Murrayanus was obtained.

Caligus dubius, n. sp. Provisional mame. (Pl. XIV. fig. 22.)
Female. Length 3.6 mm . Forehead broarly rounded, sucker-disks comparatirely shallow. Cephalothorax equal to about four sevenths of the entire length of the animal. The genital segment, which becomes wider towards the distal end, is about as long as the remaining portion of the abdomen, including caudal stylets; its breadth at the distal end is equal to about three fourths the length, and the postero-lateral angles are rounded. The remaining portion of the abdomen, the length of which is about equal to the posterior end of the genital segment, is three times longer than broad; no articulations were observed in this part of the abdomen. The length of the catadal stylets is equal to twice the brealth, and each is furnished with three moderatcly short plumose setw.

ILubitat. Loanda Harbour, in two surface tow-net gatherings, collected, one on the 13th and one on the 15th of February; also in a surface tow-net gathering collected off Appi, January 18th.

Nogagus, Leach.
Nogagus validus, Dana. (Pl. XIV. fig. 23.)
1853. Noyayus culidus, Dana, Crust. Expl. Exped. p. 1363, pl. xciv. fig. 9 a-h.

ILubitat. Lat. $155^{\prime} 5^{\prime \prime} \mathrm{N} ., \operatorname{long} 55^{\prime} 5^{\prime \prime}$ E., in a tow-net gathering from 30 lathoms, collected January 2ond. One specimen only was obtained.

Messella, Brady.
Messella cylintirica, Brady.
1883. Hessella cylindrick, Brady, 'Challenger' Copeporla, p. 136, pl. Iv. figs. 9-13.
1860. ? Buculus clonifatus, Lubbock, Trans. Linn. Soc. vol. xxiii. p. 190, pl. xxix. fig. 10.

Mabitat. Station 3, in a tow-net gathering from 2.5 fathoms, collected January end. Only one specimen of this interesting species was obtained.

This appears to be the Boculus elongatus, Luhbock, described by Sir John Lubboek in his paper "On some Oceamic Entomostraca collected by Captain Toynbee," and published in vol. xxiii. of the Tramsactions of the Limean Society. Il my conjecture is right, Sir John Lubboek's name must take precedenee of that of Dr. Brady.

Incelite Sedis.

Pontopsylles elozgatus, n. g. et sp. (Pl. XIV. figs. 21-30.)
Length 9.23 mm . (1-11th of an inch). Body cylindrical; first segment four sevenths of the whole length of the animal and equal to twice the combined length of the remaining three segments, which are sulbequal. Abdomen very short, composed of four segments; the two intermediate segments, which are of about equal length, are shorter than the first or fourth. Caudal stylets rudimentary and furnished with a moderately stont curved plmose terminal setal and three small marginal ones; the integrument of the last abdominal segment is covered with minute cilia, and the terminal seta of each of the caudal stylets is curved inwards (fig. 2t). Anterior antemme short, \bar{y}-jointed, bearing a few scattered hairs; the anterior distal angle of the basal joint is provided with a long plain seta that reaches beyond the apex of the antenna. The proportional lengths of the joints are as follows:-

$$
27.18 \cdot 15 \cdot 15 \cdot 1 \mathrm{~s}
$$

The postcrior antenne are 2 -jointed and rery short and stout; a strong eurved claw, articulated to the exterior half of the truncate apex and opposed by a stont pointed tooth, forms a powerful grasping-organ (fig. 26). Mandible and maxilla rudimentary; the first eonsists of a simple, somewhat stylet-shaped appendage, the other of two strong hooked spines attached to a stont 1-jointed basal part (figs. 27 a, 3). Posterior foot-jaws large; the dilated hasal joint carries an elongate, slender, apical appendage, the distal end of which is clothed with fine cilia, and, becoming gradually attenuated, terminates in a small spiral coil of about one-med-a-half toms, as shown in figure. The fom pairs of swimming-fect are all similar and consist of two short 2 -jointed branches; the exterior distal angles of the joints of the outer branches are furnished with stout dagger-shaped spines, finely serrate on both edges; the broad terminal spines, which are more than trice
the length of the branches from which they spring, are plain on the inner and serrate on the outer margin; the inner branches have no terminal spine; both branches are provided with several long plumose setee (fig. 29).

Habitat. Lat. $1^{\circ} 55^{\prime} 5^{\prime \prime}$ N., long. $5^{\circ} 55^{\prime} 5^{\prime \prime}$ E., in a gathering from 360 fathoms, collceted January 22nd. One specimen only was obtained.

A form that may be an immature stage of the foregoing was obtained in a surface tow-net gathering from Loanda Harbour, eollected February 15th, and is represented by fig. 58. The anterior antenne are 2 -jointed ; the posterior foot-jaws are large and welldeveloped; the siphon is elongate, with a flattened sueker-like disk at the extremity (fig. 30)

This form is closely analogous to the immature stage of Caligus, formerly deseribed as a distinct genus under the name of Chalimus.

Part II.

CLADOCERA AND OSTRACODA.

INDEX OF GENERA AND SPECIES.

	Page
Asterope, Philippi	140
squamiger, n.	
Bairdia, M. ${ }^{\text {coy }}$	136
inornata, n. sp.	
Cypria, Zenker	
atlantica, n. sp.	
Cythere, Miuller	
multicara, n. sp.	137
radula, Brady	138
rimosa, n. sp.	138
sculptilis	137
thalassica, n. sp.	138
renusta, n. sp.	138
Cytherella, Jones	144

Page
Halocypris punica, n. sp. 143
torosa, n. sp. 142
Penilia, Dana 132
orientalis, Dana 132
Phlyctenophora, Brady 135
africana, n. sp. 135
Pontocypris, G. O. Sars. 136
subreniformis, n. sp. 136
trigonella, G. O. Sars. 136
Sarsiella, Norman 140
Murrayana, n. sp 140
Xestoleberis, G. O. Sars. 139
margaritea, Brady 139

CLADOCERA.

Cladocera were exceedingly rare in regard to the number of species observed, only two species having been obtained in the whole of the 'Buccaneer' collections. They
represented, howerer, two widely prerailing groups-the Calyptomera and Gynomera; the first is confined almost exclusively to fresh and brackish water, while species helonging to the other are to be found in fresh water and also in the open sea.

The following are the two species referred to :-

$$
C A L Y P T O M E R A .
$$

Family PENILID ${ }^{\text {e, Dana. }}$
Genus Pexilla, Dana (1853).
Penilia orientalis, Dana.
1853. Penilia orientalis, Dana, Crust. U.S. Expl. Exped. p. 1270 , pl. lxxxix. fig. 3 a-e.

Inabitat. Loanda Harbour, in three surface tow-net gatherings, collected February 15th. A number of specimens were observed.

GYMNOMERA.

Family POLYPHEMID \mathbb{E}, Baird.
Genus Etadne, Lovén.
Evadne Nordmanni, Lovén.
This species was obtained in a number of the torw-net gatherings.

OSTRACODA.
Comparatively few Ostracoda were obtained in the 'Buceancer' collections. The Ostracoda, with the exception of ILalocypris and a few others, live among the wced, or on the sand and mud at the bottom of the water, and can be captured only by the dredge or other implement suited for collecting bottom material ; dead shells of Ostracods, however, may be frequently obtained by carefully examining the sand or other débris on the shore. As, therefore, the 'Buceaneer' collections consisted chicfly of tow-net gatherings, pelagie species, as Ilalocypris, were the only forms observed in all but a very few of the gatherings.

Several species of Cythere, as well as one or two of other genera belonging both to the Cypridæ and Cytheridæ, were obtained in a surface gathering from a lagoon at São Thomé Island, in mother from Loanda Harbour, and in a third collected off the mouth of the River Congo.

One of the most interesting captures was an Ostracod closely allied to Cyprice exsculptet (Fischer), which in this Report is named provisionally Cypria atlantica; it was obtained in the gathering collceted off the mouth of the River Congo, referred to above, at about 40 miles from land. It is well known to students of the Entomostraca that sevcral species of the Cypridæ, as, for example, Cypria ophthalmica (Jurime), Cypris prasina, Fischer, Candona candida (Müller), \&c., though usually or frequently obtained in fresh water, are nererthelcss occasionally obtained also in water more or less brackish, but have not been known to occur in the open sea, except as dead shells; it is therefore interesting to find a species closely resembling a freshwater Cypria living in the sea so many miles from laud.

It is possible that the fresh water poured into the sea by the River Congo may extend to a distance of 10 miles or more from land before it becomes thoroughly mingled with the water of the Atlantic, and may thus form a suitable habitat for a speeies which possibly would not be able to live in pure sea-water. Whether this be the correct explanation of the occurrence of a Cypricu so far out at sea, or not, it is a subject of some interest as bearing on the distribution of species.

It may be stated in comexion with this that several surface tow-nct gatherings were collected off the mouth of the Congo, and within a few miles of each other, but the Cyprice was observed only in the one mentioned under the description of the species.

Thongh the Ostracoda described in this Report be comparatively few in number, they nevertheless include representatives of three out of the four principal Groups, viz.:the Podoeopa, the Myodocopa, and the Platycopa. The following are the descriptions of species obtained belonging to these three Groups:-

I. PODOCOPA.

Family CYPRID風。
Cypria, Zeuker (1854).
(?) Cypria atlantica, n. sp. (Pl. XTV. figs. 31-33; Pl. XV. figs. 16, 20, 21, 25.)
Shell compressed; seen from the side, the dorsal margin is considerably arched, highest and somewhat angular in front of the middle; the dorsal margin slopes gently backwards from the highest part in a nearly straight line till it joins the broadly curved posterior margin ; the front slope has a greater declivity and is very slightly curved, and merges in the boldly rounded anterior margin ; rentral margin nearly straight. Greatest height equal to two-thirds of the length. Outline seen from above ovate ; sides crenly rounded, widest behind the middle; greatest width equal to about seven sixteenths of the length; extremities acutely angular, but more so in front than behind; the sides also converge more gradually towards the anterior extremity than they do posteriorly. Surface of shell ornamented with impressed retieulate lines, having the interspaces
covered with minute dots that appear to have a linear arrangement when viewed in certain positions. Length of shell 61 mm . (1-11st of an inch). Antenuules 7 jointed, basal joint large, the others small ; the formula shows the relative lengths of the joints :-

$$
\frac{32 \cdot 10 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 9}{1.2 \cdot 3 \cdot+5 \cdot 5 \cdot 7}
$$

The last two or three joints are provided with several long plain setæ; there are also a few seattered setre on the other joiuts. Antenne 4-jointed; the proportional lengths of the joints are as follows :-

$$
\frac{10 \cdot 14 \cdot 10 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 4}
$$

Five long and nearly equal setre spring from the end of the second joint; the terminal claws reach only to about the middle of the setre. Post-abdomen moderately stout, armed at the apex with two strong, eurred, and nearly equal claws, and a small seta; a small seta also springs from near the middle of the lower margin of the post-abdomen.

Habitut. Lat. $5^{\circ} 53^{\prime} 0^{\prime \prime} \mathrm{S}$., long. $1131^{\prime} 1^{\prime \prime} \mathrm{E}$., in a surface tow-net gathering collected 11.30 p.m., February 18th. (Off the mouth of the River Congo, abont 40 miles from land.)

A considerable number of specimens were obtained. The oceurrence in the open sea of a speeies so closely related to a freshwater C'ypria is of interest as forming another link connecting the truly freshwater with the truly marine Ostracoda.

Figure 33, Pl. XIV., is that of an immature specimen.

Phlyctenophora, Brady (1880).

Phlyctenophora africana, n. sp. (Pl. XIV. figs. 31, 35 ; Pl. XV. figs. 17-19.)
Shell elongate orate; seen from the side the dorsal margin forms a depressed areh, rather highest in front of the middle; ventral margin simated in front, gently convex behind; anterior extremity somewhat attenuate and evenly rounded ; posterior margin slightly produced and angular below the middle; greatest height equal to five twelfths of the length. The outline scen from above is compressed ovate, widest in the middle; greatest width a little more than a third of the length; sides tapering similarly and evenly to both extremities, which are subacute. Length 1 mm . (1-25th of an inch). Antemules 7-jointed; relative lengths of the joints nearly as in the formula :-

$$
\frac{2.5 \cdot 5 \cdot 5 \cdot 6 \cdot 4 \cdot 4}{12345}
$$

The last joint bears a moderately stout and long apieal spine; the other joints are more or less setiferous; sete plain. Antenne G-jointed, sparingly setiferous; the first three joints large, the last three small, as shown ly the relative lengths of the joints given in the formula :-

$$
\frac{17 \cdot 16 \cdot 17 \cdot 4 \cdot 7 \cdot: 3}{1 \cdot 3 \cdot 3}
$$

A faseicle of about six short setre springs from the side and near the distal end of the third joint, while the penultimate joint carrics one spine, and the last joint two moderately long claw-like spines. Post-abdomen short, stout, and armed with two strong terminal elaws, setiferous on the lower distal half, and a few small sete.

Habitat. Loanda Tarbour, in a surface tow-net gathering, collected February 13th. Several specimens were obtained.

Pontocypris, G. O. Sars (1865).
Pontocipris trigonella, G. O. Sars. (Pl. XIV. figs. 36, 37.)
1865. Pontocypris trigonella, G. O. Sars, Oversigt af Norges Marine Ostrac. p. 16.
1889. Pontocypris trigonella, Brady and Norman, Mon. M. \& F.-w. Ostrac. of the N. Atlantic and N.W. Europe, p. 109, pl. xxii. figs. 18-25, plo xxiii. fig. 6.

Halitat. São Thomé Island, in a surface tow-net gathering from a slore-lagoon, colleeted January 27th. One specimen only was obtained.
(?) Pontocypris subreniformis,n. sp. Provisional name. (Pl. XIV. figs. 38, 39.)
Outline of the shell scen from the side subreniform; dorsal margin considerably arehed; extremities similarly and somewhat obliquely rounded; ventral margin slightly coneave; greatest height at the middle searcely equal to four ninths of the length. Seen from above oblong ovate, widest at the middle, tapering at the sides from the middle to each end in hearly straight lines; extremities obtusely pointed. Greatest width equal to rather more than one third the lengtl. Length 58 mm .

Habitat. In the same gathering with the last.

Family BAIRDIID .
Bairdia, M‘Coy (1844).
Bairdia inornata, n. sp. (Pl. XIV. figs. 40, 41.)
Viewed laterally the dorsal margin of the shell is boldly areuate; highest a little behind the middle; at the lighest the dorsal margin is obtusely angular, and from thence it slopes rapidly downwards on both sides, but more so belind than in front, till it merges in the evenly rounded extremities; ventral margin gently sinuated; greatest height equal to two-thirds of the length. The outline of the sholl scen from above is compressed ovate; greatest width slightly behind the middle and equal to about five twelfths of the length; the sides curve regularly towards both ends; extremities subaeute; surface of valves smooth. Length 7 mm .

Habitat. Lat. $5^{\circ} 53^{\prime} 0^{\prime \prime}$ S., long. $1131^{\prime} 1^{\prime \prime}$ E.; in a surface tow-net gathering collected at 11.30 P.M., February 18th. One specimen only obtained: it was in the same gathering with Cypria atlantica, already described, and whieh was taken off the mouth of the River Congo, at about 40 miles from land.

Family CYTHERIDN.

Crthere, Müller (17sí).
Cythere multicata, n. sp. (Pl. NIT. figs. 12, 43; Pl. XV. figs. 13, 15.)
Shell elongate, rather thmid ; seen from the side, dorsal margin highest and bhontly angular in front of the middle; thence it slopes gently backwards in a nearly straight line to the romded, obscurely erenate, posterior end ; anterior margin ohlique, inferiorl? rounded and cremukte, flattened above, and sloping posteriorly upward to the hinge-prominence. Height rather less than half the length. As seen from above oblong, sides nearly parallel, slightly gibbons in front; width about two fifths of the lengeth; posterior extremity broadly rounded at the sides, centrally produced and troncate; anteriorly the valres taper gently to the oblusely pinted extremity. Shell ornamented with mumerous small eireular depressions arranged in irpegular lines. Length 77 mm .

Antemules G-jointed, first and second joints long, the others small; their relative lengths are as follows:-

$$
\frac{25 \cdot 27 \cdot 10 \cdot \frac{6 \cdot 8 \cdot 10}{1} \cdot 2 \quad 3}{4}
$$

A stout spine springs from the exterior distal angle of the third, fourth, and fifth, and from the apex of the last joint.

First and third joints of the antemie elongate, subequal, about three times as long as the second joint; last joint very small, and furnished with two apieal spines. A long, hair-like appendage earried by the seeond joint is eonneeted by a duct with a (?) poisongland situated at the lase of the antemme.

ILabitut. Loanda Harbour, in a gathering colleeted February 13th. A few speeimens only were obtained.

Cythere sctipptlis, n. sp. (Pl. XIV. figs. 11, 4.s.)
Shell : viewed laterally, the outline of the shell is broad and obliquely rounded in front, narrow behind ; greatest height in front of the middle equal to fully half the length; dorsal margin forming a sinuous deelivity towards the posterior end posterior extremity subtruncate, somewhat produced below and bluntly dentate; lower part of anterior margin crenate or bluntly toothed, ventral margin shallow eoneave. Seen from above, subquadrangular; anterior end truncate; sides subparallel, simated; greatest width seareely equal to half or three serenths of the longth, constricted behind the middle, gently rounded and converging posteriorly. Towards the posterior end the edges of the valyes become flattened and are produced backwards, and terminate in obliquely truncate ends as in the figures. Length 54 mm .

Habitat. With the last in a surface tow-net gathering from a lagoon, São Thomé Island. One speeimen only obtained.

Cetiere radula, Brady.
Cythere raduia, Brady, Report on the 'Challenger' Copepoda, p. 102, pl. xix. fig. $4 a, b$.
Habitat. Lagoon, Siio Thomé Island, in the same gathering with the last. A single valve evidently belonging to Cythere radula was obtained, but was broken while being examined.

Cithere rimosa, n. sp. (Pl. XIV. figs. 10, 47.)
Shell tumid; seen from the side the dorsal margin is highest behind the middle, thence it slopes gently in a mearly straight line to the anterior end, but merges behind into the boldly and somewhat obliquely rounded posterior margin ; front margin subtruneate, the lower part of the shell slightly produced; greatest lieight equal to fully half the lengeth. The outline seen from above subovate, sides nearly parallel, but somewhat wider in front of the middle; thence they converge in a gently rounded curve to the posterior end, which is slightly emarginate; greatest width scarcely equal to half the length. Posterior extremity subtriangular, with the apex truncate. Surface of the valve curiously sculptured, with flattened ridges arranged in irregular and more or less oblique lines extending across the shell. Length 6 mm .

Hubitat. Lagoon, São Thomé Island, in a surface tow-net gathering, colleeted January 27 th , also the same gathering with Cypria atlantica collected off the mouth of the river Congo, at about 40 miles from land, February 1Sth.

Cythere thalassica, 13. sp. (Pl. XIV. tigs. 48, 19.)
Outline of shell, seen from the side, narrow, elliptical, highest at the middle; greatest height searcely equal to half the longth; dorsal margin gently and evenly arched, ventral margin nearly straight ; hoth extremities similarly and boldly rounded. Secn from abore, ovate, rather widest at the middle, width and height about equal; anteriorly the sides, whieh are slightly romeded, converge gently towards the obtusely pointed extremity; posterior end broadly and moderately eonvex. Surfaces of valves smooth. Length 85 mm .

Habitat. In a lagoon, Sǐo 'Thomé Island, in a surface tow-net gathering, collected Jannary 27 th. One or two specimens only obtained.

Cythere venusta, n. sp. (Pl. XIV. figs. é 0,51 .)
Shell, seen from the side, broadly elliptical; greatest height behind the middle, searcely equal to latf the length. The dorsal margin is slightly areuate, middle portion forming a nearly straight line, but gently curved in liont to where it joins the boldly and evenly rounded anterior extremity; posterior margin moderately and regularly eonvex; ventral margin slightly concare. Seen from above the shell is broadly orate, widest behind the middle; greatest width equal to five twellths of the length ; sides evenly rounded, converging gently towards the anterior extremity, but more convex posteriorly ; extremities bluntly angular; valves somewhat unequal, the right being rather smaller than the left. Surface of the valves ornamented with flattened and gently curved longitudinal ribs placed
side by side, extending from the posterior extremity, but becoming obsolete towards the anterior end, where they rmon into shallow eircular depressions; the front margin is marked with a number of impressed, short, radiating' lines. Length ' 8 mm . (1-31st of an inch).

Habitat. Lomda Harbour, in a surface tow-nct gathering, collected February 13th. One specimen only obtained.

This species closely resembles Cythere costellatu, Roemer, an ostracod obtained lossil in the Tertiarre dejosits of England and also in France.

Xestoleberis, G. O. Sars (1865).
Xestoleberis (? ${ }^{\circ}$) margaritea (Brady).
1865. Cytherideat maryaritea, Brady, Trans. Zoul. Soc. vol. v. p. 370 (), pl. Iviii. fig. (9, a, b.
1880. Xestoteberis maryaritea, Brady, Report on the 'Challenger' Coppepoda, p. 127, pl. xxx. fig. 2, a, b.

Hubitat. Lagoon, Sino Thomé Island, in is surface tow-net gathering, collected Jannary 27 th ; sercral species were obtained. The Jestoleberis now recorded, when viewed laterally, differs from .I. murgariten described and figured in the 'Challenger' Report in being rather more pointed at the anterior end, but otherwise it seems to agree with that speeies; it also anrees with the figures of the same species in the 'Monograph of the Marine and Fresh-water Ostracoda of the North Atlantic and North-westem Emrope,' by Brady and Norman, p. 246.

Cytierefra, G. O. Sirs.
Cytheruki simulans, n. sp. (Pl. XIV. figs. 52, 53.)
Shell, viewed laterally, suborate; greatest height behind the middle equal to about four ninths of the length; dorsal margin moderately and erenly arched; rentral margin slightiy concave; beak subeentral, obtuse, more prominent than in Cytherure similis, G. O. Sars, which the species now described somewhat resembles; anterior extremity evenly rounded and slightly oblique; the outline seen from abore is suborate, widest behind the middle; width equal to the height; sides flattened eentrally, eonverging and gently curved; anterior subtruncate behind, with the middle part shortly produced to a blunt pointed apex; anterior extremity subacuminate. Length 16 mm .

ILabitat. Loanda Harbour, in a surface tow-net gathering, collected February 13th. One specimen ouly obtained.

> Citileropteron, G. O. Sars (1565).

Cfthenopteron trilobitts, Brady. (Pl. N1V. figs. 5t, 55.)
1880. Cytheropteron trilobitis, Brady, On Ostracoda collected ly H. B. Brady in South Sea 1slands, Trans. R. S. E. vol. xxxr. pt. ii. p. 511, pl. iii. figs. 22, 23.
Habitat. In a lagoon, Sĩo Thomé Island, in a tow-net gathering, collected January 27. Only a few valves of this speeies were obtained; it differs rery little from the "Challenger' specimen.

II. MIODOCOPA.

Family CYPRIDINTDE, Baird.

Genus Asterope, Philippi.

Asterope squanigeli, n. sp. (Pl. XIV. figs. 56, 57; Pl. XV. figs. 14, 22, 23, 26.)
Female. Shell, seen from the side, subrotundate, highest at the middle, convex and cvenly rounded in front; dorsal margin nearly straight; extremitics evenly rounded; the posterior curve slightly oblique, notch well defined, beak subacute, height equal to four fifths of the length. Length $1 \cdot 15 \mathrm{~mm}$. Seen from above ovate, tumid, widest at the middle; width equal to three fifths of the length; sides moderately and regularly convex ; posterior extremity obtusely rounded; valves slightly produced in the middle; anterior extremity emarginate. Surface of shell ornamented with small squamiferous markings. Antennules 6-jointed and of moderate length, the sccond to the fifth joints subequal, the last very small and furmished with several slender apieal setee and a slightly hooked claw. Secondary branches of antennx 3-jointed, first and third joints short, the last bearing a short seta at its apex. First maxille nearly as in Asterope teres, Jones; postabdomen armed with about six spines, the first large and serrate on the posterior edge, the next three shorter and plumose and apparently articulated near the base, the others very small.

Habitut. (?) Lagoon, São Thomé Island, in a surface tow-net gathering, collected dming night, January 27 th. Two specimens only.

Sarsiella, Norman, 1868.

Sabsiella Murbayana, n. sp. (Pl. XIV. fg., 58; Pl. XV'. figs. 21, 28, 29, 31.)
Male. Shell laterally compressed in front, tumid behind, scen from the side subrotund; height equal to three fourths of the length; dorsal margin slightly convex ; front margin boldly rounded and continuous with the anterior end ; posterior extremity produced in front into a blunt-pointed, triangular, beak-like process; dorsal angle at the junction of the posterior and dorsal margin rounded ; there is a small, tumid, triangular, tooth-like process a little behind the dorsal angle (fig. 40). Surface of the shell covered with small puncture-like markings.

Antennules 4 -jointed ; first joint elongate, second and third subequal and shorter than the first; last joint fully three fouths the length of the preceding and furnished with several apical setce of moderate length ; second joint of natatory branch rather longer than the next two joints together; third to the last joints small, subequal. Postabdonen armed with a long, powerful, terminal clav and four spines of varying length on the posterior distal margin. Oviferous foot nearly as in Asterope Alurice (Baird). Length $9: 3 \mathrm{~mm}$.

Hubitut. Lagoon, Sĩo Thomé Island, in a surface tow-net gathering collceted during night, January 27 th. 'Two specimens only obtained.

Family CONCTIOCID.E.

Subfamily Il alocrprixee, Dana.
Gemis ILuocypleis, Dana (1853).

Malocypris brevirostres, Dana.
1853. Ifalocypris brevirostrix, Dana, Crust. U.S. Expl. Exped. p. 1303, pl. xci. fig. 9, a-c.

Mabitat. From the following, among other localities:-
January 5th, lat. 5 58 $0^{\prime \prime}$ N., lomg. 1 f 10' $0^{\prime \prime} \mathrm{W}$., surface gatherings.

The tirst of these gatherings was collected in the evenimon after dark, the others during the day. The specimens obserred in any of the gatherings were eomparatively few in number.

Malocyplis blongata, in. sp. (Pl. XV. figs. 1, 2, 27. 30.)
Shell, seen from the side, clongate, anterior extremity rounded below the moteh and continuous with the ventral margin; rentral and dorsal margins nearly straight, dorsal produced posterionty so as to be eonsiderably longer than the ventral ; posterior margin oblique, nearly straight, forming an acute augle at its junction with the dorsal edge; the rentral angle obtusely rounded; shell highest posteriorly, greatest height fully one third of the length. Iength $3 \cdot 2 \mathrm{~mm}$. Scen from abore, clougate ovate, widest at the middle, widtll equal to rather less than one third of the length; from the middle the shell tapers and becomes much compressed towards the posterior extremity, which is somewhat obtuse; anteriorly the width decreases more gradually to the base of the rostrum, whence the ralves rapidly converge to the sharp pointed extremity of the beak; surface of the ralves smooth. The sete of the interior antemie of the female are four short and one long; the seeond joint is somewhat shorter then that which precedes or follows; the last joint is very short. The distal part of the tentacle seems to be continuous with the basal portion instead of sagittiform as in ILatocypris attentica, Lubbock. Natatory branch of the posterior antenns slender ; secondary branch small; first joint somewhat dilated and fumished with two small spines; apical joint small, learing five sete--two very small, two elongate and reaching to near the extrenity of the apieal setie of the primary braneh, and one about half as long.

Itubitat. From several loealities, among which are the following: -
January 10th, lat. :3 $0^{\prime} s^{\prime \prime} \mathrm{N}$., loug. $7^{\prime} 43^{\prime} 0^{\prime \prime} \mathrm{W}$., 50 fathoms (Station 9).

February eth, , $420 f^{\prime \prime} 7^{\prime \prime}$., " $101^{\prime} \mathrm{S}^{\prime \prime} \mathrm{E}$., 20 and 30 fathoms (Station 23).
This species was not observed in any surface tow-net gathering.

Malocyplis torosa, n. sp. (Pl. XV. figs. 3, 4, 32, 35, 37.)
Shell tumid; surface of valves finely retienlated. Seen from the side the dorsal margin is nearly straight, slightly simuate; a sulcus begins near the middle of the dorsal margin and passes obliquely backward across each valve; the tumidity extends downward, anterior to the sulcus, and overhangs the nearly straight ventral margin. A second, though very shallow, groove is observed in some of the more robust specimens, between the sub)central sulcus and the posterior extremity. Posterior margin truncate, dorsal angle slightly produced; at the anterior end the rentral margin rises obliquely in a nearly straight line and merges in the small rounded angle below the notch. The beak is a hood-like process with broad overhanging sides. Shell highest at the posterior end; height equal to nearly half the length; length 3.75 mm . Scen from above oblongovate, widest behind the middle; greatest width equal to two fifths the length. Sides sinuous, posterior extremity rounded, anterior end bluntly angular. Anterior anteme with four apical setse and a curved hair-like filament; one of the apical setie is very long and is prorided with a fringe of small teeth on a portion of the proximal half, similar to Itulocypris imbricuta; a small plumose seta springs from near the middle of the penultimate joint. The blunt-pointed arrow-like head of the tentacle reaches slightly beyond the extremity of the antenme. Sccondary branch of the posterior antenne furnished with a stout plumose seta on the enlarged basal joint; the small terminal joint bears an extremely long ringed seta, another about one third as long, and five very small setw, as well as a strongly-hooked claw. The first foot consists of four moderately long subequal joints, which are sparingly setiferous, and a very small terminal joint furnished with three long plumose sete.

Hubitut. The following are some localities where this species was obtained :-
January 5th, lat. $5^{\circ} 5 S^{\prime} 0^{\prime \prime} \mathrm{N}$., long. $140^{\prime} 0^{\prime \prime} \mathrm{W}$., collected near suriace.

This species appears to be intermediate between II. attanticu, Lubbock, and II. imbricata, Brady.

Malocypris aculeata, n1. sp. (Pl. XV. figs. 5, 6, 33, 34, 35.)
Shell seen from the side highest at the middle, height nearly equal to half the length ; dorsal margin straight, right valve terminating posteriorly iu a short backward-directed spine-like process, smilar to that at the anterior extremity of the left valve; ventral margin conver, erenly rounded, and forming a continuous curve from the postero-dorsal spine round to the shallow notch under the beak in front. Seen from above elongateovate, widest at the middle, evenly rounded, and tapering to the posterior extremity; tapering and somewhat sinuate anteriorly. Vialves smooth. Length 1 mm .

Antennules in the female prorided with mumerous apical setce of moderate length (figr.56). The last joint of the male antemule is abruptly eurved and furnished with a dense subapical fascicle of short hairs, besides several terminal setie, one of which is of considerable length and meh longer than the others; tentacle repy slender and scarcely reaching to the extremity of the antemule.

Secondary brameh of the male antenne nearly two thirds the length of the natatory branch and furnished with two apical setr-one extremely long and one about two fifths the length of the other. The antenmal hook, which is slighty dentate on the inner margin at the distal end, carries one short seta and two elongate ones on the exterior edge, immediately behind the genienlation (fig. 5.5).

Mabitut. Lat. $019^{\prime} 2^{\prime \prime} \mathrm{S}$., long. $719^{\prime} 0^{\prime \prime} \mathrm{E}$. This is the nearest observed position to where the material containing specimens of this species was eollected. It was a surface gathering, collected at S.1.5 P.M.; the position recorded was taken about 40 minutes earlier on February 2 -nd.

The dhanings of the side and dorsal views are from two specimens which differed somewhat in size. The length of the spines at the extremities of the dorsal margin varies in different specimens.

Malocyprts puntca, n. sp. (Pl. XV. figs. 7, s, 39, 10.)
Shell (male) rohust, subcentrally gilbous. Outline as seen from the side:-Dorsal margin sinuated ; ventral margin slightly convex, immediately posterior to the subeentral gibbosity, then bending up posteriorly in a flattened curve to a little below the horizontal middle line of the shell; thence the posterior extremity recedes upward in a gentle slope to the dorsal margin, with whieh it forms a bluntly-rounded obtuse angle; the anterior margin is boldly convex below the notel, then evenly and gently rounded inferiorly, where it morges into the rentral margin. Greatest height fully equal to halt the length. Beak prominent, stout. Scen from aloore, broadly and rather irregularly orate; greatest breadth, in front of the middle, equal to about half the length ; posterior extremity bluntly rounded; anterior end subacute. Antemules furnished with mine apical setae, the two imner ones abruptly twice geniculated at the base; two of the outer rather longer than the others, and bearing a double row of small spiniform teeth near the middle; tentacle slender and extending considerably beyond the apex of the antenmoles. Secondary brameh of the antemm short and stont, hasal part dilated. The upper margin with two processes-one narrow and tooth-like, the other larger and bearing two small spines; apical joint furnished with two terminal elongate setex, three small sul)marginal filaments, and a small hook; the hook has the inner margin at the distal end slightly crenate or toothed. Several of the plumose setxe of the natatory branch are thickened or spatulate at the extremity. Length 77 mm .

Habitut. Station 9 (lat. $30^{\prime} \mathrm{S}^{\prime \prime} \mathrm{N} .$, long. $7^{\prime} 13^{\prime} 0^{\prime \prime} \mathrm{W}$.), 50 fathoms, in a tow-net gathering, eollected Jamury 10th. A few specimens only were obtained.

III. PLATYCOPA. Tamily CY'THERELLIDA, G. O. Sars.

Genus Cftierella, Jones (1819).
Cftherella africita, m. sp. (Pl. XV. figs. 9, 10, 36, 41, 42.)
As seen from the side, the valves of the shell are broadly elliptical ; dorsal margin flatly and somewhat unerenly rounded; ventral margin slightly concave, extremities boldly convex. Shell rather highest behind the middle; lieight fully half the length. Seen from above, the greatest breadth is near the posterior end, which is subtruncate; the sides are slightly eurved and converge gently towards the anterior extremity, which is somewhat emarginate. Surface of valves smooth. Length 86 mm . (1.-29th of an inch),

Anterior antenue 7 -jointed, setifcrous, the last joint with three spines fully twice the length of the joint; the secoudary branch of the posterior antemase scarcely equal in length to the first joint of the larger branch; post-abdominal lamine armed on the exterior margin and apex with several strong divaricate spines; inner margin with three or four smaller spines, having one of the edges setose (fig. 42).

Habitut. Loanda Harlour, in a surface tow-net gathering, collected February 13th. 1886. The form of the shell of this species elosely resembles Cytherelta scotica, Brady. It differs in being scarcely so truncate behind; seen from above, the sides of the shell are more distinctly curved in outline, and the dorsal margin, seen from the side, is slightly convex instead of coneare.
(?) Cytherella puaila. (Pl. XV. figs. 11, 12.)
Shell outline, seen from the side, broadly elliptical ; dorsal margin flatly convex and obseurely angulated; greatest height equal to five ninths of the length; ventral margin gently and evenly rounded; extremities also moderately convex, but the anterior end is rather narrower than the other and somewhat oblique. Seen from above, ovate; greatest breadth behind the middle and equal to four ninths of the length; sides evenly rounded; extremitics subacute. Length 57 mm .

Hubitat. Loanda Marbour, in a surface tow-net gathering collected Eehruary 13th. A single perfect specimen only was obtained and two valves.

DESCRIPTION OF TIIE PLATES.

Plate I.

Paracalanus pygmens (Clans).

Fig. 1. Female, lateral view. $\times 53$.
2. Anterior antenna. $\times 84$.
3. Posterior antenna. $\times 165$.
4. Posterior foot-jaw. $\times 170$.
lig. 5. Foot of second pair. $\times 125$.
6. Foot of fourth pair. $\times 125$.
7. Foot of fifth pair. $\times 250$.
8. Abdomen and candal stylets. $\times 125$.

Paracalams pareus (Clams).
ig. 9. Fcmale, dorsal view. $\times 40$.
10. Foot of first pair. $\times 95$.
11. Foot of fourth pair. $\times 95$.

Fig. 12. Foot of fifth pair, female. $\times 190$.
13. Foot of fifth pair, male. $\times 125$.
14. Abdomen and caudal stylets. $\times 63$.

Eucalanus spinifer, u. sp.

Fig. 15. Female, dorsal view. $\times 10$.
16. Posterior anteuna. $\times 18$.
17. Mandible. $\times 13$.
18. Maxilla. $\times 13$.
19. Anterior foot-jaw. $\times 23$.

Fig. 20. Posterior foot-jaw. $\times 13$.
21. Foot of first pair. $\times 35$.
22. Foot of third pair. $\times 35$.
23. Foot of fifth pair. $\times 86$.

Augaptilis lonyicaudatus (Clans).

Fig. 24. Female, dorsal view. $\times 12$.
25. Postcrior antenna. $\times 28$.

IFig. 26. Anterior foot-jaw (a, one of the seta more highly magnified) $\times 3 \overline{5}$.

Mecynocera Clausi, I. C. Thompson.

Fig. 27. Male, dorsal view. $\times 32$.
28. Female, latcral view. $\times 32$.
29. Anterior antenna. $\times 35$.
30. Posterior antenna. $\times 1.25$.

Fig. 31. Posterior foot-jaw. $\times 84$.
32. Foot of first pair. $\times 100$.
33. Foot of fourth pair. $\times 100$.
34. Foot of fifth pair. $\times 125$.

Calocalanus plumnlosus (Clans).
Fig. 35. Foot of fiftll pair. $\times 125 . \quad \mid$ Fig. 36. Abdomen and caudal stylets. $\times 63$.

Augaptilis hecticus, Giesbreelit.

Fig. 37. Anterior antenna, male. $\times 23$.
38. Posterior antenna. $\times 18$.

Fig. 39. Foot of fifth pair, female. $\times 86$.

Plate II.

Augaptilis hecticus, Giesbrecht.

Fig. 1. Posterior foot-jaw. $\times 70$.
2. Foot of second pair of swimming-fect. $\times 43$.

Fig. 3. Terminal spine of outer branch of fourth pair. $\times 345$.

1. Fiftlı pair of thoracic fcet, male. $\times \sqrt{7} 0$.

Augaptilis lonyicaudatus (Clans).
Fig. 5. Abdomen and caudal stylets. $\times 93$.

Hemicalanus phumosus, Clans.
Fig. 6. Posterior foot-jaw. $\times 32$.
SECOND SERIES.-ZOOLOGY, VOL. VI.

Mecynocera Clausi, I. C. Thompson.

Fig. 7. Mandible. $\times 125$.
8. Anterior foot-jaw. $\times 165$.

Fig. 9. Abdomen and caudal stylets, female. $63 \times$.
10. Abdomen and caudal stylets, male. $\times 63$.

Rhincalanus aculeatus, n. sp.

Fig. 11. Temale, dorsal view. $\times 125$.
12. Female, lateral view. $\times 12 \cdot 5$.
13. Anterior antenna. $\times 12.5$.
14. Posterior anteuna. $\times 20$.
15. Mandible. $\times 76$.
16. Maxilla. $\times 17$.
17. Anterior foot-jaw. $\times 40$.

Fig. 18. Posterior foot-jaw. $\times 32$.
19. Foot of first pair. $\times 38$.
20. Foot of second pair. $\times 30$.
21. Foot of fourth pair. $\times 30$.
22. Foot of fifth pair. $\times 38$.
23. (?) Immature female. $\times 10$.
24. Foot of fiftlı pair of same. $\times 1 \%$.

Augaptilis Rattrayi, n. sp.

Fig. 25. Female, dorsal view. $\times 9$.
26. Anterior antenna. $\times 22$.
27. Posterior antenna. $\times 18$.
28. Mandible. $\times 18$.
29. Maxilla. $\times 18$.
30. Anterior foot-jaw. $\times 28$.
31. Posterior foot-jaw. $\times 28$.
32. Foot of first pair. $\times 28$.

Fig. 33. Foot of third pair. $\times 20$.
34. Foot of fifth pair. $\times 28$.
35. Rostrnm. $\times 32$.
36. Portion of seta of the posterior foot-jaw (aa, "buttons" more highly magnified). $\times 380$.
37. Portion of test highly magnified.

Augaptilis hecticus, Giesbreeht.

Fig. 38. Male, dorsal view. $\times 20$.
39. Anterior antenna, femalc. $\times 13$.
40. Mandible. $\times 115$.

Fig. 41. Anterior foot-jaw. $\times 70$.
42. Abdomen and caudal stylets, female. $\times 20$.

Heterocalanus serricaudata, n. sp.

Fig. 43. Female, dorsal view. $\times 32$.
44. Female, lateral riew (a, ovisae more lighly magnified). $\quad \times 32$.
45. Posterior foot-jaw. $\times 190$.

Fig. 46. Foot of fifth pair, female. $\times 135$.
17. Abdomen and candal stylets, female. $\times 76$.
48. Abdomen and caudal stylets, male. $\times 76$.

Plate III.

Heterocalunus servicaudatus, n . sp.

Fig. 1. Antenior antema, female. $\times 100$.
2. Right anterior antenna, male. $\times 76$.
3. Posterior antenna. $\times 70$.
4. Mandibie (a, mandible palp). $\times 190$.

Fig. 5. Anterior foot-jaw. $\times 250$.
6. One of the swimming-feet. $\times 128$.
7. Fifth pair of thoracie feet, male. $\times 150$.

Pleuromme princeps, n. sp.

Fig. 8. Male, dorsal view. $\times 4$.
9. Male, lateral view. $\times 4$.
10. Right anterior autenna (a, nineteenth joint more highly maguificl). $\times 8$.
11. Left anterior antenna. $\times 4$.
12. Posterior antema. $\times 9$.
13. Mandible and palp. $\times 10.5$.

Fig. 1t. Maxilla. $\times 10$.
15. Anteriol foot-jaw. $\times 13.5$.
16. Posterior foot-jaw. $\times 12$.
17. Foot of first pair. $\times 13 \%$.
18. Foot of seeond pair. $\times 13 \cdot 5$.
19. Foot of fourth pair. $\times 13.5$.
20. Foot of fifth pair. $\times 16$.

Scolecithrix latipes, n. sp. \quad ․
17ig. 21. Terminal spine of outer branch of fourth swimming-foot. $\times 95$.

Fig. 22. Foot of fifth pair. $\times 76$.
23. Ablomen and candal stylets. $\times 20$.

Scolecithrix major, n. sp. \& .
Fig. 24. Anterior foot-jaw. $\times 76$.
25. Terminal spine of outer braneh of third swimming-foot. $\times 127$.
26. Foot of fifth pair. $\times 127$.

Scolecithrix dubia, Giesbrecht. δ.

Fig. 27. Male, lateral view. $\times 27$.
28. Left anterior antenna. $\times 35$.
29. Anterior foot-jaw. $\times 18$.

Fig. 30. Terminal spine of onter braneh of fourth swimming foot. $\times 127$.
31. Filth pair of thoraeic feet. $\times 84$.
32. Abdomen and caudal stylets. $\times 80$.

Scolecithrix tumida, n. sp.

Fig. 33. Female, lateral view. $\times 18$.
34. Anterior antenna, $\times 22$.
35. Anterior foot-jaw. $\times 95$.

Fig. 36. Terminal spine of outer braneh of fourth swimming-foot. $\times 127$.
37. Fifth pair of thoraeic feet. $\times 12 \%$.
38. Abdomen and caudal stylets. $\times 27$.

Amallophora typica, n. sp.

1ig. 39. Male, lateral view. $\times 20$.
40. Anterior antenna. $\times 27$.
41. Posterior antenna. $\times 23$.
42. Mandible. $\times 47$.

Fig. 43. Maxilla. $\times 4 \pi$.
44. Anterior foot-jaw. $\times 115$.
45. Posterior foot-jaw. $\times 35$.
46. Foot of second pair. $\times 35$.

Plate IV.
Amallophora typica, n. sp.

Fig. 1. Foot of third pair. $\times 35$.
2. Foot of fourth pair. $\times 35$.

Fig. 3. Foot of fifth pair. $\times 57$.
4. Abdomen and caudal stylets. $\times 18$. 19*

Fig. 5. Female, lateral view. $\times 10$.
6. Anterior foot-jaw. $\times 127$.
7. Posterior foot-jaw. $\times 20$.

Fig. 8. Terminal spine of outer branch of fourth swimming-foot, lighly magnified.
9. Foot of fifth pair. $\times 125$.

Anallophora dubia, n. sp.

Fig. 10. Male, lateral vicw. $\times 13$.
11. Right anterior antenna. $\times 20$.
12. Left anterior antenua. $\times 20$.
13. Anterior foot-jaw. $\times 95$.
14. Posterior foot-jaw. $\times 68$.

Fig. 15. Foot of first pair. $\times 63$.
16. Foot of fourth pair. $\times 48$.
17. Fifth pair of thoracic feet. $\times 40$.
18. Abdomeu and caudal stylets. $\times 27$.

Amallophora dubia, var, similis.
Fig. 19. Male, lateral view. $\times 18$.
20. Anterior antenna. $\times 27$.
21. Terminal spine of outer branch of fourth swimming-foot. $\times 127$.
22. Fifth pair of thoracic feet. $\times 63$.
23. Abdomen and caudal stylets. $\times 27$.

Amallophora robusta, в. sp.

Fig. 24. Female, lateral view. $\times 13$.
25. Auterior foot-jaw. $\times 53$.
26. Posterior foot-jaw. $\times 53$.

Fig. 27. Terminal spine of outer braneh of fourth swimming-foot. $\times 127$.
28. Fifth pair of thoracic fect. $\times 95$.
29. Abdomen and eaudal stylets. $\times 27$.

Candace intermedia, n. sp.

Fig. 30. Male, lateral riew. $\times 22$.
31. Anterior antenna, female. $\times 37$.
32. Anterior anteuna, male. $\times 37$.
33. Anterior foot-jaw. $\times 20$.
34. Fifth pair of thoracic fcet, female.

Fig. 35. Fifth pair of thoracie feet, male. $\times 67$.
36. Abrtomen and candal stylets, female. $\times 27$.
37. Abdomen and caudal stylets, male. $\times 27$. $\times 127$.

Candace varicans, Giesbrecht.
17ig. 38. Abdomen and caudal stylets, female. $\times 20$.
39. Abdomen and canda\} stylets, male. $\times 20$.

Scolecithrix securifrons, n. sp.

Fig. 40. Male, lateral view. $\times 9$.
41. Anterior antenna, female. $\times 13$.
42. Anterior antema, male. $\times 13$.
43. Posterior antenna. $\times 27$.
4. Mandible. $\times 27$.
45. Maxilla. $\times 27$.
46. Anterior foot-jaw. $\times 63$.
47. Posterior foot-jaw, female. $\times 40$.
48. Posterior foot-jaw, malc. $\times 40$.
49. Foot of first pair. $\times 35$.

Fig. 50. Foot of second pair. $\times 27$.
51. Foot of fourth pair. $\times 20$.
52. Fifth pair of thoracie fect, female. $\times 40$.
53. Fifth pair of thoracic feet, male. $\times 20$.
54. Abdomen and cautal stylets, fcmale, dorsal view. $\times 16$.
55. Abdomen and candal stylets, male, dorsal view. $\times 13$.
56. Abdomen, female, lateral view. $\times 12$.

Plate V.
 Scolecithrix securifrons, n. sp.

Fig. 1. Rostrum. $\times 27$.
Scolecithrix ctenopus, Giesbrecht. ठ.

Fig. 2. Malc, lateral view. $\times \mathfrak{2}$.
3. Right anterior antenna. \times ?3.
4. Left anterior antenua. $\times 23$.
5. Anterior foot-jaw. $\times 150$.
lig. 6. Posterior foot-jaw. $\times 127$.
7. Foot of third pair. $\times 16$.
8. Foot of fifth pair. $\times 12$.
9. Abdomen and candal stylets. $\times 34$.

Scolecithrix temipes, n. sp. ठ.

Fig. 10. Mate, lateral riew. $\times 20$.
11. Right anterior antenna. $\times 28$.
12. Left anterior antemna. $\times 28$.
13. Anterior foot-jaw. $\times 115$.
14. Posterior foot-jaw. $\times 115$.

Fig. 15. Foot of sceond pair. $\times 73$.
16. Foot of third pair. $\times 73$.

1\%. Foot of fourth pair. $\times 57$ 。
18. Fifth pair. $\times 57$.
19. Abdomen and caudal stylets. $\times 35$.

Scolecithrix longicornis, n. sp. q.

Fig. 20. Female, lateral riew. $\times 27$.
21. Anterior antenna. $\times 36$.
22. Anterior foot-jaw. $\times 127$.
23. Posterior foot-jaw. $\times 85$.
24. Foot of first pair: $\times 64$.

Fig. 25. Foot of second pair. $\times \pi 6$.
20. Foot of third pair. $\times 64$.
27. Foot of fifth pair. $\times 250$.
98. Abdomen and caudal stylets. $\times 53$.

Scolecithrix Bradyi, Giesbrecht.

Fig. 29. Male, lateral view. $\times 18$.
30. Anterior antenua, female. $\times 48$.
31. Anterior antenna, male. $\times 53$.
32. Posterior antema. $\times 95$.
33. Mandible. $\times 63$.
31. Anterior foot-jaw. $\times 1 \% 0$.
35. Posterior foot-jaw. $\times 95$.

Fig. 36. Terminal spine of outer branch of one of the swimming-feet. $\times \mathbf{1 7 0}$.
37. Fifth pair of thoracic feet, male. $\times 53$
38. Abdomen and candal stylets, female. $\times 40$.
39. Abdomen and caudal stylets, male. $\times 32$.

Scolecithrix latipes, 1. sp. q.

Fig. 40. Female, lateral vierr. $\times 12$.
41. Anterior antenna. $\times 18$

Fig. 42. Anterior foot-jaw. $\times 25$.
43. Rostrum. $\times 2 \%$.

Scolecithrix major, n. sp.
Fig. 44. Female, lateral ricw. $\times 18$.
1 Fig. 45. Abdomen and caudal stylets. $\times 20$.
Calamus comptus, Dana. ó.
Fig. 46. Male, lateral riew. $\times 13$.
47. Anterior antcma. $\times 13$.
48. Posterior antenna. $\times 23$.

Fig. 49. Mandible. $\times 3$.
50. Naxilla. $\times 3$.

Plate VI

Calanus comptus, Dana. ${ }^{3}$.
Fig. 1. Posterior foot-jaw. $\times 56$.
2. Foot of first pair. $\times 35$.
3. Terminal spine of outer branel of first swimming-foot, greatly magnified.
4. Foot of fourtl pair. $\times 23$.
5. Foot of fifth pair. $\times 23$.

Hemicalanus plumosus, Claus.
Fig. 6. Anterior foot-jaw. $\times 27$.
Calocalanus phemulosus (Claus).
Fig. 7. Female, lateral view. $\times 35$ | Fig. 8. Anterior antenna. $\times 53$.
Calocamus pavo (Dana).
Fig. 9. Female, dorsal view. $\times 53 . \quad \mid$ Fig. 10. Fifth pair of thoracic feet. $\times 115$.
Pleuromma gracile, Claus.
Fig. 11. Male, dorsal view. $\times 17.5$.
12. Right anterior anteuna of the same. $\times 23$.
13. Left anterior antenua of the same. $\times 35$.
14. 14th joiut of left anterior antenna. $\times 415$.

Euchirella messinensis (Clans).
Fig. 15. Male, dorsal new. $\times 7 \cdot 6$ | Fig. 16. Posterior antenna. $\times 20$.
Eucheta barbata, Brady.
Fig. 17. Male, dorsal view. $\times 6.5$.
Euchreta hebes, Giesbreelit.
Fig. 18. Male, lateral view. $\times 13 . \quad$ Fig. 19. Fifth pair of thoracie feet. $\times 20$. Eucheta hebes, var. valida.
Fig. 20. Male, lateral view. $\times 5.8$.
21. Terminal spine of outer brancl of fourth swimming-feet. $\times 63$.
22. Fifth pair of thoraeic feet. $\times 13$.

Euchreta australis, Brady.
Fig. 23. Female, dorsal view. $\times 9$.
Eucheta (?) Hessei, var. similis.
Fig. 24. Male, lateral view. $\times 18 . \quad \mid$ Fig. 25. Fifth pair of thoracic feet. $\times 53$. Phyllopus bidentatus, Brady.
Fig. 26. Male, dorsal view. $\times 10$.
27. Mouth as seen from the side (α, outline, seen from above), highly magnified.
28. Fifth pair of thoracic feet. $\times 43$.

Pontellopsis villosa, Brady.

Fig. 29. Male, dorsal view. $\times 13$.
30. Anterior antenna, male. $\times 20$.
31. Posterior anteuna. $\times 26$.

Fig. 32. Fifth pair of thoracic feet, female. $\times 63$.
33. Fifth pair of thoracic feet, male. $\times 53$.

34 . Abdomeu and eaudal stylets. $\times 35$.

Phaënna spinifera, Clans.
Fig. 35. Male, lateral view. $\times 13$.

Labidocera detruncata, var. intermedia.

Fig. 36. Posterior foot-jaw. $\times 41$.
Fig. 38. Fifth pair of thoracie feet, male, $\times 34$.
37. Fifth pair of thoracic fcet, female. $\times 76$.

Labidocera Darwinii (Lubbock).

Fig. 39. Posterior foot-jaw. $\times 50$.
40. Fifth pair of thoracie feet, female. \times G3.

Fig. 41. Fifth pair of thoracie feet, male. $\times 50$.
42. Abdomen and eaudal stylets, female. $\times 38$.

Pontella mediterranea, Claus.

Fig. 43. Female, dorsal view. $\times 13$.
44. Anterior antenna, female (and rostrum). $\times 27$.
45. Hinged joints of right anterior antenna, male. $\times 63$.

Fig. 46. Posterior foot-jaw. $\times 48$.
1.. Fifth pair of thoracie feet, female (? immature). $\times 100$.
48. Fifth pair of thoracie fcet, mael. $\times 63$.

Plate VII.

Phaënna spinifora, Claus.
Fig. 1. Anterior foot-jaw. $\times 9$. \mid Fig. ?. Fiftl pair of thoracic feet. $\times 50$.
Labidocera detruncata, var. intermedia.
Fig. 3. Female, lateral view. $\times 13$. $\mid \quad$ Fig. 4. Anterior antenna, male. $\times 20$.

Labidocera Darwinii (Lubbock).

Fig. 5. Male, dorsal vier. $\times 18$.
Fig. G. Hinged joints of right anterior antenna, male. $\times 50$.

Candace varicans, Giesbrecht.
Fig. 7. Anterior antenna, female. $\times 24 . \quad$ Fig. 9. Fiftl pair of thoracie feet, female. $\times 95$.
8. Right anterior antenna, male. $\times 24$.
10. Fifth pair of thoracie feet, male. $\times 95$.

Mormonilla phasma, Gicsbreeht.

Fig. 11. Eemale, lateral view. $\times 27$.
12. Anterior antenna. $\times 32$.
13. Posterior antenna. $\times 63$.
14. Mandible. $\times 50$.
15. Maxilla. $\times 50$.
16. Anterior foot-jam. $\times 76$.

Fig. 17. Postcrior foot-jaw. $\times 9$.
18. Foot of tirst pair. $\times 9 \overline{5}$.
19. Foot of second pair. $\times 95$.
?0. Foot of fourth pair. $\times 76$.
21. Abdomen and eaudal stylets. $\times 53$.

Acartia phemosa, n. sp.
.Fig. 22. Female, dorsal view. $\times 32$.
23. Anterior antenna, female. $\times 63$.
24. Right anterior antenna, male. $\times 63$.
25. Hinged joints of male right anterior antenna. $\times 253$.
26. Foot of first pair. $\times 95$.
27. Foot of fourth pair. $\times 76$.
28. Fifth pair of thoracie feet, female (frout view). $\times 153$.

Fig. 29. Foot of fifth pair, female (side view), $\times 153$.
30. Fifth pair of thoracic feet, male. $\times 153$.
31. Abdomen and caudal stylets, female. $\times 50$.
32. Abdomen and candal stylets, male. $\times 50$.

Fig. 33. Male, dorsal view. $\times 32$.
34. Anterior antenna, female. $\times 63$.
35. Right anterior antenua, male (a, hinged joints more maguified). $\times 63$.
36. Foot of fourth pair. $\times 9$.
37. Fifth pair of thoracie feet, female. $\times 125$.

Fig. 38. Fifth pair of thoracic feet, male. $\times 153$.
39. Abdomen and caudal stylets, female. $\times 50$.
40. Abdomen and caudal stylets, male. $\times 50$.

Paracartia dubia, n. sp.
Fig. 41. Left anterior antcuna of male. $\times 63 . \mid$ Fig. 42. Fifth pair of thoracic feet, male. $\times 127$.

Plate VIII.

Paracartia spinicaudata, n. sp. q.

Fig. 1. Female, dorsal view. $\times 40$.
2. Anterior antenna. $\times 63$.
3. Posterior antenna. $\times 127$.
4. Mandible and palp. $\times 127$.
5. Maxilla. $\times 127$.
6. Anterior foot-jaw. $\times 127$.

Fig. 7. Posterior foot-jaw. $\times 127$.
8. Foot of first pair. $\times 127$.
9. Foot of fourth pair. $\times 95$.
10. Fifth pair of thoracic feet. $\times 127$.
11. Abdomen and caudal stylets. $\times 95$.

Paracartia dubia, n. sp. ठ.

Fig. 12. Male, dorsal view. $\times 27$.
13. Right anterior antenna. $\times 63$.

Fig. 14. Foot of fourtll pair. $\times 95$.
15. Abdomen and caudal stylets. $\times 63$.

Atidius armiger, Giesbrecht.

Fig. 16. Female, dorsal view. $\times 20$.
17. Male, lateral view. $\times 21$.
18. Anterior antenna. $\times 21$.
19. Posterior antenna. $\times 23$.
20. Mandible and palp. $\times 38$.
21. Anterior foot-jaw. $\times 47$.

Fig. 22. Posterior foot-jaw. $\times 39$.
23. Foot of first pair. $\times 57$.
24. Foot of second pair. $\times 57$.
25. Foot of fourth pair. $\times 42$.
26. Fiftl pair of thoracic feet. $\times 85$.
27. Abdomen and caudal stylets. $\times 39$.

Clausocalames latipes, n. sp. δ.

Fig. 28. Right anterior antema. $\times 59$.
29. Mandible and palp. $\times 115$.
30. Autcrior loot-jaw. $\times 115$.
31. Posterior foot-jaw. $\times 115$.
$3: 2$. Foot of first pair. $\times 86$.

Fig. 33. Foot of second pair. $\times 86$.
3 4. Foot of third pair. $\times 80$.
35. Foot of fouth pair. $\times 86$.
36. Wifth pair of thoracie feet. $\times 230$.
37. Abdomen and caudal stylets. $\times 57$.

Cluusoculams urcuicornis, Dana, ó

Fig. 38. Male, lateral view. $\times 23$.
39. Anterior antemna. $\times 35$.
10. Posterior autenna. $\times 23$.
41. Nandible palp. $\times 8$ J.
42. Maxilla. $\times 113$.

Fig. 13. Anterior foot-jaw. $\times 276$.
44. Postcrior foot-jaw. $\times 172$.
4.5. Poot of first pair. $\times 115$.
16. Fitth pair of thoracic fcet. $\times 115$.
47. Abdomen and caudal stylets. $\times 57$.

Temoropia maymbaensis, n. sp.
Fig. 48. Right anterior antenna of male. $\times 58 . \quad$ Fig. 19. Mandible and palp. $\times 63$.

Plate IN.
Temoropia mayumbaensis, n. sp.

Fig. 1. Male, dorsal vicw. $\times 53$.
2. Posterior antenna. $\times 83$.
3. Maxilla. $\times 95$.
4. Anterior foot-jaw. $\times 190$.
5. Posterior foot-jaw. $\times 63$.
6. Foot of first pair. $\times 152$.
$\%$ Inner branch of sceond thoracic feet. $\times 95$.

Fig. 8. Fifth pair of thoracic fect, female. $\times 95$.
9. Fifth pair of thoracic feet, male. $\times 95$.
10. Abdomen and eaudal stylets, femate, dorsal view. $\times 63$.
11. Abdomen of female, lateral vicw. $\times 63$.
12. Abdomen and eandal stylets, male. $\times 63$.

Temora longicornis (Müller).
Fig. 13. Eifth pair of thoracic feet, mak. $\times 95$.

Oithona mimuta, n. sp.

Fig. 14. Female, dorsal view. $\times 7 \times$.
15. Anterior antema, female. $\times 169$.
16. Anterior intenma, male. $\times 230$.
17. Posterior antenna. $\times 230$.
18. Mandible. $\times 270$.
19. Mandible palp. $\times 230$.
20. Anterior foot-jaw. $\times 230$.

Fig. 2l. Posterior foot-jaw. $\times 345$.
22. Foot of first pair. $\times 230$.
23. Foot of fourth pair. $\times 230$.
21. Abdomen and caudal stylets, female (a, fifth pair of fect). $\times 127$.
25. Abdomen and candal stylets, male. $\times 200$.

SECOND SERIES.-ZOOLOGY, VOL. VI.

Fig. 26. Female, lateral view. $\times 42$.
27. Anterior antemna, female. $\times 230$.
28. Postcrior antenna. $\times 1: 27$.
29. Mandible and palp. $\times 35$.
30. Anterior foot-jaw. $\times 253$.
31. Posterior foot-jaw. $\times 253$.

Fig. 32. Foot of first pair of swimming-fect. $\times 138$.
33. Foot of fourth pair of swimming-feet. $\times 127$.
34. Foot of fifth pair. $\times 190$.
35. Last abdominal segments and candal stylets. $\times 9 \overline{5}$.

Bralya brevicornis, u. sp.

Fig. 36. Female, lateral view. $\times 53$.
37. Auterior antenna. $\times 460$.
38. Posterior antema. $\times 170$.
39. Anterior foot-jaw. $\times 460$.
10. Posterior foot-jaw. $\times 345$.

Fig. 41. Foot of first pair. $\times 190$.
42. Foot of fifth pair. $\times 190$.
43. Last abdominal segments and caudal stylets. $\times 9$.

Amymone Andrewi, n. sp.

Fig. 44. Female, lateral view. $\times 63$.
45. Anterior antenua. $\times 190$.

Fig. 46. Posterior antenna. $\times 190$.
47. Anterior foot-jaw. $\times 380$.

Plate X.

Amymone Andrevi, n. sp.
Fig. 1. Posterior foot-jaw. $\times 2$ 2ั3.
Stenheriat accraensis, u. sp.

Fig. 2. Female, lateral view. $\times 53$.
3. Anterior antema. $\times 253$.
4. Posterior anterma. $\times 190$.
5. Mandible and palp. $\times 380$.
6. Maxilla. $\times 190$.
\%. Anterior foot-jaw. $\times 253$.

Fig. 8. Posterior foot-jaw. $\times 253$.
9. Foot of first pair. $\times 15$.
10. Foot of fourth pair. $\times 152$.
11. Foot of fifth pair. $\times 1: 20$.
12. Last abdominal segments and eaudal stylets. $\times 63$.

Laophonte lomyipes, n. sp.

Fig. 13. Female, lateral view. $\times 53$.
11. Anterior antenna. $\times 253$.
15. Posterior antenna. $\times 380$.
16. Mandible and palp. $\times 380$.
17. Maxilla. $\times 500$.

18 Anterior foot-jaw. $\times 253$.

Fig. 19. Posterior foot-jaw. $\times 190$.
20. Foot of first pair. $\times 190$.
21. Foot of fourth pair. $\times 190$.
22. Foot of fifth pair, $\times 190$.
23. Last abdoniural segments and candal stylets. $\times 95$.

Laophoute mygmea, n. sp.

Fig. 24. Female, lateral view. $\times 53$.
25. Anterior antenna. $\times 253$.
26. Posterior foot-jaw. $\times 253$.

27 loot of first pair. $\times 253$.

Fig. 28. Foot of fourth pair. $\times 253$.
29. Foot of fitth pair. $\times 253$.
30. Last abdominal segments and caudal stylets. $\times 127$.

Laophonte brevicornis, n. sp.

Fig. 31. Female, lateral view. $\times 53$.
32. Anterior antcnna. $\times 253$.
33. Posterior foot-jaw. $\times 253$.
31. Foot of first pair. $\times 253$.

Fig, 35. Foot of fourth pair. $\times 253$.
36. Foot of fifth pair. $\times 253$.
37. Last abdominal segments and candal stylets. $\times 126$.

Dartylopus latipes, n. sp.

Fig. 38. Female lateral view. $\times 33$.
39. Anterior antema. $\times 190$.
40. Posterior foot-jaw. $\times 253$.
41. Foot of first pair. $\times 190$.

Fig. 4.2. F'oot of fiftli pair. $\times 127$.
4.3. Last abdominal segments and caudal strlets. $\times 63$.

Dactylopers propingmus, 1, sp.

Fig. 44. Female, lateral view. $\times 53$.
45. Anterior antenna, female. $\times 190$.
46. Anterior antema, malc. $\times 253$.

4\%. Postcrior antenna. $\times 253$.
48. Posterior foot-jaw. $\times 253$.

Fig 49. Foot of first pair. $\times 190$.
50. Foot of fifth pair, female. $\times 190$.
51. Foot of fifth pair, malc. $\times 190$.

5:. One of the appendages of first abdominal segment, male. $\times 190$.

Plite XI.

Dactylopus propinquus, n. sp.
Fig. 1. Foot of sceond pair of swimming-fect, male. $\times 190$.
2. Foot of third pair of swimming-feet, male. $\times 190$.
3. Last abdominal segments and caudal stylets. $\times 95$.

Ilyopsyllues affinis, n. sp.

Fig. 4. Female, dorsal view. $\times 60$.
5. Female, lateral view. $\times 60$.
6. Auterior antema, female. $\times 250$.
7. Anterior antenna, male. \times §50.
8. Posterior antenna. $\times 330$.
9. Mandible and palp. $\times 380$.
10. Masilla and (?) oral apertmre. $\times 500$.

Fig. 11. Antcrior foot-jaw. $\times 500$.
12. Posterior foot-jaw. $\times 330$.
13. Foot of first pair. $\times 190$.
14. Foot of third pair. $\times 152$.
15. Foot of fifth pair, female. $\times 500$.
16. Abdomen and caudal stylets. $\times 95$.

1\%. Rostrum. $\times 300$.

Miracia minor, n. sp.

Fig. 18. Female, lateral view. $\times 53$.
19. Anterior antenna, female. $\times 152$.
20. Anterior antema, malc. $\times 190$.
21. Posterior antenna. $\times 190$.
22. Posterior foot-jaw, female. $\times 2$ ว33.
23. Posterior foot jaw, male. $\times 253$.
24. Foot of first pair. $\times 108$.

Fig. 20. Foot of sceond pair, female. $\times 108$.
26. Font of second pair, male. $\times 108$.
27. Foot of third pair. $\times 108$.
28. Fifth pair of thoracic feet, female. $\times 95$.
29. Foot of fifth pair, malc. $\times 190$.
30. Abdomen and candal stylets. $\times 76$.

屈gisthus longirostris，n．sp．

Fig．31．Female，dorsal viet．$\times 20$ ．
32．Female，side view．$\times 18$ ．
33．Anterior antenna，female．$\times 53$ ．
34．Auterior antenna，male．$\times 32$ ．
35．Posterior antenna．$\times 63$ ．
36．Nandible．$\times 190$ ．
37．Maxilla．$\times 140$ ．

Fig．38．Anterior foot－jaw．$\times 190$.
39．Posterior foot－jaw，female．$\times 95$ ．
40．Posterior foot－jaw，male．$\times 95$ ．
41．Foot of first pair．$\times 40$ ．
42．Foot of fourth pair．$\times 40$ ．
43．Filth pair of thoracie fect．$\times 53$ ．
4．Extremity of one of the stylets．$\times 190$ ．

Copilia Fultoni，11．sp．
Fig．45．Adult dorsal view．$\times 10 \%$ ．
Fig．48．Mandible．$\times 257$.
46．Antcrior antenna．$\times 63$ ．
47．Posterior antemna．$\times \pm 0$ ．

49．Maxilla．$\times 190$ ．
50．Anterior foot－jaw．$\times 253$ ．

Plate NII．

Copitia Fultomi，n．sp．
Fig．1．Posterior foot－jaw．\times 路。
2．Foot of fourth pair of swimming－fect．$\times 63$ ．
3．Abdomen and caudal stylets（ a ，fifth foot）．$\times 26$ ．
Sophirina metallina，Dana．
Fig．4．One of the caudal stylets with leaf－like appendages（eercophyllu）．$\times 105$ ．

> (?) Artotrogus abyssicolus, n. sp. (?) ठ.

Fig．5．Adult，dorsal view．$\times 27$.
6．Anterior antenna．$\times 63$ ．
7．Posterior antenna．$\times 953$.

Yig．8．Posterior foot－jaw．$\times 253$.
9．Abdomen and caudal stylets．$\times 81$ ．

Longipedia minor，T．\＆A．Seott．
Fig．10．Male，lateral view．$\times 53$ ．
11．Foot of sccond pair．$\times 84$ ．
12．Fifth pair of thoracie feet and appendages of first abdominal segment．$\times 190$ ．
13．Last abdominal segments and candal stylets．$\times 153$ ．
Euterpe gracilis，Claus，var．armata，n．var．

Fig．14．Female，lateral view．$\times 53$ ．
15．Anterior antemna．$\times 190$ ．
16．Anterior antenna．$\times 190$ ．
17．Mandible．$\times 190$ ．
18．Maxilla．$\times 190$ ．

Fig．19．Anterior foot－jaw．$\times 190$ ．
20．Posterior foot－jaw．$\times 253$.
21．Foot of first pair．$\times 190$ ．
2，．Foot of fourth pair．$\times 190$ ．
23．Fifth pair of thoracie fect．$\times 190$ ．

Laophonte serrate，Claus．

Fig．24．Female，lateral view．$\times 53$.
25 ．Anterior antema．$\times 190$ ．
26 ．Foot of first pair．$\times 153$.

Fig．27．Foot of fifth pair．$\times 127$.
28．Last abdominal segments and candal stylets．$\times 95$.

Cletodes linearis, Clams.

Fig. 29. Femate, lateral view. $\times 53$.
30. Anterior antema, female. $\times 190$.
31. Foot of fifth pair, female. $\times 153$.

Fig. 32. Fifth pair of thoracie feet (a), and appendages (b) of first abdominal segment. $\times 153$.

Thulestris forfirula, Clims.

Fig. 33. Female, lateral view. $\times 53$.
34. Anterior antenna. $\times 190$.
35. Posterior antenna. $\times 190$.
36. Anterior foot-jaw. $\times 253$.
37. Posterior foot-jaw. $\times 253$.

Fig. 38. Foot of first pair. $\times 153$.
39. Foot of fourth pair. $\times 153$.
10. Foot of tifth pair. $\times 153$.
41. Last abdominal segments and candal stylets. $\times 127$.

Herpacticus chelifer, Müller, var.

Fig. 快, Ilale, lateral view. $\times 20$.
43. Posterior foot-jaw. $\times 76$.
44. Foot of first pair. $\times 50$.

Fig. 4\%. Foot of second pair. $\times \pi 0$.
46. Foot of filth pair. $\times 127$.

Clytemmestra rostrate (Brady).

Fig. 17. Female, lateral view. $\times 32$.
48. Female, dorsal view. $\times 32$.
49. Male, dorsal view. $\times 32$.
50. Anterior antema, female. $\times 95$.
51. Anterior antenna, male. $\times 95$.
52. Posterior antemna. $\times 127$.

Fig. 53. Mandible and palpi. $\times 253$.
51. Maxilla. $\times 380$.
55. Anterior foot-jaw. $\times 253$.
56. Posterior foot-jaw, female. $\times 127$.
57. Posterior foot-jaw, malc. $\times 95$.

Plate XIII.

Clytemnestra rostrata (Brady).
Fig. 1. Foot of first pair of swimming-feet. $\times 9 \%$.
2. Foot of second pair of swimming-feet. $\times 95$.
3. Foot of fifth pair of swimming-fect. $\times 127$.

Onctea gracilis (Dana).

Fig. 4. Female, dorsal view. $\times 53$.
5. Anterior antenma. $\times 53$.
6. Posterior antema. $\times 84$.
7. Mandible. $\times 153$.
8. Maxilla, $\times 153$.

Fig. 9. Anterior foot-jaw. $\times 127$
10. Pusterior foot-jaw. $\times 95$
11. Foot of fourth pair. $\times 95$.
12. Abdomen and caudal stylets (a, fifth feet). $\times 50$.

Oncea mediterranca (Clans).

Fig. 13. Female, dorsal view. $\times 53$.
14. Anterior antema. $\times 63$.
15. Posterior antenna. $\times 100$.

Fig. 16. Posterior foot-jan. $\times 9$ J.
17. Foot of fourth pair. $\times 127$.

Pachysoma punctata, Claus.

Fig. 18. Adult, dorsal view. $\times 18$.
19. Anterior antema. $\times 48$.
20. Posterior antenna. $\times 63$.
21. (?) Mandible. $\times 190$.

Fig. 29. (?) Maxilla. $\times 153$.
23. (?) Anterior foot-jaw. $\times 253$.
21. Foot of fourth pair. $\times 50$.

Cyclopiceraluta, Brady.

Fig. 25. Malc, dorsal view. $\times 53$.
26. Anterior antema. $\times 100$.
27. Mandible. $\times 190$.

Fig. 28. Maxilla. $\times 153$.
29. Foot of fourth pair. $\times 100$.
30. Foot of fiftl pair. $\times 190$.

Hersiliodes Livinystoni, n. sp.

Fig. 31. Female, florsal view. $\times 27$.
32. Anterior antemna. $\times 127$.
33. Posterior antemma. $\times 95$.
34. m., Mandible; mx., Maxilla; Mouth. $\times 127$.

Vig. 35. Anterior foot-jaw. Posterior foot-jaw. $\times 127$.
36. Foot of first pair. $\times 76$.
37. Foot of fourth pair. $\times 76$.
38. Foot of fifth pair. $\times 48$.

Lichomolyus congoensis, n. sp.

Fig. 39. Female, dorsal view. $\times 35$.
40. Antcrior antema. $\times 127$.
41. Posterior antenua. $\times 127$.
42. Mandible. $\times 253$.
43. Maxilla. $\times 253$.

Fig. 44. Anterior foot-jaw. $\times 253$.
45. Posterior foot-jaw. $\times 190$.
46. loot of fomth pair. $\times 135$.
47. Foot of fiftlı pair. $\times 100$.
48. Abdomen and eaudal stylets. $\times 84$.

Pseudanthessius propinquus, n. sp.

Fig. 49. Male, dorsal view. $\times 35$.
50. Auterior antema. $\times 1 \% 0$.
51. Posterior antenna. $\times 135$.
52. Mandible. $\times 190$.
53. Maxilla. $\times 253$.

Fig. 54. Postcrior foot-jaw, female. $\times 84$.
55. Foot of first pair. $\times 135$.
56. Abdomen and caudal stylets, female. $\times 40$.

Saphirella abyssicola, n. sp.
Fig. 57. (?) Adult, dorsal view. $\times 25$.
Fig. 58. Posterior antenna. $\times 125$.

Plate XIV.
Pseudunthessins propinques, n. sp.

Fig. 1. Anterior foot-jaw. $\times 190$.
2. Posterior foot-jaw, male. $\times 53$.
3. Foot of fourth pair of swimming-feet. $\times 135$.
4. Foot of fifth pair. $\times 127$.

Saphirella abyssicola, n. sp.

Fig. 5. Anterior antenna. $\times 125$.
6. Mandible. $\times 190$.
7. Maxilla. $\times 15$ 。

Fig. 8. Antcrior foot-jaw. $\times 190$.
9. Posterior foot-jaw. $\times 170$.
10. Foot of first pair of swimming-fcet. $\times 95$. Artrotrogus abyssicolus, 1. sp.

Fig. 11. Female, dorsal view. $\times 33$.
12. Anterior antenna. $\times 127$.
13. Posterior antenna. $\times 135$.
14. Mandible. \times 253.
15. Anterior foot-jaw. $\times 152$.

Fig. 16. Posterior foot-jaw. $\times 152$.
17. Foot of first pair of swimming-feet. $\times 100$.
18. Foot of fourth pair of swimming-feet. $\times 95$.

Caligns Murrayames, n. sp.
Fig. 19. Adult, ventral riew. $\times 17$.
Caligus beagoensis, n. sp.
Fig. 20. Adult, rentral view. $\times 19$.
(?) Caligns Tlıymni, Dana.
Fig. 21. Adult, ventral view. $\times 8$.
Caligus dubius, n. sp.
Fig. 22. Adult, ventral view. $\times 19.5$.
Nogayus calirlus, Dana.
Fig. 23. Adult, ventral view. $\times 7 \cdot 5$.

Pontopsyllus elomgatus, n. g. et sp.

Fig. 24. Adult, dorsal view. \times ? 0 .
25. Anterior antenna. $\times 135$.
26. Posterior antemı. $\times 84$.
27. Mandible (m.) and maxilla (mx.). $\times 190$.
28. One of the foot-jaws. $\times 125$.

Fig. 29. Foot of fourth pair of swimming-feet. $\times 9$).
30. (?) Immature form; (s.) sucking-disk. $\times 60$.

Cypria atlantica, 11. sp.
Fig. 31. Shell seen from the side. $\times 10$.
32. Shell seen from above. $\times 40$.

Fig. 33. Sliell seen from the side (young). $\times 16$.

Phlyctenophora africrma, n. sp.
Fig. 34. Shell seen from the side. $\times 27 . \quad \mid$ Fig. 35. Shell seen from above. $\times 27$.

Pontocypris trigonelle, G. O. Sars.
Fig. 36. Shell seen from the side. $\times 27 . \quad \mid \quad$ Fig. 37. Shell seen from above. $\times 27$.

Pontocypris subreniformis, 11. sp.
Fig. 38. Shell seen from the side. $\times 4.1$. Fig. 39. Shell seen from above. $\times 11$.

Bairdia inoruata, n. sp.
Fig. 40. Shell seen from the side. $\times 37 . \quad \mid \quad$ Fig. 41. Shell seen from above. $\times 37$.
Cythere multicava, n. sp.
Fig. 12. Shell seen from the side. $\times 32 . \quad \mid \quad$ Fig. 43 . Shell seen from above. $\times 32$.
Cythere sculptilis, 11. sp.
Fig. 44. Shell seen from the side. $\times 48 . \quad$ Fig. 45. Shell seen from above. $\times 48$.
Cythere rimosa, n. sp.
Fig. 46. Shell seen from the side. $\times 40$. \mid Fig. 47. Shell seen from above. $\times 40$.
Cythere thalassica, n. sp.
Fig. 48. Shell seen from the side. $\times 30$. Fig. 49. Shell seen from above. $\times 30$.
Cythere venusta, n. sp.
Fig. 50. Shell seen from the side. $\times 28.5 . \quad \mid \quad$ Fig. 51 . Shell seen from above. $\times 28.5$.
Cytherura simulans, n. sp.
Fig. 52. Shell seen from the side. $\times 54 . \quad \mid \quad$ Fig. 53. Shell seen from above. $\times 54$.
Cytheropteron tritobites, Brady.
Fig. 51. Shell seen from the side. $\times 10 \%$. | Fig. 55 . Shell seen from above. $\times 10.5$.
Asterope squamiger, n. sp.
Fig. 56. Shell seen from the side. $\times 2$. $\quad \mid \quad$ Fig. 57. Shell seen from above. $\times 22$.
Sarsiella Jhurrayana, n. sp.
Fig. 58. Shell seen from the side. $\times 27$.

Plate X^{\prime}.

Fig. 1. Halocypris elongata, n. sp. Shell seen from the side. $\times 8 \cdot 5$.
2. $, \quad, \quad$ n. sp. Shell seen from above. $\times 8.5$.
3. , torosa, n. sp. Shell scen from the side. $\times \pi$.
4. ," n. sp. Shell secn from above. $\times 7$.
5. ", aculecta, 11. sp. Shell seen from the side. $\times 30$.
6. ", " sp. Shell seen from above. $\times 30$.
7. " pumict, n. sp. Shell seen from the side. $\times 39$.
8. ", n. sp. Shell secn from above. $\times 3$.
9. Cytherclla africana, n. sp. Shell seen from the side. $\times 28.5$.
10. \quad, \quad n. sp. Shell seen from above. $\times 285$.
11. " pumila, n. sp. Shell seen l'rom the side. $\times 40$.
12. \quad, \quad n. sp. Shell secn from above. $\times 40$.
13. Cythere multicara, n. sp. Antennule. $\times 95$.
14. Asterope squamiger, n. sp. Antemmle. $\times 54$.
15. Cythere multicava, n. sp. Antenna. $\times 95$.

Fig. 16. Cyprian atlamica. Shell strneture highly magnified.
17. Phlyetenophora africana, 11. sp. One of the antenmules. $\times 95$.
$18 . \quad, \quad$, 1. sp. One of the antenme. $\times 127$.
19. " " n. sp. The post-abdomen. $\times 95$.
20. Cypria atlantica, n. sp. One of the antenme. $\times 125$.
21. ," \quad, \quad i. sp. One of the antemmes. $\times 9.5$.
29. Asterope squamiger, n. sp. One of the antenne. $\times 51$.
$\therefore 3 . \quad, \quad$, \quad. sp. The post-abdomen. \times 召 7.
2t. Sarsiella Murayuna, in. sp. One of the antenmes. $\times 54$.
ㄹ.5. Cypria atlentica, n. sp. The post-abdomen. $\times 12$.
26. Asterope squamiger, $11 . \mathrm{sp}$. One of the first maxille. $\times 5$.
:2\%. Halocymis clongatu, $11 . \operatorname{sp}$. One of the antemie.
28. Sursiella Merrayana, n. sp. Ovigerous fout. $\times 190$.
:9. ", " \quad, sp. One of the antemite. $\times 80$.
30. Halocypris elongate, 11. sp. One of the antemmules.
31. Sarsiella Murrayame, n.sp. The post-abdomen. $\times 12 \%$.
32. Halocypris torosa, 11. sp. One ol the antennules. $\times 13$.
33. " aculeatu, n. sp. One of the imtemules (female). $\times 5$. .
34. , ", n. sp. One of the antemas. $\times \stackrel{2}{7}$.
35. ", torosa, 1n. sp. First fuot. $\times 13$.
36. Cytherella africana, n. sp. One of the anterior antennas. $\times 95$.
37. Halocypris torvsa, n. sp. One of the antenna. $\times 13$.
38. " acmleate, n. sp. One of the antenumles (male). $\times 40$.
39. $\quad: \quad$ punicu, n. sp. One of the antemules. $\times 54$.
40. ", " \quad. s . One of the antennse. $\times 54$.
41. Cytherella africana, n. sp. One of the pusterior antenne. $\times 95$.
$42 . \quad, \quad$, n.sp. The postabdomen. $\times 95$.

Envers - st insl =. \quad r...

[^0]: * Mayer, Mittheil. zool. Stat. Neap. ii. (1881) p. 1; Journ. Roy. Micr. Soc. n. s. ii. (1882) p. 866.

[^1]: * Foster and Balfonr, Embryol.
 † Journ. Roy. Micr. Noc. n. s. ii. (1882) p. ©67.
 \ddagger Mittheil. zool. Stat. Neap. 1881, p. 5.
 § Zool. Auzeig. 1sis, 1. 79.
 || La Biol. Cellulaire, p. 95.

[^2]: * Zeitschr. wiss. Zool. xrii. (1867) p. 379.
 † Zool. Anzcig. 1881, p. 575.
 \ddagger Zeitschr, wiss. Zool. xxx. p. 56s.

[^3]: * Su, hirinullu is now known to be the male form of Copitia, of which there are seweral species.

[^4]: * "Dieser" (the long basal joint of the anterior antennæ) "trägt cine kräftige, zweiseitig befiederte, gelb pigmentirte Borste." Claus, loc. cil.

[^5]: * From the long slender fifth foot.

[^6]: * This is probably the Scolecithrix ubyssulis of Giesbrecht; but, as there appear to be some differences between his

[^7]: deseription and figures and the description and figures given in this Report, I leave the 'Buccancer' species as origiually deseribed.

[^8]: * "Лرud入c, a bundle or sheaf, and̀ фéper", to carry.

[^9]: * This reference is to the description and drawings of Euchutu Hessei in the "Challenger 'Copepola, as no Euchetet agreeing with these was obtained in the "Buccaneer " eollections.

[^10]: * The basal portions only of the anterior antenne of all the females, and of tho left antenna of all the males, remain intact; they were broken off, mustly, at the end of the eighth joint: but, judging from the number of joints in the male right antenna, the fomale antenna probably consist of twenty-two or twenty-three juints.

[^11]: * "Das basale Glied tragt im weiblichen Geschlochte cine befiederte Borste," Claus, loc. cil. p. 189.

[^12]: * Brit. Copep. vol. ii. pl. lxxsii. fig. 4.

[^13]: * θ arquatés, wonderful; $\psi \dot{\text { én }}$,

[^14]: * Note by Mr. Rattray.-"Appi is a Hlourishing village, with three French factories. It is the nearest port to the inland town of Porto Noro, and communicates with it by a lagoon. The surf at Appi is rery heary, and it is impossible to land except in a native boat built for that purpose. The boats are manned by about sixteen negroes and propelled by paddles. The beach is steep and sandy."

