Digitized for Microsoft Corporation by the Internet Archive in 2008.

From University of Toronto.
May be used for non-commercial, personal, research, or educational purposes, or any fair use. May not be indexed in a commercial service.

REP0RT

ON THE

ZOOLOGICAL COLLECTIONS

MADE IN THE

INDO-PACIFIC OCEAN

DURISG THE

VOYAGE OF H.IIS. 'ALERT' 1881-2.

$$
s+{ }^{+\infty}
$$

LONDON:
PRINTED BY ORDER OF THE TRUSTEES.
1884.

PRINTED BY TAYLOR AND FRANCIS,
RED LION COURT, FLEET STREET.

$$
\begin{aligned}
& 5246 \\
& \text {-hmialar GL } \\
& 5
\end{aligned}
$$

Summary of the voyage.... By Dr. R. W. Coppinger.
mamphaLIa By O. Thoasas.
AVES By R. B. Sharpe.
reptilia, Batrachia, Pisces. By A. Gunther.
MOLLUSCA By E. A. Sarith.
ECHINODERMATA By F. J. Bell.
ORUSTACEA By E. J. Miers.
COLEOPTERA By C. O. Waterhouse.
LEPIDOPTERA By A. G. Butler.
ALCYONARIA AND SPONGIDA. By S. O. Ridiey.

Digitized by Microsoft ${ }^{(8)}$

PREFACE.

Tur zoological collections made during the Surveying-voyage of H.M.S. 'Alert' in the years 1878-82, under the command of Capt. Sir G. Nares and his successor Capt. J. Maclear, wero presented by the Lords Commissioners of the Admiralty to the Trustees of the British Museum.

A narrative of the royage has been given by Staff-Surgeon R. W. Coppinger, in his work 'Cruise of the 'Alert' (London, 1883, Svo).

The principal parts of the Survey, and consequently the Collections, fall into three distinct sections, viz.:-1, that of the Southern extremity of the American continent; 2, that of the coasts of North-eastern Australia and Torres Straits : and 3 , that of the groups of Oceanic Islands in the Western Indian Ocean, situated between the Seychelles and Madagascar.

The first of theso collections has already been reported upou in Proc. Zool. Soc. 1881; but the two others surpass it so much in extent and importance as to be quite beyond the scope of a periodical publication, and therefore the Trustees considered it best that a full account of them should bo prepared in the form of a separate work. With the exception of the 'Challenger' Expedition, none of the recent voyages has contributed so much to our knowledge of the Littoral Invertebrate Fauna of the IndoPacific Ocean as that of the 'Alert.' Irrespective of a number of specimens set aside as duplicates, not less than 3700 , referable to 1300 species, were incorporated in the National Collection; and Digitized by Microsoft (®)
of these more than one third (490) were new additions, if not to science, at any rate to the Muscum.

The best thanks of zoologists are due to the Lords of the Admiralty, to the late Hydrographer, Capt. Sir F. Evans, K.C.B., and to tho Commanders of the 'Alert,' from whom Dr. Coppinger roceived every encouragoment in the prosecution of his zoological work.

Finally, although the following pages are by themselves a lasting testimony to the great service rendered by Dr. Coppinger to the National Museum and to the cause of science, I must not allow this opportunity to pass without duly acknowledging the energy and skill with which he performed this work. The collections were made with singular judgment, the specimens (many of them most fragile and delicate) preserved, labelled, and packed with the greatest care ; and, beside, full lists were prepared by him giving additional, and in many cases most valuable, information. When we bear in mind that all this work was done in the leisure hours which Dr. Coppinger could spare from his strietly official duties, we may be encouraged in the hope that on future occasions similar advantage will be taken of the opportunity which a voyage of Survey offers to a man of science.
The colleetions were worked out immediately after their arrival; but the completion of this Report was eonsiderably delayed by the removal of the Department from Bloomsbury to South Kensington.

ALBERT GÜNTHER,
British Museum, June 20, 188t.

SYSTEMATIC INDEX.

SUMMARY OF THE VOYAGE. By R, W. Coppinger.
(page 1.)

Part I.

THE COLLECTIONS FROM MELANESIA.

mamnalla. By Oldfield Thomas.

1. Sknll of Tage 5. Cranium of Mallicollo Is- lander 8
2. Skull of Banks Islander 8
3. Skull of Banks Islander 9
4. Calvaria of Fijian 9
5. Cranium of Fijian 10
6. Skull of Torres-Straits 6
7. Cranium of Solomon Is- Iander 7
8. Cranium of Mallicollo Is- lander 7
BIrdS. By R. Bowdlfr Shabpe.
Cerchneis1. cenchroides, V. \& H. .. 11
Ninox
9. peninsularis, Salvad. 11
Corvus
10. coronoides, $V . \& H$. 12
Oriolus
11. flavicinctus, Kïng 12
Sphecotheres5. flaviventris, Gould 12
Chibia
12. bracteata, Gould 12
Grallina7. picata, Lath.12
Pinarolestes
8, rufigaster, Gould 13
Gratealus
9, hypoleucus, Gould 13
13. melanops, Lath. 13
Cracticus
Pago
14. nigrigularis, Gould
15. nigrigularis, Gould 15 15
Pachycephala 24. melanura, Gould 15
16. rufiventris, Lath. 17
Cinnyris 26. frenata, Mïll. 17
Myzomela
17. obscara, Gould 17
Zosterops
18. albiventer, Reichienb. 17
19. luten, Gould 18
Manorhina
20. garrula, Lath. 18
Stigmatops
21. ocularis, Gould 18
22. subocularis, Goudd 18
Ptilotis
23. notata, Gould. 19
24. lewinii, Sroains 20
25. fasciogularis, Gould 20
26. flava, Gould 20
27. unicolor, Gould 20
Philemon
28. axgenticeps, Gould 20
29. buceroides, Sucains. 20
30. citreogularis, Gould 20
Dicreum
31. hirundinaceum, Shao 21
Petrochelidon
32. nipricans, V. 21
Donacicola
33. castaneothorax, Gould . . 21Artamis
34. lencorhynchns, L 21
Pitta
35. simillima, Gould 21
Merops
36. ornatus, Lath. 21
Dacelo
37. gigas, Bold. 21
38. leachii, Tig. S. H. 21
IIalcyon
39. sanctus, Tig. \&. H. 24
40. macleayi, $J . S \cdot S$. 24
41. sordidus, Gould 24
REPTILIA, BATRACIIA, AND PISCES, By Albert Genther.
Chelonia viridis 29
Varanns goaldii, Gray 29

- timorensis, Gray. 29
—— prasinus, Mill. işiti30029)Lialis burtonii, Gray29
Gyunodactylns platurus, Shime 29
Diemenia torquata, Gthr. 29
Hyla corulea, White
Page Page
29 | Hyla dolichopsis, Cope 29
Trachynotus coppingeri, sp, n. 29
Branchiostoma bassanum, sp. n. 31
Syngnathus trachypomn, sp. n 30
Doryichthys serinlis, sp. 1. 30
Branchiostomn elongatum,
- belcheri, Gray 32
- cariboum, Sundev. 32
- lanceolatum, Pall. 32
Sindeo. 31
- cultellum, P'trs. 32
MolıLUSCA. By Edgar A. Smith.
Nassa

27. coronata, Brug. 48

Cieplalopoda.

Octopus

1. polyzenin, Gray
2. polyzenin, Gray
3. polyzenin, Gray
4. polyzenin, Gray
5. polyzenin, Gray
6. polyzenin, Gray
7. polyzenin, Gray
8. polyzenin, Gray
9. polyzenin, Gray
10. polyzenin, Gray
11. polyzenin, Gray
12. polyzenin, Gray
13. polyzenin, Gray
14. polyzenin, Gray
15. polyzenin, Gray
16. polyzenin, Gray
17. polyzenin, Gray
18. polyzenin, Gray
19. polyzenin, Gray
20. polyzenin, Gray
21. polyzenin, Gray
22. polyzenin, Gray
23. polyzenin, Gray
24. polyzenin, Gray
25. polyzenin, Gray
26. polyzenin, Gray
27. polyzenin, Gray
28. polyzenin, Gray
29. polyzenin, Gray
30. polyzenin, Gray
31. polyzenin, Gray
32. polyzenin, Gray
33. polyzenin, Gray
34. polyzenin, Gray
35. polyzenin, Gray
36. polyzenin, Gray
37. polyzenin, Gray 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
38. tencbricts, sp. n.
39. tencbricts, sp. n.
40. tencbricts, sp. n.
41. tencbricts, sp. n.
42. tencbricts, sp. n.
43. tencbricts, sp. n.
44. tencbricts, sp. n.
45. tencbricts, sp. n.
46. tencbricts, sp. n.
47. tencbricts, sp. n.
48. tencbricts, sp. n.
49. tencbricts, sp. n.
50. tencbricts, sp. n.
51. tencbricts, sp. n.
52. tencbricts, sp. n.
53. tencbricts, sp. n.
54. tencbricts, sp. n.
55. tencbricts, sp. n.
56. tencbricts, sp. n.
57. tencbricts, sp. n.
58. tencbricts, sp. n.
59. tencbricts, sp. n.
60. tencbricts, sp. n.
61. tencbricts, sp. n.
62. tencbricts, sp. n.
63. tencbricts, sp. n.
64. tencbricts, sp. n.
65. tencbricts, sp. n.
66. tencbricts, sp. n.
67. tencbricts, sp. n.
68. tencbricts, sp. n.
69. tencbricts, sp. n.
70. tencbricts, sp. n.
71. tencbricts, sp. n.
72. tencbricts, sp. n.
73. tencbricts, sp. n.
74. tencbricts, sp. n. 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
75. maculosis, Moyle
76. maculosis, Moyle
77. maculosis, Moyle
78. maculosis, Moyle
79. maculosis, Moyle
80. maculosis, Moyle
81. maculosis, Moyle
82. maculosis, Moyle
83. maculosis, Moyle
84. maculosis, Moyle
85. maculosis, Moyle
86. maculosis, Moyle
87. maculosis, Moyle
88. maculosis, Moyle
89. maculosis, Moyle
90. maculosis, Moyle
91. maculosis, Moyle
92. maculosis, Moyle
93. maculosis, Moyle
94. maculosis, Moyle
95. maculosis, Moyle
96. maculosis, Moyle
97. maculosis, Moyle
98. maculosis, Moyle
99. maculosis, Moyle
100. maculosis, Moyle
101. maculosis, Moyle
102. maculosis, Moyle
103. maculosis, Moyle
104. maculosis, Moyle
105. maculosis, Moyle
106. maculosis, Moyle
107. maculosis, Moyle
108. maculosis, Moyle
109. maculosis, Moyle
110. maculosis, Moyle
111. maculosis, Moyle 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36

Gastropoda.

Conus

1. lizardensis, Crosse
2. lizardensis, Crosse
3. lizardensis, Crosse
4. lizardensis, Crosse
5. lizardensis, Crosse
6. lizardensis, Crosse
7. lizardensis, Crosse
8. lizardensis, Crosse
9. lizardensis, Crosse
10. lizardensis, Crosse
11. lizardensis, Crosse
12. lizardensis, Crosse
13. lizardensis, Crosse
14. lizardensis, Crosse
15. lizardensis, Crosse
16. lizardensis, Crosse
17. lizardensis, Crosse
18. lizardensis, Crosse
19. lizardensis, Crosse
20. lizardensis, Crosse
21. lizardensis, Crosse
22. lizardensis, Crosse
23. lizardensis, Crosse
24. lizardensis, Crosse
25. lizardensis, Crosse
26. lizardensis, Crosse
27. lizardensis, Crosse
28. lizardensis, Crosse
29. lizardensis, Crosse
30. lizardensis, Crosse
31. lizardensis, Crosse
32. lizardensis, Crosse
33. lizardensis, Crosse
34. lizardensis, Crosse
35. lizardensis, Crosse
36. lizardensis, Crosse
37. lizardensis, Crosse 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
38. aculeiformis, Reeve
39. aculeiformis, Reeve
40. aculeiformis, Reeve
41. aculeiformis, Reeve
42. aculeiformis, Reeve
43. aculeiformis, Reeve
44. aculeiformis, Reeve
45. aculeiformis, Reeve
46. aculeiformis, Reeve
47. aculeiformis, Reeve
48. aculeiformis, Reeve
49. aculeiformis, Reeve
50. aculeiformis, Reeve
51. aculeiformis, Reeve
52. aculeiformis, Reeve
53. aculeiformis, Reeve
54. aculeiformis, Reeve
55. aculeiformis, Reeve
56. aculeiformis, Reeve
57. aculeiformis, Reeve
58. aculeiformis, Reeve
59. aculeiformis, Reeve
60. aculeiformis, Reeve
61. aculeiformis, Reeve
62. aculeiformis, Reeve
63. aculeiformis, Reeve
64. aculeiformis, Reeve
65. aculeiformis, Reeve
66. aculeiformis, Reeve
67. aculeiformis, Reeve
68. aculeiformis, Reeve
69. aculeiformis, Reeve
70. aculeiformis, Reeve
71. aculeiformis, Reeve
72. aculeiformis, Reeve
73. aculeiformis, Reeve
74. aculeiformis, Reeve 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36

Terebra

3. exigua, Desh.
4. exigua, Desh.
5. exigua, Desh.
6. exigua, Desh.
7. exigua, Desh.
8. exigua, Desh.
9. exigua, Desh.
10. exigua, Desh.
11. exigua, Desh.
12. exigua, Desh.
13. exigua, Desh.
14. exigua, Desh.
15. exigua, Desh.
16. exigua, Desh.
17. exigua, Desh.
18. exigua, Desh.
19. exigua, Desh.
20. exigua, Desh.
21. exigua, Desh.
22. exigua, Desh.
23. exigua, Desh.
24. exigua, Desh.
25. exigua, Desh.
26. exigua, Desh.
27. exigua, Desh.
28. exigua, Desh.
29. exigua, Desh.
30. exigua, Desh.
31. exigua, Desh.
32. exigua, Desh.
33. exigua, Desh.
34. exigua, Desh.
35. exigua, Desh.
36. exigua, Desh.
37. exigua, Desh.
38. exigua, Desh.
39. exigua, Desh. 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37

Pleurotoma

4. torresiana, sp. n.
5. torresiana, sp. n.
6. torresiana, sp. n.
7. torresiana, sp. n.
8. torresiana, sp. n.
9. torresiana, sp. n.
10. torresiana, sp. n.
11. torresiana, sp. n.
12. torresiana, sp. n.
13. torresiana, sp. n.
14. torresiana, sp. n.
15. torresiana, sp. n.
16. torresiana, sp. n.
17. torresiana, sp. n.
18. torresiana, sp. n.
19. torresiana, sp. n.
20. torresiana, sp. n.
21. torresiana, sp. n.
22. torresiana, sp. n.
23. torresiana, sp. n.
24. torresiana, sp. n.
25. torresiana, sp. n.
26. torresiana, sp. n.
27. torresiana, sp. n.
28. torresiana, sp. n.
29. torresiana, sp. n.
30. torresiana, sp. n.
31. torresiana, sp. n.
32. torresiana, sp. n.
33. torresiana, sp. n.
34. torresiana, sp. n.
35. torresiana, sp. n.
36. torresiana, sp. n.
37. torresiana, sp. n.
38. torresiana, sp. n.
39. torresiana, sp. n.
40. torresiana, sp. n. 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
41. laterculata, Sow.
42. laterculata, Sow.
43. laterculata, Sow.
44. laterculata, Sow.
45. laterculata, Sow.
46. laterculata, Sow.
47. laterculata, Sow.
48. laterculata, Sow.
49. laterculata, Sow.
50. laterculata, Sow.
51. laterculata, Sow.
52. laterculata, Sow.
53. laterculata, Sow.
54. laterculata, Sow.
55. laterculata, Sow.
56. laterculata, Sow.
57. laterculata, Sow.
58. laterculata, Sow.
59. laterculata, Sow.
60. laterculata, Sow.
61. laterculata, Sow.
62. laterculata, Sow.
63. laterculata, Sow.
64. laterculata, Sow.
65. laterculata, Sow.
66. laterculata, Sow.
67. laterculata, Sow.
68. laterculata, Sow.
69. laterculata, Sow.
70. laterculata, Sow.
71. laterculata, Sow.
72. laterculata, Sow.
73. laterculata, Sow.
74. laterculata, Sow.
75. laterculata, Sow.
76. laterculata, Sow.
77. laterculata, Sow. 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38
78. spurca, Hinuls
79. spurca, Hinuls
80. spurca, Hinuls
81. spurca, Hinuls
82. spurca, Hinuls
83. spurca, Hinuls
84. spurca, Hinuls
85. spurca, Hinuls
86. spurca, Hinuls
87. spurca, Hinuls
88. spurca, Hinuls
89. spurca, Hinuls
90. spurca, Hinuls
91. spurca, Hinuls
92. spurca, Hinuls
93. spurca, Hinuls
94. spurca, Hinuls
95. spurca, Hinuls
96. spurca, Hinuls
97. spurca, Hinuls
98. spurca, Hinuls
99. spurca, Hinuls
100. spurca, Hinuls
101. spurca, Hinuls
102. spurca, Hinuls
103. spurca, Hinuls
104. spurca, Hinuls
105. spurca, Hinuls
106. spurca, Hinuls
107. spurca, Hinuls
108. spurca, Hinuls
109. spurca, Hinuls
110. spurca, Hinuls
111. spurca, Hinuls
112. spurca, Hinuls
113. spurca, Hinuls
114. spurca, Hinuls 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
115. gracilenta, Reeve, var.
116. gracilenta, Reeve, var.
117. gracilenta, Reeve, var.
118. gracilenta, Reeve, var.
119. gracilenta, Reeve, var.
120. gracilenta, Reeve, var.
121. gracilenta, Reeve, var.
122. gracilenta, Reeve, var.
123. gracilenta, Reeve, var.
124. gracilenta, Reeve, var.
125. gracilenta, Reeve, var.
126. gracilenta, Reeve, var.
127. gracilenta, Reeve, var.
128. gracilenta, Reeve, var.
129. gracilenta, Reeve, var.
130. gracilenta, Reeve, var.
131. gracilenta, Reeve, var.
132. gracilenta, Reeve, var.
133. gracilenta, Reeve, var.
134. gracilenta, Reeve, var.
135. gracilenta, Reeve, var.
136. gracilenta, Reeve, var.
137. gracilenta, Reeve, var.
138. gracilenta, Reeve, var.
139. gracilenta, Reeve, var.
140. gracilenta, Reeve, var.
141. gracilenta, Reeve, var.
142. gracilenta, Reeve, var.
143. gracilenta, Reeve, var.
144. gracilenta, Reeve, var.
145. gracilenta, Reeve, var.
146. gracilenta, Reeve, var.
147. gracilenta, Reeve, var.
148. gracilenta, Reeve, var.
149. gracilenta, Reeve, var.
150. gracilenta, Reeve, var.
151. gracilenta, Reeve, var. 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
152. axis, Reoce
153. axis, Reoce
154. axis, Reoce
155. axis, Reoce
156. axis, Reoce
157. axis, Reoce
158. axis, Reoce
159. axis, Reoce
160. axis, Reoce
161. axis, Reoce
162. axis, Reoce
163. axis, Reoce
164. axis, Reoce
165. axis, Reoce
166. axis, Reoce
167. axis, Reoce
168. axis, Reoce
169. axis, Reoce
170. axis, Reoce
171. axis, Reoce
172. axis, Reoce
173. axis, Reoce
174. axis, Reoce
175. axis, Reoce
176. axis, Reoce
177. axis, Reoce
178. axis, Reoce
179. axis, Reoce
180. axis, Reoce
181. axis, Reoce
182. axis, Reoce
183. axis, Reoce
184. axis, Reoce
185. axis, Reoce
186. axis, Reoce
187. axis, Reoce
188. axis, Reoce 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
189. arafurensis, sp. 1.
190. arafurensis, sp. 1.
191. arafurensis, sp. 1.
192. arafurensis, sp. 1.
193. arafurensis, sp. 1.
194. arafurensis, sp. 1.
195. arafurensis, sp. 1.
196. arafurensis, sp. 1.
197. arafurensis, sp. 1.
198. arafurensis, sp. 1.
199. arafurensis, sp. 1.
200. arafurensis, sp. 1.
201. arafurensis, sp. 1.
202. arafurensis, sp. 1.
203. arafurensis, sp. 1.
204. arafurensis, sp. 1.
205. arafurensis, sp. 1.
206. arafurensis, sp. 1.
207. arafurensis, sp. 1.
208. arafurensis, sp. 1.
209. arafurensis, sp. 1.
210. arafurensis, sp. 1.
211. arafurensis, sp. 1.
212. arafurensis, sp. 1.
213. arafurensis, sp. 1.
214. arafurensis, sp. 1.
215. arafurensis, sp. 1.
216. arafurensis, sp. 1.
217. arafurensis, sp. 1.
218. arafurensis, sp. 1.
219. arafurensis, sp. 1.
220. arafurensis, sp. 1.
221. arafurensis, sp. 1.
222. arafurensis, sp. 1.
223. arafurensis, sp. 1.
224. arafurensis, sp. 1.
225. arafurensis, sp. 1. 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

Cythara

10. cylindrica, Reeve, var.
11. cylindrica, Reeve, var.
12. cylindrica, Reeve, var.
13. cylindrica, Reeve, var.
14. cylindrica, Reeve, var.
15. cylindrica, Reeve, var.
16. cylindrica, Reeve, var.
17. cylindrica, Reeve, var.
18. cylindrica, Reeve, var.
19. cylindrica, Reeve, var.
20. cylindrica, Reeve, var.
21. cylindrica, Reeve, var.
22. cylindrica, Reeve, var.
23. cylindrica, Reeve, var.
24. cylindrica, Reeve, var.
25. cylindrica, Reeve, var.
26. cylindrica, Reeve, var.
27. cylindrica, Reeve, var.
28. cylindrica, Reeve, var.
29. cylindrica, Reeve, var.
30. cylindrica, Reeve, var.
31. cylindrica, Reeve, var.
32. cylindrica, Reeve, var.
33. cylindrica, Reeve, var.
34. cylindrica, Reeve, var.
35. cylindrica, Reeve, var.
36. cylindrica, Reeve, var.
37. cylindrica, Reeve, var.
38. cylindrica, Reeve, var.
39. cylindrica, Reeve, var.
40. cylindrica, Reeve, var.
41. cylindrica, Reeve, var.
42. cylindrica, Reeve, var.
43. cylindrica, Reeve, var.
44. cylindrica, Reeve, var.
45. cylindrica, Reeve, var.
46. cylindrica, Reeve, var. 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

Murex

11. tenuispira, Lam.
12. tenuispira, Lam.
13. tenuispira, Lam.
14. tenuispira, Lam.
15. tenuispira, Lam.
16. tenuispira, Lam.
17. tenuispira, Lam.
18. tenuispira, Lam.
19. tenuispira, Lam.
20. tenuispira, Lam.
21. tenuispira, Lam.
22. tenuispira, Lam.
23. tenuispira, Lam.
24. tenuispira, Lam.
25. tenuispira, Lam.
26. tenuispira, Lam.
27. tenuispira, Lam.
28. tenuispira, Lam.
29. tenuispira, Lam.
30. tenuispira, Lam.
31. tenuispira, Lam.
32. tenuispira, Lam.
33. tenuispira, Lam.
34. tenuispira, Lam.
35. tenuispira, Lam.
36. tenuispira, Lam.
37. tenuispira, Lam.
38. tenuispira, Lam.
39. tenuispira, Lam.
40. tenuispira, Lam.
41. tenuispira, Lam.
42. tenuispira, Lam.
43. tenuispira, Lam.
44. tenuispira, Lam.
45. tenuispira, Lam.
46. tenuispira, Lam.
47. tenuispira, Lam. 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
48. coppingeri, sp. 1 .
49. coppingeri, sp. 1 .
50. coppingeri, sp. 1 .
51. coppingeri, sp. 1 .
52. coppingeri, sp. 1 .
53. coppingeri, sp. 1 .
54. coppingeri, sp. 1 .
55. coppingeri, sp. 1 .
56. coppingeri, sp. 1 .
57. coppingeri, sp. 1 .
58. coppingeri, sp. 1 .
59. coppingeri, sp. 1 .
60. coppingeri, sp. 1 .
61. coppingeri, sp. 1 .
62. coppingeri, sp. 1 .
63. coppingeri, sp. 1 .
64. coppingeri, sp. 1 .
65. coppingeri, sp. 1 .
66. coppingeri, sp. 1 .
67. coppingeri, sp. 1 .
68. coppingeri, sp. 1 .
69. coppingeri, sp. 1 .
70. coppingeri, sp. 1 .
71. coppingeri, sp. 1 .
72. coppingeri, sp. 1 .
73. coppingeri, sp. 1 .
74. coppingeri, sp. 1 .
75. coppingeri, sp. 1 .
76. coppingeri, sp. 1 .
77. coppingeri, sp. 1 .
78. coppingeri, sp. 1 .
79. coppingeri, sp. 1 .
80. coppingeri, sp. 1 .
81. coppingeri, sp. 1 .
82. coppingeri, sp. 1 .
83. coppingeri, sp. 1 .
84. coppingeri, sp. 1 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
85. acanthostephes, Wutson
86. acanthostephes, Wutson
87. acanthostephes, Wutson
88. acanthostephes, Wutson
89. acanthostephes, Wutson
90. acanthostephes, Wutson
91. acanthostephes, Wutson
92. acanthostephes, Wutson
93. acanthostephes, Wutson
94. acanthostephes, Wutson
95. acanthostephes, Wutson
96. acanthostephes, Wutson
97. acanthostephes, Wutson
98. acanthostephes, Wutson
99. acanthostephes, Wutson
100. acanthostephes, Wutson
101. acanthostephes, Wutson
102. acanthostephes, Wutson
103. acanthostephes, Wutson
104. acanthostephes, Wutson
105. acanthostephes, Wutson
106. acanthostephes, Wutson
107. acanthostephes, Wutson
108. acanthostephes, Wutson
109. acanthostephes, Wutson
110. acanthostephes, Wutson
111. acanthostephes, Wutson
112. acanthostephes, Wutson
113. acanthostephes, Wutson
114. acanthostephes, Wutson
115. acanthostephes, Wutson
116. acanthostephes, Wutson
117. acanthostephes, Wutson
118. acanthostephes, Wutson
119. acanthostephes, Wutson
120. acanthostephes, Wutson
121. acanthostephes, Wutson 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
122. macgillivrayi, Dolw'u
123. macgillivrayi, Dolw'u
124. macgillivrayi, Dolw'u
125. macgillivrayi, Dolw'u
126. macgillivrayi, Dolw'u
127. macgillivrayi, Dolw'u
128. macgillivrayi, Dolw'u
129. macgillivrayi, Dolw'u
130. macgillivrayi, Dolw'u
131. macgillivrayi, Dolw'u
132. macgillivrayi, Dolw'u
133. macgillivrayi, Dolw'u
134. macgillivrayi, Dolw'u
135. macgillivrayi, Dolw'u
136. macgillivrayi, Dolw'u
137. macgillivrayi, Dolw'u
138. macgillivrayi, Dolw'u
139. macgillivrayi, Dolw'u
140. macgillivrayi, Dolw'u
141. macgillivrayi, Dolw'u
142. macgillivrayi, Dolw'u
143. macgillivrayi, Dolw'u
144. macgillivrayi, Dolw'u
145. macgillivrayi, Dolw'u
146. macgillivrayi, Dolw'u
147. macgillivrayi, Dolw'u
148. macgillivrayi, Dolw'u
149. macgillivrayi, Dolw'u
150. macgillivrayi, Dolw'u
151. macgillivrayi, Dolw'u
152. macgillivrayi, Dolw'u
153. macgillivrayi, Dolw'u
154. macgillivrayi, Dolw'u
155. macgillivrayi, Dolw'u
156. macgillivrayi, Dolw'u
157. macgillivrayi, Dolw'u
158. macgillivrayi, Dolw'u 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44
159. axicornis, Lam.
160. axicornis, Lam.
161. axicornis, Lam.
162. axicornis, Lam.
163. axicornis, Lam.
164. axicornis, Lam.
165. axicornis, Lam.
166. axicornis, Lam.
167. axicornis, Lam.
168. axicornis, Lam.
169. axicornis, Lam.
170. axicornis, Lam.
171. axicornis, Lam.
172. axicornis, Lam.
173. axicornis, Lam.
174. axicornis, Lam.
175. axicornis, Lam.
176. axicornis, Lam.
177. axicornis, Lam.
178. axicornis, Lam.
179. axicornis, Lam.
180. axicornis, Lam.
181. axicornis, Lam.
182. axicornis, Lam.
183. axicornis, Lam.
184. axicornis, Lam.
185. axicornis, Lam.
186. axicornis, Lam.
187. axicornis, Lam.
188. axicornis, Lam.
189. axicornis, Lam.
190. axicornis, Lam.
191. axicornis, Lam.
192. axicornis, Lam.
193. axicornis, Lam.
194. axicornis, Lam.
195. axicornis, Lam. 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44
196. cerricornis, Lam.
197. cerricornis, Lam.
198. cerricornis, Lam.
199. cerricornis, Lam.
200. cerricornis, Lam.
201. cerricornis, Lam.
202. cerricornis, Lam.
203. cerricornis, Lam.
204. cerricornis, Lam.
205. cerricornis, Lam.
206. cerricornis, Lam.
207. cerricornis, Lam.
208. cerricornis, Lam.
209. cerricornis, Lam.
210. cerricornis, Lam.
211. cerricornis, Lam.
212. cerricornis, Lam.
213. cerricornis, Lam.
214. cerricornis, Lam.
215. cerricornis, Lam.
216. cerricornis, Lam.
217. cerricornis, Lam.
218. cerricornis, Lam.
219. cerricornis, Lam.
220. cerricornis, Lam.
221. cerricornis, Lam.
222. cerricornis, Lam.
223. cerricornis, Lam.
224. cerricornis, Lam.
225. cerricornis, Lam.
226. cerricornis, Lam.
227. cerricornis, Lam.
228. cerricornis, Lam.
229. cerricornis, Lam.
230. cerricornis, Lam.
231. cerricornis, Lam.
232. cerricornis, Lam. 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45

17, tervitus, Reeve

17, tervitus, Reeve 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45

18. monodon, Sozo.
19. monodon, Sozo.
20. monodon, Sozo.
21. monodon, Sozo.
22. monodon, Sozo.
23. monodon, Sozo.
24. monodon, Sozo.
25. monodon, Sozo.
26. monodon, Sozo.
27. monodon, Sozo.
28. monodon, Sozo.
29. monodon, Sozo.
30. monodon, Sozo.
31. monodon, Sozo.
32. monodon, Sozo.
33. monodon, Sozo.
34. monodon, Sozo.
35. monodon, Sozo.
36. monodon, Sozo.
37. monodon, Sozo.
38. monodon, Sozo.
39. monodon, Sozo.
40. monodon, Sozo.
41. monodon, Sozo.
42. monodon, Sozo.
43. monodon, Sozo.
44. monodon, Sozo.
45. monodon, Sozo.
46. monodon, Sozo.
47. monodon, Sozo.
48. monodon, Sozo.
49. monodon, Sozo.
50. monodon, Sozo.
51. monodon, Sozo.
52. monodon, Sozo.
53. monodon, Sozo.
54. monodon, Sozo. 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46

Fusus

19. hanleyi, Anyas
20. hanleyi, Anyas
21. hanleyi, Anyas
22. hanleyi, Anyas
23. hanleyi, Anyas
24. hanleyi, Anyas
25. hanleyi, Anyas
26. hanleyi, Anyas
27. hanleyi, Anyas
28. hanleyi, Anyas
29. hanleyi, Anyas
30. hanleyi, Anyas
31. hanleyi, Anyas
32. hanleyi, Anyas
33. hanleyi, Anyas
34. hanleyi, Anyas
35. hanleyi, Anyas
36. hanleyi, Anyas
37. hanleyi, Anyas
38. hanleyi, Anyas
39. hanleyi, Anyas
40. hanleyi, Anyas
41. hanleyi, Anyas
42. hanleyi, Anyas
43. hanleyi, Anyas
44. hanleyi, Anyas
45. hanleyi, Anyas
46. hanleyi, Anyas
47. hanleyi, Anyas
48. hanleyi, Anyas
49. hanleyi, Anyas
50. hanleyi, Anyas
51. hanleyi, Anyas
52. hanleyi, Anyas
53. hanleyi, Anyas
54. hanleyi, Anyas
55. hanleyi, Anyas 46

20, heptagonalis, Reeve

20, heptagonalis, Reeve 46

21. cereus, sp. n.
22. cereus, sp. n.
23. cereus, sp. n.
24. cereus, sp. n.
25. cereus, sp. n.
26. cereus, sp. n.
27. cereus, sp. n.
28. cereus, sp. n.
29. cereus, sp. n.
30. cereus, sp. n.
31. cereus, sp. n.
32. cereus, sp. n.
33. cereus, sp. n.
34. cereus, sp. n.
35. cereus, sp. n.
36. cereus, sp. n.
37. cereus, sp. n.
38. cereus, sp. n.
39. cereus, sp. n.
40. cereus, sp. n.
41. cereus, sp. n.
42. cereus, sp. n.
43. cereus, sp. n.
44. cereus, sp. n.
45. cereus, sp. n.
46. cereus, sp. n.
47. cereus, sp. n.
48. cereus, sp. n.
49. cereus, sp. n.
50. cereus, sp. n.
51. cereus, sp. n.
52. cereus, sp. n.
53. cereus, sp. n.
54. cereus, sp. n.
55. cereus, sp. n.
56. cereus, sp. n.
57. cereus, sp. n. 46

Urosalpinx

22. contracta, Reeve
23. contracta, Reeve
24. contracta, Reeve
25. contracta, Reeve
26. contracta, Reeve
27. contracta, Reeve
28. contracta, Reeve
29. contracta, Reeve
30. contracta, Reeve
31. contracta, Reeve
32. contracta, Reeve
33. contracta, Reeve
34. contracta, Reeve
35. contracta, Reeve
36. contracta, Reeve
37. contracta, Reeve
38. contracta, Reeve
39. contracta, Reeve
40. contracta, Reeve
41. contracta, Reeve
42. contracta, Reeve
43. contracta, Reeve
44. contracta, Reeve
45. contracta, Reeve
46. contracta, Reeve
47. contracta, Reeve
48. contracta, Reeve
49. contracta, Reeve
50. contracta, Reeve
51. contracta, Reeve
52. contracta, Reeve
53. contracta, Reeve
54. contracta, Reeve
55. contracta, Reeve
56. contracta, Reeve
57. contracta, Reeve
58. contracta, Reeve 47

Tritonidea

23. eurtisiana, sp. n.
24. eurtisiana, sp. n.
25. eurtisiana, sp. n.
26. eurtisiana, sp. n.
27. eurtisiana, sp. n.
28. eurtisiana, sp. n.
29. eurtisiana, sp. n.
30. eurtisiana, sp. n.
31. eurtisiana, sp. n.
32. eurtisiana, sp. n.
33. eurtisiana, sp. n.
34. eurtisiana, sp. n.
35. eurtisiana, sp. n.
36. eurtisiana, sp. n.
37. eurtisiana, sp. n.
38. eurtisiana, sp. n.
39. eurtisiana, sp. n.
40. eurtisiana, sp. n.
41. eurtisiana, sp. n.
42. eurtisiana, sp. n.
43. eurtisiana, sp. n.
44. eurtisiana, sp. n.
45. eurtisiana, sp. n.
46. eurtisiana, sp. n.
47. eurtisiana, sp. n.
48. eurtisiana, sp. n.
49. eurtisiana, sp. n.
50. eurtisiana, sp. n.
51. eurtisiana, sp. n.
52. eurtisiana, sp. n.
53. eurtisiana, sp. n.
54. eurtisiana, sp. n.
55. eurtisiana, sp. n.
56. eurtisiana, sp. n.
57. eurtisiana, sp. n.
58. eurtisiana, sp. n.
59. eurtisiana, sp. n. 47

Columbella

24. fulgurans, Lam.
25. fulgurans, Lam.
26. fulgurans, Lam.
27. fulgurans, Lam.
28. fulgurans, Lam.
29. fulgurans, Lam.
30. fulgurans, Lam.
31. fulgurans, Lam.
32. fulgurans, Lam.
33. fulgurans, Lam.
34. fulgurans, Lam.
35. fulgurans, Lam.
36. fulgurans, Lam.
37. fulgurans, Lam.
38. fulgurans, Lam.
39. fulgurans, Lam.
40. fulgurans, Lam.
41. fulgurans, Lam.
42. fulgurans, Lam.
43. fulgurans, Lam.
44. fulgurans, Lam.
45. fulgurans, Lam.
46. fulgurans, Lam.
47. fulgurans, Lam.
48. fulgurans, Lam.
49. fulgurans, Lam.
50. fulgurans, Lam.
51. fulgurans, Lam.
52. fulgurans, Lam.
53. fulgurans, Lam.
54. fulgurans, Lam.
55. fulgurans, Lam.
56. fulgurans, Lam.
57. fulgurans, Lam.
58. fulgurans, Lam.
59. fulgurans, Lam.
60. fulgurans, Lam. 47
61. scripta, Lam.
62. scripta, Lam.
63. scripta, Lam.
64. scripta, Lam.
65. scripta, Lam.
66. scripta, Lam.
67. scripta, Lam.
68. scripta, Lam.
69. scripta, Lam.
70. scripta, Lam.
71. scripta, Lam.
72. scripta, Lam.
73. scripta, Lam.
74. scripta, Lam.
75. scripta, Lam.
76. scripta, Lam.
77. scripta, Lam.
78. scripta, Lam.
79. scripta, Lam.
80. scripta, Lam.
81. scripta, Lam.
82. scripta, Lam.
83. scripta, Lam.
84. scripta, Lam.
85. scripta, Lam.
86. scripta, Lam.
87. scripta, Lam.
88. scripta, Lam.
89. scripta, Lam.
90. scripta, Lam.
91. scripta, Lam.
92. scripta, Lam.
93. scripta, Lam.
94. scripta, Lam.
95. scripta, Lam.
96. scripta, Lam.
97. scripta, Lam. 48
98. pardalina, Lam.
99. pardalina, Lam.
100. pardalina, Lam.
101. pardalina, Lam.
102. pardalina, Lam.
103. pardalina, Lam.
104. pardalina, Lam.
105. pardalina, Lam.
106. pardalina, Lam.
107. pardalina, Lam.
108. pardalina, Lam.
109. pardalina, Lam.
110. pardalina, Lam.
111. pardalina, Lam.
112. pardalina, Lam.
113. pardalina, Lam.
114. pardalina, Lam.
115. pardalina, Lam.
116. pardalina, Lam.
117. pardalina, Lam.
118. pardalina, Lam.
119. pardalina, Lam.
120. pardalina, Lam.
121. pardalina, Lam.
122. pardalina, Lam.
123. pardalina, Lam.
124. pardalina, Lam.
125. pardalina, Lam.
126. pardalina, Lam.
127. pardalina, Lam.
128. pardalina, Lam.
129. pardalina, Lam.
130. pardalina, Lam.
131. pardalina, Lam.
132. pardalina, Lam.
133. pardalina, Lam.
134. pardalina, Lam. 48
igyilized
28, thersites, Bruy. 48
135. algida, Recze, var. 48
136. unicolor, Kiener 48
137. suturalis, Aletms, var. 49
Phos
138. scalaroides, Aldams 49
3i3. senticosus, L,, var. 50
Purpura
139. bitubercularis, Kiener,var. 50
\%5. amygdala, Kiener 51
Sistrum
140. undatum, var., Reeve 51
141. tuberculatum, Blaine. 52
Latirus
142. angustus, sp, n. 52
Tubinella
143. armigera, Adams 53
144. spinosa, Adlams 54
Mitra
145. proscissa, Reeve, var. 54
146. peasei, Dohrn 55
147. corrugata, Lam. 55
Voluta
148. volva, Reeve, var. 56
Ranella
149. маиа, L. 56
150. pulchella, Forbes 56
Natica
151. plumbea, Lam. 57
152. limpida, sp. 1 57
153. columnaris, Récluz 57
154. cumingiana, Réchuz 58
Eulima
155. martinii, Adums, var. 58
Strombus
156. campbelli, Giray 58
Terebellum
157. subulatum, Lam. 59
Cyprea
158. arabica, L. 59
159. lynx, L. 59
56 annulus, I. 59
Pape
160. errones, I. 5!)
58, walkeri, Gray 59
Ovula
161. angasi, Addems 59
Littorina
G0. scabra, L. 60
162. filosa, Sow. 60
163. mauritiona, Lam., var. diemonensis 60
Ricella
6\%. Iutea, Quoy \&- Gam. 61
Rissoina
(6) clathrita, Adems 62
65, curtisi, sp. n. 63
Cerithium
164. morus, Lam. 63
165. nigro-baltentum, sp, n. 65
6is. torresi, sp. 11. 06
166. macrostoma, Hizels 66
167. Sasciatum, Brug. 67
168. vertagus, L, 67
72, kochi, Phil. 67
169. granosum, Sov. 68
170. nove-hollandire, Adans 68
Lampania 75. anstralis, Q. \&. G. 98
Pyrazus
171. suleatus, Borve 68
Telescopium
172. fuscum, Schum. 68
Siliquaria
173. anguina, L 68
174. ponderosa, Mörch 68
Narica
175. cancellata, Chenn. 68
Nerita
176. chrysostomn, Récluz 69
177. melanotragus, sp. 11 09
178. costata, Chemu. 70
179. lineata, Chemи. 70
180. squamulata, Le Gillou. 70
86, signata, Mucleay 70
Turbo
181. concinnus, Phil. 70
Trochus
182. coronata, Adums 71
183. speciosa, Akms 71
184. decoratus, Phit. 72
91, rubropunetatus, Adams. 72
185. torresi, sp. n. 72
186. lifuanus, Fischer 18 18
187. Inbio, L. 7
188. zebra, Menke 74
189. clisus, Gould 74
190. atratus, Gin. 74Digitized by
Bankivin
191. picturata, Adams 75
Stomatella
99, cancellata, L゙ruuss 76
Stomatia
192. rubra, Lam. 76
Haliotis
193. asinina, L. 77
Dentalium
194. javanum, Sow. 77
Scutus
103, unguis, \mathbf{L} 77
Fissurella
195. julkesii, Reeve 77
196. singaporensis, Reeve 77
197. quadrindinta, Reeve 78
Chiton
198. jugosus, Gould. 78
108, eurtisiamis, sp. n 78
109, adelaidensis, Revee 79
199. antiquus, Reere 79
200. coppingeri, sp. n. 80
201. spiniger, Sow. 81
202. incanus, Gould 81
203. incisus, Sow, 82
204. costatus, Adems 83
205. asbestoides, sp. I. 83
206. fortiliratus, Reeve. $8+$
118, striatus, Lem. 84
207. burroni, sp, n. 85
Tormatella
208. solidula, L, $\varepsilon 6$
Crlichna 121. arachis, Q. \& G. 86
Atss
209. ${ }^{2}$ naucum, L. 86
Haminea
12\%. cuticulifern, Smith 87
Akera
210. soluta, sp. n. 87
Doridium
211. marmoratum, sp. n 87
Pleurobranchus
212. ancrasi, sp. n. B8
Dolabella
213. rumphii, Cow. 89
Aplysia
214. sparsinotata, sp. n. 89
215. piperata, sp. n. 89
216. denisoni, sp. n. 89
Stylocheilus
217. sp. 90
Miamirn 132. nobilis, Bergh 90
Ceratosoma
M133. tenue Adraham n0
Doris
Page
218. infrapicta, sp, n. 91
Plocamophorus
219. insignis, sp. n. 91
Bornelln
220. digitata, Ad. \& Recve . . 92Oncidium
221. punctatum ?, Q. \&. G. 12
Conchifera.
Teredo
222. antaretica P, ILutton 13
Saxicava
223. arctica, L. 93
Venus
224. Lamellaris, Sehum. 93
225. toreumn, Gould : 3
226. tomesiana, p, n. 94
227. gladstonensis, Augas 94
228. subuodulosa, Hanley \mathscr{H}
Cytherea
229. eoxeni, sp. n. 95
230. albina, Lam. 95
Dosinia
231. histrio, Gm., var. albn 96
232. deshayesii, Alums 96
Circe
233. pectinata, L. 96
234. australis, Sote. 96
235. castreusis, L. nG
Tapes
236. hiantina, Lam. 06
16, malabarica, Chemn. 97
237. variegata, Sow. 97
18, araneosa, Thil. 97
238. textrix, Chemu. 97
Venerupis
239. crenata, Lam. 97
Trapezium
240. vellicatum, Reeve, var, 97
Petricola
2.2. lapicida, Chemm. 08
Psammobia
241. modesta, Desh. 98
242. gracilenta, sp. n. 98
Tellina
243. semen, Hanley 99
Syndosmya
244. elliptica, Sow. 99
Mnetra
245. eximia, Reeve 100
246. producta, Angas, var. 100
247. coppingeri, sp, n. 101
Mactrinula
248. angulifera, Desk. 101bigititized by Microsoft ®
Cardium
249. reevianum, Dunker 101
250. hystrix, Reeve 101
251. sp. јии 102
3.1. maculosum, Wool, var. 102
252. multispinosum, Sov. 102
36, unedo, L $10: 3$
Chama
253. divaricata, Recve 102
254. pulchella, Reare 102
Corbula
255. tunicata, Hiuds 103
256. fortisuleata, Smith 103
257. scaphoides, Reve 103
Lucina
258. ornata, Reeve 103
Diplodonta
259. suberassa, sp. n. 104
260. sublateralis, sp, n. 104
Kellia
261. jacksoniana, sp. n. 105
Scintilla
262. curieri, Desh. 105
263. murantiaca, Desh. 106
264. alberti, sp. n. 107
Crassatella 49. pulchra, Recue 107
Moliola 108
265. glaberrima, Dunker 108
Modiolaria
266. miranda, sp. n. 108
267. varicosa, Gould 109
Lithodomus
268. teres, 1\%il. 109
Area
269. navicularis, Brug 109
270. imbricata, Bray. 110
271. lima, Reeve 110
272. tenebrica, Revve 110
273. symmetrica, Reeve 111
274. tortuosa, L. 111
Leda
(11. darwini, sp. n. 111
Malleus
275. legumen, Reeve 112
Avicula
G4. rufa, Dunker 113
276. smaraglina, Reeve 113
277. zebra, Reerc 113
Melina
278. cumingii, Reeve 113
Crenatula
279. nigrina, Lam. 113
Spondylus
280. multisetosus, Reeve
Page
281. victorie, Soz. 114
Pecton
282. leopardus, Reeve 114
283. singaporinus, Sove. 115
284. dringi, Reeve 115
74, funebris, Reece 116
Amussium
285. pleuronectes
Pago 116
6Lima
286. fragilis, Chemn. 116
Placuna
287. lobata, Sore., var. 116
ECHINODERMATA. By F. Jeffrey Bell.
Echinoidea.
Phyllacanthus
288. annulifera, Lamk. 118
Diadema
289. setosum, Gray 118
Salmacis
290. bicolor, Ayras. 118
291. sulcata, Ayas. 118
292. alexandri, Ayas. 118
Temnopleurus
G. torenmaticus, Leske. 119
293. granulosus, Gray. 119
294. bothryoides, Ayus 119
Echinus
9, angulosus, Leske 121
10, darnleyensis, Woods 121
Tripneustes
295. angulosus, Leske 121
Strongylocentrotus
296. erythrogrammus, Fol. 121
Echinometra
297. lucunter, Leske 122
Fibularia
122
298. volva, Agas.
122
Clypeaster
299. humilis, Leske
年
年
Laganum 122
300. depressum, Ayas.
122
301. decaronale, Less.
,
Eehinonets
302. cyclostomus, Leske 123
Maretia
303. planulata, Lamk. 123
Lovenia
304. elongata, Aray 123
Breynia
305. australasie, Leach 123
Echinocardium
306. australe, Gray 123
Asteroidea.
Asterias
307. calamaria, Guay ifized by 123
308. polyplax, M. \& Tr 124
Echinaster
Echinaster
309. purpureus, Gray 124
Metrodira
310. subulata, Gray 124
Linckia
311. lexignta, Lamk. 124
312. nodosa, Perrier 124
313. marmorata, Mich. 125
314. panciforis, Martens. 126
315. megaloplax, sp. n. 126
316. sp. 127
Anthenea
317. flavescens, Gray 127
Oreaster
318. gracilis, Ltk: 127
13, nodosns, L.
13, nodosns, L. 128 128
319. sp. 128
Stellaster
320. belcheri, Gray 128
321. incei, Gray 128
Pentagonaster
322. coppingeri, sp. n. 128
323. validus, sp. n. 129
Dorigona
324. longinaua, Möbius 130
Asteriua
325. belcheri, Pervier 131
326. calcar, Gray. 131
327. cepheus, $M, \& T r$. 191
328. gunnii, Gray 181
329. regularis, Ferrill 131
330. Drevis, Perrier 131
Patiria
331. crassa, Gray 131
Luidia
332. sp. 132
Astropecten
333. coppingeri, sp. n.. 132
334. polyacanthus, M. \&- Tr. 193
Archaster
335. typicus, M. \&. T. 133
Retaster
Mi 31 insignis, sladen 133

Abstract

\square +

Page

Ophiunomea.

Pectinura

$$
\text { 1. gorgonia, M. \&. Tr. } 134
$$

2. infernalis, M. \&. Tr. .. 134
3. megaloplax, sp, u. 134

Ophiopinax, n, g.
4. stellatus, Ljn. 186

Ophiopeza
5. conjungens, sp. n....... 137

Ophiolepis
G. annulosa, M. \& Tr. 138

Ophioplocus
7. imbricatus, M. \&. Tr. . . 138

Ophiactis
8. sarignii, M. \& Tr. 138

Ophionereis
9. dubia, M. \&. Tr. 138

Ophiocoma
10. brevipes, Peters 139
11. scolopendrina, Agas. .. 140

Ophiarthrum
12. elegans, Peters 140

Ophiothrix
13. fumaria, M. \& Tr. . . . 140
14. ciespitosa, Lyman 141
15. martensi, Lyman 141
16. striolata, Grube 142
17. Ealatere, Ltk. 142
18. ciliaris, $M . \&$ Tr...... 142
19. rotata, Martens 142
20. punctolimbata, Martens. 148
21. Iongipeda, M. \&. Tr: .. 143
22. microplax, sp, n. 143
23. darwini, sp. u. 144
24. melanogramma, sp, n... 145
25. cacaotica, Lyman. 145

Euryale
26. aspera, Lamk, 146

Holothumoidea.
Symapta

1. grisea, Semper 146

Cucumaria
2. maculata, Semper. 146
3. semperi, sp. n. 147

Ocnus
4. sp. 147

Colochirus
5. tuberculosus, Semper . . 147
6. australıs, Ludwig 148
Actinocucumis
$P_{\text {age }}$
7. difficilis, sp. n. 148
Thyone
8, mirabilis (?), Ludwig 149)
9, sacellus, Selonka 149
10. okeni, sp. n. 149
Thyonidium
11. schmeltzii, Ludwig 150
Oreula
12. cucumiformis, Semper 150
Phyllophorus
1.. proteus, sp. n. 150
Stereoderma
14. validum, sp. in. 150
Stichopus
15. variegatus, Semper 151
Holuthuria
16. lineata, Ludwiy 152
17. peregrina, Ludxvig 152
18. modesta (?), Semper 152
19. macleari, sp. n. 152
Crinomea.
Antedon

1. adeonæ, Mäller 156
2. milberti, Miiller 156
3. pinniformis, Carpenter. 156
4. carpenteri, sp. n. 157
5. pumila, sp. n. 157
6. bidens, sp, n. 158
7. loveni, sp. n. 158
8, decipiens, sp. n. 159
9, reginre, sp. n. 160
8. articulata, Miull. 160
9. हyges, sp. n. 160
10. irregularis, sp. n. 161
11. elegans, sp, u. 162
12. briareus, sp. n. 163
13. microdiscus, sp. n. 163
Actinometra
14. solaris, Lami. 164
15. intermedia, sp. n. 166
16. robusta, C'orpenter 167
17. strota, Carpenfer 107
18. cuningii, Miill. 167
19. coppingeri, sp. n. 168
20. jukesi, Carpenter 168
21. parvicirra, Carpenter 168
22. alternans, Carpenter 169
23. pancicirta, sp. n. 169
24. multifida, Müll. 169
25. variabilis, sp. n. 169
26. sp. juy. 170

crustacea. By E. J. Miers.

Page Page
Decapoda.
Brachyura.
Achreus

1. lacertosus, Stimps. 188
2. affinis, sp. n. 188
Camposcia
3. retusa, Latr. 189
Oncinopus
4. aranea, De Haum 190
Menæthius
5. monoceros, Latr. 190
Huenia
G. protens, De Haan 191
Egeria
6. arachnoides, Ramph. .. 191
Chorilibinia
7. gracilipes, Miers 102
Paramithrax
8. coppingeri, Haswell 192
9. aculeatus, vur.n. armatus 193
Hyastenus
10. diacanthus, De FIam 194
11. oryx, A. M.-Edw. 195
12. planasins, Ad. \&. T. 196
13. convexus, sp. n. 196
Naxia
14. serpulifera, M.-Edu 196
Schizophrys
15. aspera, M.-Edu. 197
Peeudomicippa:
16. varians, Miers 197
Nicippa
17. thalia, Herbst 198
18. philyra, Herbst 108
19. curtispina, Hustell 199
Paramicippa
20. spinosa, Stimps. 199
Lambrus
21. longispinus, Miers 109
22. læricarpus, Miers 200
23. lougimanus, L. 200
24. nodosus, Jacg. \& Lucas 200
25. turriger, White 201
26. hoplonotus, var gram- losus, Miers 201
27. harpax, Ad. \& W. 202
Cryptopodia
28. fornicata, Fabr. 003
29. spatulifrons, Miers 203
Gonatonotus
30. pentagonus, Ad. \&- IV.. 204
Euxanthns
9., huonii, Lucas 204
31. tuberculosumply nit 205
Hypocoelus
32. punctatus, sp. n. 206
Atergatis
33. floridus, 1. 207
Lophozozymus
34. epheliticus, L. 207
Galene
35. granulata, sp. n. 208
Halimede?
36. coppingeri, sp. 1. 208
Actiea
37. rüppellii, Kirauss 209
38. areolata, Dana? 209
Banareia
39. inconspicua, sp. n. 210
Xuntho
40. macgillivrayi, sp. n. 211
Oycloxanthus
41. lineatus, A. M.-Edw. 212
Carpilodes
42. venosus, M.-Edto. 213
Leptodius
43. exaratus, M.-Edw. 214
44. lividus, De Ifami 214
Chlorodius
45. niger, Forsk, 215
Chlorodopsis
46. granulatus, Stimps. 216
Etisus
47. lerimanus, Fundall 217
Etisodes
48. electri, Herbst 217
49. anaglyptus, M.-Edu 218
Menippe
50. Tegouilloni, A. M.-Edw. 218
Pilumnus
51. vespertilio, Fabr 219
52. pulcher, sp , n. 219
50, rufopunctatus, Stimps. 220
53. lanatus, Latr. 220
54. semilanatus, sp. n. 222
55. seminudus, sp. n. 222
56. cursor? A. M.-Edw. 223
57. labyzinthicus, sp. n 224
58. pugilator, A. M.-Edw. 225
detumnus 62. setifer, De IIaan 225
Cryptocoeloma, g. n.
59. fimbriatum, M,-Edvo. 227
Pilumnopeus
60. serratifrons, Kïnahan 228
Ozitis65. guttatus, var. speciosus,Micr Wilyen: (A)228
Neptunus
Page
61. pelagicus, L. 229
62. hastatoides, Fabr.Achelous
63. granulatus, M.-Edw. 280
Thalamita
64. admete, ILerbst 230
65. sima, M.-Edw. 231
66. stimpsonii, A. M.-Edw. 232
67. crenata, Rüpp. 232
Gomiosoma
68. variegatum, Fabr. 282
69. spiniferum, sp. n. 233
Nectocarcinus 75. integrifrons, Latr. 234
Lupocyclus
70. rotundatus, Ad. \&- W... 234
Kraussia
71. nitida, Stimps. 235
Telphusa
72. crassa?, A. M.-Edw 295
Gelasimus
73. signatus, Hess 236
Ocypoda
74. ceratophthalma, Pallus 287
75. kuhlii, De IHuan 297
Macrophthalmus
76. punctulatus, sp. n. 287
Euplax
77. boscii, Audouin 238
Camptoplax, g. n.
78. coppingeri, sp. 1 239
Pseudorhombila
85, vestita, var. sexdentata, Haswell 240
79. sulcatifrons, var. 11. atis- tralieusis 212
Ceratoplax
80. arcuata, sp. n. 243
81. ? lævis, sp. n. 244
Metopograpsus
82. messor, Forsk. 245
Chasmagnathus
83. levis, Dana 246
Sesarma
84. bidens, De Haan? 240
Pinnotheres
85. villosulus, Gưér.-Ménév. 247
Mycteris 93. longicarpus, Latr. 248
Halicarcinus 94. ovatus, Stimps. 248
Leucosia
86. ocellata, Bell 249
87. whitei, Bell 249
88. craniolaris, var. n. læyi- mana 1!0)7!250
Myra
89. carinata, Bell 250
90. allinis, Bell 250
91. mammillaris, Bell 251
92. australis, Haswell? 251
Phlyxia
102, crassipes, Bell 252
93. lambriformis, Bell 252
Nursia
94. sinuata, Miers 252
Nursilia
105, dentata, Bell 253
Iphiculus
95. spongiosus, $A d$. \&. W. 253
Areania
96. pulcherrima, Haswell 253
Lithadia
10s. sculpta, Haswoll 254
Oreophorus
97. reticulatus, Ad. \&- W... 254
98. frontalis, sp. n 254
Matuta
99. victrix, Fubr. 2.56
100. inermis, sp. u. 256
Calappa
101. hepatica, L 257
Dorippe
102. dorsipes, L. 257
103. australiensis, $\mathrm{sp} . \mathrm{n}$. 258
Anomи'a.
Cryptodromia
104. lateralis, Gray 259
Petalomera
105. pulchra, sp. n. 260
Paratymolus
106. bituberculatus, var. n. gracilis 201
107. sexspinosus, sp. n 261
Diogenes
108. rectimanuis, sp, n. 262
Pagurus
109. imbricatus, M.-Edw. 264
110. hessii, sp. n. 264
Clibanarius
111. treniatus, M.-Edw. 665
Eupagurus
112. compressipes, $\mathrm{sp} . \mathrm{n}$. 266
113. kirkii, sp, n. 267
Petrolisthes
114. japonicus, De Haan, var. inermis, Haswell. 268
115. lamarckii, Leuch 208
116. haswelli, sp. n. 269
117. annulipes, White 270
15 . corallicola, Haswell? 271
Polyonyx
Page
118. obesulus, White
Gonodactylus Page
119. chiragıa, Fubr. 298
Pachycheles
120. pulchellus, Haswell 278
Porcellana
121. nitida, var. n, rotundi- frons. 274
122. dispar, Stimps. 275
123. quadrilobata, sp. n. 276
Galathea
124. australiensis, Stimps, 277
125. elegans, Whito 278
Munida
126. spinulifera, sp, n. 279
Mastigochirus
127. quadrilobatus, Miers 280
Macrura.
Gebia
128. carinicauda, Stimps. 280
Gebiopsis
129. darwinii, sp. n 281
Axius
130. plectrorhynchus, Strahl. 282
Thalassina
131. anomala, Herbst 283
Alpheus
132. edwardsii, Audonin 284
G. obesomanus, Dana 287
133. gracilipes, stimps. 287
134. minor, var. neptunus, Dana 288
135. comatularum, Haswell $2 s 9$
136. villosus, M.-Edwards 200
Pontonia
137. tridaenæ, Peters 290
Harpilins
138. inermis, sp. н. 291
Anchistia
139. petitthouarsi, Audoum? 293
Coralliocaris ?
140. tridentata, sp. n. 294
Palremou
141. intermedius, Stimps. 295
Sicyonia
142. ocellata, Stimps. 295
Penreus
143. granulosus, Haswell 295
144. velutinus, Dana 296
145. batei, sp. n. 296
Stomatopoda.
Squilla
Paranthmra
146. australis, Haswell 311
Amphipoda.
Ephippiphora
147. krôyeri, White 312
Leucothoe
148. spinicarpa, var, commen- salis, Haswell 312
149. brevidigitata, sp. n. 313
Melita
150. australis, Hasteell 315
Mera
151. ramsayi, Haswell 315
152. rubromaculata, Stimps 315
Meramœra
153. suensis, Haswell ? 317
154. thomsoui, sp. n. 318
Podocerns
9, australis, Haswell 319
320
Caprella
155. æquilibra, Say
156. nepa, Laţigitized bzed |ic 11.rathunata, Danu ? 320
Page Pago
Acasta 322Ostracoda.
Cypridina
157. albo-maculata, Baird 321
Cirripedia.
Balamus
158. trigonus, Darwin 321
159. amaryllis, Darwin 321i. sulcata, Lam., var.
Prenogonida.
Achelia
160. leris, Hodge, var. aus- traliensis 323
Phoxichilidium
2, hoekii, sp. n 324
alcyonaria. By Stuart 0. Ridley.
Nephthya
161. jukesi, Gray, var. 332
Spongodes
162. Hlorida, Esper 332
163. hemprichi, KTuszinger ?. $33:$
164. spinosa, Gray, var. 332
165. studeri, sp. n. 333
Telesto
166. smithi, Gray 334
Pteroides
167. javanica, Bleeker 9091
Virgulaia
168. sp. 335
Muricella
169. tenera, sp. n. 395
Muricea
170. umbraticoides, Studer. . 380
Echinomuricea
171. indo-malaccensis, sp. n. 336
Echinogrorgia
172. fiabellum, Epper 397
Plexaura13. prelonga, sp. n., var. ty-
piea 399 840
173. miniacea, E/u: 341
Leptogorgia
174. Hexilis, Tervill? 841
175. australiensis, sp. 1. 342
Psammogorgia
176. rectangularis, sp. n. 344
Juncella
177. juncea, Pallas 345
178. gemmacea, M.-Edw. 346
179. elongata, Pallas, var 346
180. fragilis, sp. n. 347
Ellisella
181. calamus, Studer 348
Ctenocella
182. pectinata, Pallas $3+8$
Suberogorgis
183. stberosa, Patlas 849
Briareum
25.7 sp 349
Callipodium
184. australiense, sp. n. 350
Solanderia
185. ? sp. 351
Iciligorgia
186. orientalis, sp. n. 351
Siphonogorgia29. minabilis, K"lunzinger,var. Hlava 352
Solenocaulum
187. tortuosum, Gray 353
Leucoella
188. cervicornis, Gray 355
Melitodes
189. albitincta, sp. n. 857
Mopsella
190. textiformis, Lam 358
191. clavigera, sp. n. 360
Acabaria
192. japonica, Verrill 201
193. serrata, sp. 11 362
Psilacabaria, g. n.
194. gracillima, sp. п. 364
Tubipora
195. hemprichi, E/r: 365

SPONGItDA. By Stuart O. Ridley.

Cacospongia

1. mollior, Schmidt 378
Euspongia
2. foliacea, Esper, Diglitizt 3
3. officinalis, L., var, caver- nosa 379
4. septosa, Lamk. 381
by Microsoft (A)
Page
Page
Hippospongia
5. derasa, sp. n. 382
Stelospongris
6. excavatas, sp. 1. 389
7. implexus, sp. 11. 384
8. intertextus, Hyatt 385
Carterispongia
9. otahitica, Esper 385
10. lamellosa, Esper 386
11. fissurata, Lamk. 386
Hircinia
12. horrens, Selenka 887
13. sp. 387
Dysidea
14. favosa, Marsh 388
15. fusce, Carter 888
16. digitifera, sp. u. 809
17. semicanalis, sp, 11. 389
Psammopemina
18. densum, Marsh., var. n. subfibrosa 390
Aplysina
19. membranosa, Pallas 991
Ianthella
20. flabelliformis, Pallas 392
Chalina
21. monilata, sp. n. 304
Cladochnlina
22. armgiera, Duch. 394
23. sp 395 395
24, nudn, sp. 395 395
_-, var. n. abrupti- spicula 306
24. subarmigera, sp. 397
215, pergamentacen, Ridley 398
Acervochalina, g. n.
25. finitima, schnidt 349
Tuba
26. bullata, Lamk. 399
27. confoderata, Lau. 400
Siphonochalina
28. tuhutosit, Eeper, var. 401
Tubulodigitus
29. communis, Carter 401
Toxochalina, g. n.
30. folioides, Bowerbank 402
31. robusta, sp. II 403
32. murata, sp . 11 404
Pachrchalina
33. lobata, Esper 404
34. macrodactyla, Lamk 405
Reniera
35. indistincta, Eowerb., var, 407
38, seyphonoides, Lamk. .. 407 407
36. ferula, Bowerb:
37. ferula, Bowerb:
38. aquaductue, Sidinitr OLOA
39. aquaductue, Sidinitr OLOA
7ici7. remwaydi, Vosm., varjictós abseylindrica446
rinmardti, Page reinwardti, var. pal- Hymeniacidonmata 447
40. frondifara, Bower b 448
Rhaphidophlus
41. arborescens, sp. n 450
42. procerus, sp. n 451
43. sp 452
Acarnus
44. turnatus, sp, 17 453
Echinodictyum
45. bilamellatum, $L a m k$ 45. 4
46. costiferum, Lamk. 455
47. glomeratum, sp. n. 456
-, var. subrlobosum. 457 457
48. cancellatum, Lamk, 457
Raspailia
49. bifurenta, sp. n, 459
8.5. australiensis, sp. n. 460
89, clathrata, sp. n. 461
Axinella
50. echidnrea, Lamk. 462
Acanthella
51. sp. 46.3
Lencophlous
52. fenestratus, sp. n. $40 t$

- , var. 46
Suberitus

93. carnosus, Jolust. 465
94, epiphytum, Lamk 465
94. caruncula, Bozerb. 466
95. agminata, sp. 11 469
96. sp. 467
Spirastrella
97. vagabunda, sp. n 468
98. cougenera, sp. n. $4(5)$
99. decambens, sp. 11 470
Stallettia
100. purpuron, sp. th. 473
—, var, retrollexa 473
101. chavosa, sp. n 474
102. sp 476
Stellottinonais
103. carteri, sp. n. 476
T'ethyopsis 10.5, dissimilis, sp. n. 477
Geodia
104. globostellifera, Carter 480
Placospongia
105. carinata, Bowerb. 481
Leucetta
108, primigenia, Häckel, var.microrrhaphis, iul. 482
Leucaltis
106. bathybia, Hückel, var.anstraliensis, 1 .482
Leucoma
107. saccharata, Mäckel 482

Part II.

COLLECTIONS FROM THE WESTERN INDIAN OCEAN.

birds. By R. Bowdler Sharpe.

Foudia

1. madagascariensis, L. .. 483

Crithagra
2. chrysopygn, Swains. .. 483

Francolinus
3. ponticerianus, Gm. 483

Sterna
4. melanauchen, T. 484

Zosterops
5. madagascariensis, t 信i22 484

Corvus
G. scapulatus, Dard. 484

Turtur
7. coppingeri, sp. n....... 484

Strepsilas
8. interpres, L. 484

Ardea
9. atricapilla, Afecl....... 485
10. bubulcus, Sav. 485

Microsoft ${ }^{(8)}$
Strepsilas
11. interpres, L.
Page
Gygis
14. alba, Sparm.
Page 485
Tullinus
12. ehlororhynchus, Less. 485
Sterna
18. anestheta, Scop. 485
Ranella Page

Page

 505
505 505
91, anstralis, Lam.
91, anstralis, Lam.
58. pusilia, rar. 500
Triton
59. cancellinus, Roissy 500
Natica
60. tessellata, Phit. 500
Cypran
61. asellus, L, 500
Trivia
62. scabriuscula, Gray 500
Erato
63, corrugata, IInds 500
Littorima 64. glabrata, Phil. 500
Cerithium
65. echinatum, Lam. 500
G6. columna, Sow. 500
67. albovaricosum, sp, 11 501
68. amirantium, sp. n 501
69. acutinodulosum, sp. n. 501
70. kochi, Phil. 502
Triphoris
71. mirificus, Desh 502
72. momilifer, Hinds 502
73. elegans, Ilinds 502
74. maxillaris, Hinds 502
Strombus
75. mauritianus, Lam. 502
76. gibberulus, L. 503
77, tloridus, Lam. 503
78. columba, Lam 503
P'terocera
79. aurantia, Lam. 503
Calyptrea
80. cicatricosa, Reeve $\vdots 03$
Nerita
81. plexa, Chemn. 503
82. plicata, Chemm. 503
83. polita, L. 508
84. albicilla, L. 508
Neritina
85, rangiana, Récluz 503
Turbo
86. histrio, Recte. 503
87. tursicus, Reere 504
88. coronatus, Gm. 504
Phasianella
89. rethiopica, Phil. 504
Trochus
90. amirantium, sp. n 504
Cylichna
93, protracta, Goul d 505
Tornatina
94. voluta, Quoy \& Gaim. 505
Prramidella
95. maculosa, Lam. 505
96. terebellum, Mïller 505
97. suleatus, Aldams 505
Chemnitzia
98. coppingeri, sp. n. 505
Plynlidia
99. varicosa, Lum. 506
Doris
100. coriacea, Abraham 506
101. mabilla, Abraham 506
Conchifera.
Cytherea

1. obliquata, IIanley 506
Circe
2. pectinata, I. 506
3. gibbia, var. 506
Tellina
4. elegans, Thood 507
5. semilævis, Martens 507
6, staurella, Lam 507
6. rugosa, Born 507
7. scobinata, L. 507
8. gratiosa, Römer 507
Cardium
9. formicatum, Sovo. 507
10. pulchrum, Reeve 507
Gastrochæna 12. mytiloides, Lam. 507
Lucina
11. exasperata, Rcere 507
12. purctata, L. 508
13. clausa, Phil. 508
14. cumingii, var. 508
Modiola
15. auriculata, Krrauss 508
16. elegans, Gray 508
Arca
19, divaricata, Sow. 508
Cucullea
17. concamerata, Chemn. 508
ECHiNODERMATA. By F. Jeffrey Bell. (Page 509.)
 512

crustacea. Dy E. J. Miers.

Page Decapoda.
Brachynara.
25. exaratus, var. gracilis, Dana 550
Acheus

1. Ierioculis, sp. n. 520
Camposcia
2. retusa, Latr. 520
Huenin
3. pacifica, Miers 520
Menæthius
4. monoceros, Latr. 521
Stilbognathus
5. martensii, sp. n. 521
Paramithrax
6. longispinns, De Haan,
7. longispinns, De Haan, var. bituberculatus 522
Hyastemus
8. oryx, A. M.-Edu. 522
9. ovatus, Dana 522
Naxia
10. petersii, Hilgendorf 523
Eurynome
11. stimpsonii, sp. nt 523
Micippa
12. thalia, Herbst, var. hanni, Stimps. 524
Paramicippa
13. asperimanus, sp. и. 525
Entomonyx, g. n.
14. spinosus, sp, n. 520
Lambras
15. calappoides, Ad.\&.Wh.? 527
Euxanthus
16. ex=culptus, Herbst, var. rugosus, n 527
Lophactrea
17. semigranosa, Heller 527
Lophozozymus
18. dodone, Herbst 527
Liomera
19. punctata, $M,-E d z$. 528
Aciza
20. rufopunctata, M.-Etzo 528
Atergatopsis
21. granulatus, A. BL.-Edw. 529
Xanthodes
22. lamarckii, M.-Edw. 529
Carpilodes
2.) rugatus, ML.-Edio. 529
Acteodes
 530
Leptodius
Phymodius
23. rugipes, Heller 581
Chlorodius
24. niger, Forsk. 531
25. miliaris, A. M.-Edzo. 581
Chlorodopais
26. melanodactylus, $A, M,-E$, 581
27. areclatus, MI.-Edio. 532
Etisodes
28. electra, Herbst 532
Cymo
29. andreossii, Aud. 532
Actuminus
30. setifer, Deflaan 533
Eurïppellia
31. annulipes, M.-Edwo 533
Ozius
32. frontalis, M.-Elwo. 538
Eriphia
33. lrerimanns, M.-Edro. 531
34. - , var, smithii, Mac- Leay 595
35. scabricula, Dana 595
Trapezia
36. cymodoce, Herbst 595
37. ferruginea, Lutr. 586
38. rufopunctata, Herbst 580
Tetralia
39. carimanus, IIeller 537
Xiphonectes
43, vigilans, Dana, var. ob- tusidentatus, n. 588
Scylla
40. serrata, Forsk. 538
Achelons
41. gramulatns, M.-Edw. 538
Goniosoma
42. natator, Herbst 539
Thalamita
43. sima, M.-Edu. 539
44. quadrilobata, sp. n. 539
45. integra, Dana 540
46. crenata, Tkïpp 5.40
47. picta, Stimps. 540
Lissocarcinus
48. orbicularis, Dana 541
Gelasimus
49. aunulipes, $M_{\text {.-Edro }}$ 541
50. dussumieri, M.-Edto. 541
542
51. cordimanus, Desm.
Page 542Macrophthalmus
52. parrimanus, M.-Edw.Euplax58. boscii, Aul.542
Dotilla
53. fenestrata, IIIIgendorf. 543
Carcinoplax
54. integra, sp. n. 543
Grapsus
55. maculatus, Catesby $5-14$
56. strigosus, ILerlst $5+4$
Geograpsus
57. grayi, M.-Edw. 545
Metoporiapsus
58. nessor, Forsh 545
Liolophus
59. planissimus, Herbst 545
Xunthasia
60. murgera, Thite 546
Philyra
67, rectangularis, sp. n 546
Pseudophilyra
(18, polita, sp, n. 547
Nussilin
(69. dentata, Bell. 548
Arcania
61. แEbalia
62. granulata, Rüppell 549
Calappa
63. hepatica, Limn, 550
64. gallus, Herbot, var. bi- cornis 550
Cymopolin
65. whitei, sp. 1 551
Anomura.
Dromidia
66. spongiusa, Stimps., var.? stimpsonii, 1 552
Dromia
67. vulgaris, M.-Eduo. 553
Homalodromia, g. n.
68. coppingeri, sp. n. 554
Birgus
69. latro, L. 555
Conobita
70. perlata, M.-Edu. 555
${ }^{1}$ 'agurus
71. punctulatus, M.-Edw... 555
72. guttatus, Olivier? 555
Calcinus
73. tibicen, Iterbst 557
Petrolisthes
74. lamarckii, Leach 557
75. var. asiaticus, 5.57
76. annulipes, Miers 558
77. maculatus, M.-Edw. 55.5
78. villosus, Richters? 559
Polyonyx
79. biunguiculatus, Dana 559
Galathea
80. spinosirostris, Dana? 560
Munida
81. edwardsii, .p. n. 560
Maenura.
Alpheus
82. obesomanus, Dana 561
83. edwardsii, Audorin 561
84. lævis, Randall 561
85. minor, var. neptunus, Dana 562
Pontonia
86. brevirostris, sp. n. 562
Coralliocaris
87. graminear, Dana 563
Peners
88. canaliculatus, Olivier. 563
8, richtersii, sp, n. 564
Stomatopoda,
Gonodactylus
89. chiragra, Fabr. 56.5
90. graphurus, Miers 506
91. elegans, sp. n. 566
AMPIIPODA.
Mœ⿸尸
92. diversimanus, sp, n. 567

Lepidoptera. By A. G. Butler.

Deiopeia lactea, sp. n.
Pago
alcyonaria. By Stuart O. Ridley.
Spongodes

1. unicolor, Gray 579
2. studeri, sp. n. 579
-, var. levior 579
Nephthya
3. sp. 579
4. sp. 579

Vioa Page	52. purpurea, var. parvi- Pago
45. schmidti, Ikilley G22	stella 627
46, transitoria, sp. 11. 623	Leucetta
47. punctulata, sp. n. 629	53. primigenia, yar, megalir-
Tethyt	rhaphis, IIäckel 628
48. cliftoni, Bowerb. 624	Lencaltis
Tetilla 49. dactyloidea, Cartor 625	54. bathybia, Mickiel, var. mascarenica 623
Erylus	Lencortis
50. eylindrigerus, sp. n. 629	55. anguinea, sp n. 629
Stelletta	Leuconia
51, acerrus, Bowerb. 627	56. echinata, Schuffner . . . 630

Z00L0GICAL C0LLECTIONS

or

H.M.S. 'ALERT.'

SUMMARY OF THE VOYAGE.
BY
R. W. COPPINGER, M.D., Staff-Surgeon R.N.

During the summer of 1878 it was resolved by the Admiralty to equip a ressel for the performance of special surveying-work on the western shores of Patagonia, among the South-Pacific Islands, and on the eastern and northern shores of Australia; in addition to which, it was the wish of the Hydrographer of the Nary, Captain (How Sir Frederick) Evans, F.R.S., that no opportunity should be lost of collecting objects of natural history whenever the requirements of the survey brought the ressel into regions whose zoology was hitherto but imperfeetly known. It was in accordance with these riers that on the 20th August, 1878, H.an.S. 'Alert' was commissioned at Sheerness, with a complement of 120 officers and men, by Captain Sir George Nares, who, by a happy coincidence, had commanded the same ressel in the Polar Expedition of $1875-76$. On the 20th of the following month we sailed from Plymouth.

On the outward royage we touched for a few days at Madeira and St. Vincent respectively; and at both of these places some shallowwater dredging was accomplished, resulting in the aequisition of a small collection of marine invertebrates, in which, as might have been expected, there was little, if any thing, of special interest.

During our further voyage through the South Atlantic a courso was held which brought us over the Hotspur and Victoria Bankssubmerged coral-reefs which are situnted between the parallels of 172° and $12^{\circ} \mathrm{N}$ lat., and are about 180 miles from the east coast of Brazil. In these two places we plied our dredges in depths ranging from 35 to 39 fathoms, olstaining thereby a large number of zoological specimens, among which were several novelties in the classes of Sponges and Iolyzoa. The collection made at these stations proved to be of special interest, as it helped to fill up a gap unaroidably left by the 'Challenger' expedition in the marine zoology of the South Atlantic.

On the 27 th November we anchored in the estuary of the river Plate, off Monte Video, where we remained until the 14 th December. Nailing on the latter date, we shaped a course for the Falkland Islands, and arrived at Stanley Harbour on the 26th inst. A few weeks prior to the time of our visit to the Falklands a peculiar avalanche of semifluid peat had poured down from the summit of one of the low hills, laying waste a portion of the settlement.

We again put to sea on the evening of the 27 th December, and steering to the eastward, entered the Strait of Magellan on the first day of the yeur 1879. After stopping for a few days at the Chilian settlement of Sandy Point, we proceeded to our surveyingground among the channels on the west coast of Patagonia. Here we spent the greater portion of the two succeeding years, executing surreys of previously uncharted waters, and adding to those which had been partially effected by our predecessors in the same field; but during the more rigorons winter months we each year proceeded north to Coquimbo, on the Chilian coast, where our ship was refitted and fresh supplies of stores were obtained ${ }^{*}$. As the requirements of the surrey necessitated our risiting and anchoring in a great many bays and inlets in this remote region, frequent opportunities occurred for shallow-water dredging, so that we were able to make a large collection of marine invertebrates-a branch of research to which our attention was more especially directed, as we were aware that in other departments of biology the work done by the 'Erebus' and 'Terror,' 'Nassau,' and 'Challenger' of onr owu navy, as well as by many foreign ressels, left little to be desired.

During the month of March 1880 a risit extending over a few days was made to Skyring Water, a large and almost completely landlocked shect of water sitnated to the eastward of the Cordillera, and, so far as we yet know, only accessible by ship through a narrow chamel by which it communicates with the main Strait of Magellan. And here I shonld remark that in the month of July 1879 , and during the surplus time allotted for refitting our ship on the Chilian coast, a brief risit was made to the island of St. Ambrose, which lies about 500 miles to the north-west of Coqnimbo.

[^0]On the 14th June, 1880, we bade adien to the South-American coast and sailed for Thhiti, spending much time on tho way in searching for the so-called Minerva Reef, which was reputed to exist some 60 miles to the north-east of Manga Reva, one of the Paunotu group. Arriving at Tahiti on the 6th of Angust, we mado a stay of twelvo days at that interesting island, when we again got under way and pursued a circuitous route towards the great Fiji group.

The first place at which we touched on this royage was Nassau Island, whence we proceded to the Union group, in $80_{2}^{10} \mathrm{~S}$. lat., passing within sight of Tema Reef and the Danger Islands, which were found to be incorrectly placed on the charts. We made a short stay at Oatafu, the most westerly island of the Union group, and thence proceeded to Fiji.

We anchored off the settlement of Levuka in the island of Ovalau, Fiji, on the 18th of September, and remained there until the 10th of October. We then steamed over to Tongatabu, in the Friendly Islands, where wo made a pleasant stay of ten days, but subsequently spent some very dull weeks, aggravatod by unusually boisterous weather, in an uneventful search for the La Rance Bank, the non-existonce of which was, however, satisfactorily demonstrated. We returned to Lernka on the 4th of December, and remained in harbour for ten days, when we entered upon tho last portion of our Pacific cruise, viz, the voyage from Fiji to Sydney.

We arrived at Sydney on the 23rd of January, 1881, and remained there, refitting, until the 15th of April, when we steamed up the east coast of Australia to our next surreying-ground.

During the ensuing six months we visited Port Curtis, Port Molle, and Port Denison on the east coast of Queensland; Lizard Island, Flinders Island, Clack Island, Bird Island, Percy Islands, Clairemont Islands, and Albany Island, adjoining the coast; and while engaged on the sursey of the Prince of Wales Channel, in Torres Straits, we anchored off Wednesday, Thursday, Friday, Horne, West, Princo of Wales, Hammond, Goode, and Booby Islands. In all these localities marino specimens were collected, as well as in the more open parts of the Prince of Wales Channel, where the depth rarely excceds 30 fathoms. A good many interesting specimens were also obtained through the assistance of the pearl-shell divers, who have an extensive and lucrative industry in these waters.

On leaving this channel we proceeded westwards through the Arafura Sea, sounding and dredging, until we reached Port Darwin, in North-west Australia. Here we remained from the 3rd to the 18th of Norember, when te again got under way and steamed through the Eastern Archipelago to Singapore. We reached this port on the 18 th Norember, 1881, and remained there for two and a half months, spending most of the time in dock, where our ship underwent an extensive refit. We now received orders to undertake a survey of the Amirantes and neighbouring islands and reefs in the South-Indian Ocean, using Seychelles as our base for
Digitized by Microsoft@2
supplies. We accordingly sailed from Singapore on the 5th February, 1882, and stecred for the Seychelle Islands, tonching on the way at Colombo.

On the 4th of March we reached Bird Island, the most northerly of the Sorchelle group; and as we remained at anchor there until the following morning, we had an opportunity, among other things, for exploring the island and accomplishing some dredging-mork in the shallow water about the ship. On the next day we steamed over to Mahe, the chicf island of the group. After some days spent here in provisioning and coaling the ship, during which time our boats did some useful dredging in the channel betreen Mahé and St. Ame's Islands, we steamed over to the Amirante group, the most northerly of which is only about a day's run from Mahé. Wo had orders to make a survey of the Amirantes, and, as far as time would permit, of the other coral islands which exteud thenco in an irregular chain southrard towards Madagasear.

The Amirante group consists altogether of twenty-one low coral islets, resting, with the exception of He des Roches (which is separated by a deep channel), on an extensive coral bank, which is 89 miles in length, with an average breadth of 19 miles, and whoso long axis lies in a N.N.E. and S.S.W. direction. It is included between the limits of $4^{\circ} 50 \frac{1}{2}^{\prime}$ and $6^{\circ} 12 \frac{1}{2}$ ' S. lat., and $53^{\circ} 45^{\prime}$ and $52^{\circ} 50 \frac{1}{2}^{\prime}$ E. long., and is thus about 700 miles distant from the nearest part of the East-African coast. Some of the islets and sand-eays of which it is composed, and which are included in the above cnumeration, are so arranged in clusters that for all practical purposes the group may be regarded as consisting of nino islets, which have been named African, Eagle, Darros, Des Roches, Poivre, Etoile, Marie Louise, Des Neufs, and Boudeuse Islands.

From the Amirantes we mored over to Alphonse Island, which occupies an isolated position 60 miles S.TV. by S. of the southern extremity of the Amirante Bank: and thence procecded to Providence Island, which is about 240 miles from the Amirantes in a S.IV. by S. direction, and about 200 miles from Cape Amber, in Madagascar. After a short stay at each of these islands, we steamed over to the Glorioso group, which consists of three islands, also of coral formation, and situated about 120 miles W. by N. of the northern extremity of Madagascar. Every effort was made to investigate the fama and flora of these islands as far as time and other circumstances would permit, so that sufficient materials were accumulated to connect their natural history with that of Seychelles to the northward and Mtadagascar to the southward.

With our departure from the Glorioso Islands the surveying operations of the 'Alert' were brought to a close. On the 12th of May we reached Mozambique, whenee, after a stay of a few days, we procceded on our homeward royage, stopping en route at Algoa Bay, Simon's Bay, Cape of Good Hope, St. Itelena, and Fayal (in the Azores), and arrived in Plymouth Sonnd on the 3rd of September, 1882, after an absence of nearly four years.

PART I.

THE COLLECTIONS FROM MELANESIA.

MAMMALIA.

By
OLDFIELD THOMAS.

The Mammalia collected by Dr. Coppinger are too few in number and of too common occurrence to be deserving of special notice; but a rery interesting series of Melanesian skulls was obtained by him from various islands in the Pacific, and of these the most important measurements aro given in the following notes.

1. Skull of Torres-Straits Islander. (Plates I. \& II. fig. A.)

Male. Adult.
"Native chief of Nagheer Island, Torres Straits."-R. W. C.
Length ${ }^{2} 174$; gl. occ. ${ }^{2}$ 181. Breadth ${ }^{3} 14$. Height ${ }^{4} 136$. Maximum frontal breadth ${ }^{5} 115$; minimum frontal breadth ${ }^{6}$ 99. Horizontal circumferences-preauricular ${ }^{7} 237$, total ${ }^{5} 514$. Transserse ares-frontal ${ }^{9} 286$, bregmatic ${ }^{10} 303$, parietal ${ }^{11} 323$, occipital ${ }^{12}$ 273. Longitudinal ares-frontal ${ }^{13}$ 121, parietal ${ }^{14}$ 129, occipital ${ }^{15}$ 113. Foramen magnum-length ${ }^{16} 35$, width ${ }^{17}$ 29. Basinasal length ${ }^{18} 105$. Basialreolar length ${ }^{19} 112$. Bizygomatic breadth ${ }^{20} 136$. Height of-face ${ }^{21} 9 \mathrm{~S}$, malar ${ }^{22} 25$, alveolus ${ }^{23} 22$. Auriculo-orbital length ${ }^{24}$ i2. Nasal height ${ }^{23}$ 50 , width ${ }^{26} 24$. Maxilla--length ${ }^{27} 65$, width ${ }^{25} 67$.
Mandible-bicondylar width ${ }^{29} 126$, bigoniae width ${ }^{20} 99$, symphysinl height ${ }^{31} 33$, molar height ${ }^{32} 29$, coronoid height ${ }^{33} 63$, goniosymphysial length $(1 . \text { side })^{34} 81$. Ramus-height ${ }^{33} 71$, anteroposterior breadth ${ }^{36} 35$. Bigoniac are ${ }^{37} 194$.
Indices-latitudinal ${ }^{39} \quad 82 \cdot 8$, altitudinal ${ }^{39} \quad 78 \cdot 2$, frontal ${ }^{40} 68 \cdot 7$, gnathic ${ }^{41} 106 \cdot 7$, nasal ${ }^{12} 48^{\circ} \cdot 0$.
 p. 172 (1881), and Cat. Coll. Surg. i. p. svii (1879).

SPONGIIDA.

BY
STUAPT O. RIDLEY.

Tue published information relating to the marine Sponges of Australia is very limited, both as compared with that relating to other groups of the Animal Kingdom, and as compared with the attention which has been paid to them by collectors. Large quantities of Sponges have been sent to England from this const, and the national collection of France possesses a large number cvidently of similar origin: but notrrithstanding this fact, the number of intelligibly described species is surprisingly small. Dr. Bowerbank, who obtained very large supplies of material, chiefly from S.W. Australia, only described * 14 species which may be said to have probably come from this continent; these are chielly Silicea. Mr. Carter has described $\dagger 8$ species from Bass's Strnits, and some 25 from other localities (almost entirely sonthern and southwestern); of these 33 , about one half are Silicea, aud most of the remainder are Ceratosa. Prof. Häckel \ddagger deseribes 16 species of Calcarea from the south and east coasts; A. Hyatt§s records 8 Ceratosa from South and East Australia; Prof. Sclenka |! shortly describes and figures 5 Sponges from Melbourne and Bass's Straits; and TV. Marshall ब, Gray **, and some other writers add a few specips to the list; Polejneff t+ adds 11 Calearea to tho fauna. Dr. Giray describes a remarkable form, Xenosponyia, from Torres Straits, the only Silicoous species which I can find litherto described as definitely obtained from North Australia.

The older writers by no means neglected the Sponges of Australia; and in particular Lamarek $+\ddagger$ described 53 species from "Mers Australes," collected by Messrs. Péron and Lcsueur, of which, as we shall see below, there is considerable reason to believe that many were obtained off the more northern parts of the continent ; a ferr are certainly from the south (King Island and Francis and Kangaroo Islands). There is, however, the very serions difficulty connected with these descriptions of Lamnrek that they are ex-

* Chiefly in Proc. Zool. Soc. 18;2-76.
+ In Ain. \& Mag. Nat. Hist. 1873-81.

8. Mem. Boat soc, ii.

- Zeitsch wiss. Zuol. xxxy.
** Amn. \& 3ing. Nat. Hist. (4) vi.; Proc. Zool. Soc. 1669.
\# Zoology H.M.S. 'Challenger.' part xsiv.
\#\# Ann. Jtus. Hist, Nat. xs. (besides an uncertain number, as Alcyonia, in Mém. Mus. Nit, Hist, i.).
tremely short, and deal ulmost invariably with the mero external characters of the forms to which they refer, and thus, owing to the well-known variability and comparatively slight diagnostic importance of these eharacters in the spongiidu, are ulmost useless, per se, even for the identification of specios.

Thus we have in all some 90 species (allowing for synonyms), more or less fully described, of Sponges chiefly from the southern, sonth-eastern, and south-western coasts of Australia, and some 60 species described in tho barest manner, probably (but not certainly) in most eases from the northern coasts, and a fers from the south.

The present collection comprises upwards of 300 specimens, representing 110 species, besides 7 distinet rarieties, of which more than half are well preserved in spirit and the remainder are dry. The districts searched consist of:-1. Jort Jackson, N. S. Wales; 2. Sereral points on the north-east coast of Qucensland; 3. Various islands and spots in Torres Straits; 4. The Arafura Sea, between Cape York and Port Darwin: 5. Port Darwin. N.W. Australia. The depths range from between tide-marks to 36 fms. (Arafura Sea), but most dredgings did not exceed 20 fms , in depth.

It is perhaps not surprising, after what has been stated as to the previons work which has been done among the Australian Sponges, to find that a large proportion (42 out of 110 , or 38 per cent.) of the species are certainly new to science, and that a considerable number more may possibly prove to be so, haring been assigned only doubtfully to described species. However, the distribution of the littoral species (when theso are properly defined and limited) of Sponges appears usually to be but modorately wide, and perhaps less so than the shallow-water Alcyonaria; both this and another fact must be adduced to account for this large number of new species, riz. that the sponge-famas of the neighbouring and moderately distant seas are eren less known than that of Australia itself; this will be seen clearly from a statement of what has been done to elucidate the fauna of the Indian Ocean which I have made under the heading Geographical Distribution. I have in this dearth of information taken pains to describe every form which warranted description. I have been careful not to assigu a new name where the sponge might possibly have been already deseribed, in order not to run the risk of adding to the overburdened synonsmy, but have generally given a full description in such cases, so that no doubt might remain as to the characters of that species, at any rate, with which I have had to deal.

Taxonomy of the Collection.-Of the 110 species obtained, 20 (or more than one sisth) are Ceratosa, a number which is illustrative of the largely tropical character of the locnlities from which they are drawn ; the Dysideide include two new species and a most interesting variety of a most important form, Psammopenmu densum, Marsball, whose nature receives hereby confirmation and clucidation; the number of new Ceratosa (4) is not great, as most of the species seem to have a wide range.

The Silicea, as usual, far outnumber the other groups; the Digitized by Microsoft (8)

Chalinidæ aro especially abundant (16 species, 5 new). No essentially new types occur; but of two new genera, one (Toxochalina) is formed in recognition of a character, hitherto overlooked, connecting this family with the Desmacidinidæ. Serenteen Renieridx (5 now) oceur, which are chiefly remarkable for their close resemblance to European forms, all the genera and three species being already known from Europe. The Desmacidinide have 19 species, and include 9 new forms, and a species for which I have established a new genus, Gelliodes, which appears to be an extreme derelopment of the well-known European Gellius (Desmacodes, Schmidt), also two species for which a genus (Iotrochota) is formed, in tardy recognition of their great distinctness ; it is probably related rather to the deep-sea genera Chondrocladia and Cluctor-hiza than to any littoral genera, except Moazuchore, Carter, and is remarkable as being a persistent littoral representative of what was probably one of the earliest types of Desmacidines, viz. that in which the anchorate spicule was symmetrical. Such old types usually survire only in the deep sea or fresh water; we have already seen that the deep sea produces examples of it, and probably the Spongillide with birotulate spicules are also modern representatives of this type, which (or whose ancestors) have taken refuge in fresh water. Remarkable as are the outward forms assumed by the species of Rhizochulina here doscribed, ther will not surprise those who have studied the paper in which Mr . Carter recently described (under the name Phlaodictyon) a number of species belonging to this genus from rarious parts of the world; perhaps, howerer, Torres Straits will prove to be more prolific in this respect than any other locality. The Eetyonide are remarkably rich in ner forms (10 species out of 17). Clathria, which is small in growth and not rery rich in species esen in the Mediterranean, here assumes a great derelopment in size and number of species. The distribution of the Axinellidæ is as much bathybial as littoral, in accordance with which fact we only have three species here. Of the 8 species of Suberitidæ, 4 are new.

The suborder Tetractinellida is, in conformity with the fondness for greater depths and the relative searcity of indiriduals which its members commonly exhibit, represented by only 7 species, of which four are new, and all belong to the Choristide (Sollas).

The Calcarea are poorly represented (3 species), and afford nothing of great interest from a taxonomic point of riew.

1 have given further details, where necessary, of the more remarkable systematic points under the different groups themselves, and a classified list of the species is inserted in the account of the Gcogrnphical Distribution.

Anatomy and Histolomy of Soft Petrts.- Want of time has prerented me from thoroughly investigating these subjects at present, interesting and important in the extreme as they are, and farourable in mauy cases for the purpose as is the material contained in the collection. A few notes relating specially to the histology will be found scattered throughout the Report (see especially Aplysina,

Dysidea, Iotrochota, Rheqhiidophlus, Acenthelle). In the systematic deseriptions of the genera and species I have employed the old expression "sarcode" for the soft tissues generally, as being intelligible. comprehensive, and as having the advantage of involving no special theory or view with regard to the homologics of the parts referred to; the greater part of the tissues included under the term are, howerer, the "mesoderm" of F. E. Schulze, tugether with the cilinted chambers and the walls of the canal-system which it encloses.

Indinitual Voriation.-I few remarks on this subject are suggested by the study of this large collection. First, variation in the size of spicules is an almost invariable oceurrenec in different specimens of the same species, as it is in individual spicules in the same specimen ; in the one case, however, it rightly falls under the head of variation, in the latter chiefly undor that of growth. In the descriptions below will be found statements which show the range of this form of rariation within the limits of a species to be frequently wide, see especially Lomeophlous fenestrutus, Echinorlictymm (the spined spicule), and stelletta panpurct. The Eetyonide exhibit, as a rule, surprisingly little variation of this kind, and little use is to be made of characters based on size in distinguishing eren species in this group. Chaliuida and Desmacidinide are also very fairly constant as a rule. Secondly, rariation in the form of spicules is less common. The Suberitide extribit variation of the head of the skeleton-spicule from sub-acuate to spinulate (Suberites). Modifications of the form of the ends of acerate spicules are certainly not often to be noticed: but this collection shows that in Pellina muricata the ends of the acerate vary from being gradually sharply pointed to being romnded off almost as thoroughly as in the usual "cylindrical;" and in Cludochatine mude the ends may taper gardually from about four diameters from end of spicule, or clse from within about $1 \frac{1}{2}$ diameters (var. alruptispicula, mihi), produeing a very different appearance. Thirdly, as to variation in the external form of the Sponge within the limits of the same species, striking examples are aftorded by the series of Iotrochota propurea and Clathria reimearlti (where a milti-personal origin appears to explain the most remarknble case). The number of vents present has been nsed as a generic character in the Tetractinellida by Prof. Sollas (Geodia, Isops). In one of the species of Stelletta here described this seems to be constant, in the other not; in the species of Gcodia described below it is doubtful whether absence of rents ("lipostomy," IIäckel) is constant.
"Person"-theory.-The individuality of those parts of a Sponge which enclose a single cloacal carity scems to be regarded as a fact by Marshall, who speaks (Zeitschr. wiss. Zool. xxxr. p. 98 \&c.) of species of Dysideide as being "monozoisch" or "polyzoisch." It is difficult to see how the different cloacal tubes which are formed during adult life by folding-over of a tlat wall, as appears to be the case in the species named below, Siphamochulina bullata and Dysidea semicanalis, can be said to constitute indiriduals. It seems possible
that in other species as well tho distinct eloacal systems may prove to be formed in the same manner. In his latest work (Spong. Meerbus. Mexieo) Schmidt says (p. 16):-"Individnell beginnend iibernchmen in rielen Spongien dic anfänglich neutralen oder gemeinsehattlichen Gehiete die Rolle der Individuen, aber der sich wühtventc uad fortp fleuzende Köpper ist weler Indivilusem noch eian Stock, auch der biosse Vergleich mit Individuum und Stoek passt nicht auf ihn." (The italics are Prof. Schmidt's.) This vier wonld scem to hold well, at any rate in the cases I have referred to.

Perasitism.-An instance of an Oscillatorian Alga parasitic within the tissues of a Sponge is deseribed under stellette clueoser ; a similar eircumstance has been recorded in INalisarca and Spongclia (Schmize) and in a Suberite (Carter). Two examples are to be noted of the converse case, riz, that of a Sponge constantly employing an Alga for support by mingling with its structures, as already noticed by Semper in Spongia cartilagince, Esper. These cases arc-(1) Gicllins cymiformis (r. infrì), where the Sponge, though probably less in bnlk than the Alga, seems to dran the latter into its own form ; and (2) a Renierid (probably Renierce s. str.) from Port Molle, Queensland, which coats and jenetrates between the superficial fibres of two specimens of a species of erect arborescent Alga, giting it the appearance of the British Sponge I/utichondria allescens.

A few examples of Spongiophatia (Carter) were noticed in the basal part of a spirit-specimen of a Rhimhaidophles (R. procera) from Port Darwin: the heads measured 005 to 01 millim., the fibre nbout 001 millim. in diameter. This parasite has already been recorded from the Silicenus genera Acimalla, Gellius, Esperia, Iion (Cart er. Amn. \& Mrag. N. H. (5) ii. p. 167). It also occurs in the Ceratosa of the collection; the skeleton of a Mivcinia from Torres Straits is almost replaced by it.

Geograpilical Distribution.

1. Relations of Australie to other Districts.

In attempting to compare the Australian Sjonge-fauna with the fannas of other districts, we are met hy a great difticulty, caused by the very imperfect manner in which the Ceratose and Siliceous Sponges of any given marine region, except the Northeru and Equatorial Atlantic and Mediterrancan, are as yet known. A paper by Prof: Sclenka (Zeitsch. wiss. Zool. xxxii. p, 467) and one by myself (I'roc. Zool. Soc. 1881, p. 107) give acconnts of about 30 species from the South Atlantic: Esper, Carter, and Vosmaer describe species from the Cape. The Sponges of the Pacific are almost wholly unknown*. Thanks ulmost exelusively to Mr. Carter's and Dr. Kowerbank's exertions, we have a better knowledge of the Indian-Ocean fauna; but even this is extremely imperfect. Our more exaet knowledge of this area (excluding Australia, for which see above, p. 366) is based chiefly on :-

* But are Carter's (Ann, \& Mag. Nat. Hist,) and Bowerbank's (Proc. Zool. Soc.) writing- for smiry species from the "South Seas;" and Döderlein (Zeitsch. wiss. Zoul sl. p. (62) for four new Lithistide from Japan.
a. Papers, describing thout 70 species from Coylon, by Carter ('Annals and Magaziue of Natural History' ser. 5, vol. vi. pp. 35, 129, viii. 1. 361, xi. 1. :353) : one by Ehlers (Die Esperschen Spongien \&e,), redescriling 4 species from Ceylon and South India; and one by Bowerhank, describing a fow from Ceylon (Proceedings of the Zoolngical Society of Loudon, 1573, p. 25).
b. A paper, describing t or 5 speries from Mauritius, by Carter

c. Descriptions of 3 species from tho lied Sea, by Cartor (tom. cit. p. 298) and Bowerbank (Proc, Kool. Soc. 1872, p. (B30).
d. Papers by Bewerbank, describing 17 species from the Straits of Malacea (Proc. Zool. Soc. 1869, p. 325 ; 1875, p. 281).
e. A paper by the same author, describing 3 species from the north of New Guinea (of.cit. 1~77, p. +7.6).
f. A paper by Carter ('lhilosoph. Transactions Royal Society, rol. 168. p. 2s(6), deseribing 8 species from Kerguelen Island.

The Calcarea of this region have roceived considerable attention from Prof. Haickel in his famons monograph; and a pupil of his (Schuffucr) has described (Jenaische Zeitsch, 1878) some speeies collected at Mauritins. The 'Challenger' collection (l.c. p. 366) produced 6 species from the Indian Ocean.

I propose here ouly to notice some of the most salient facts of the distribution, the known distribution of the species being given below under each.

Of the 110 species described below, only 27 species (25 per cent.) are known with certainty to occur outside the Australion seas. Of these:-
a. Onc, Lencetta primigenir, is almost cosmopolitan.
b. Four, riz. Remicm indistinctu, Gillins couchi, Suberites cumosus, Hymeniucidon currucule, oceur in the British seas.
c. Five, viz. Enspongie officinalis, Cucospongia mollior, Renicre aquectuctus, Tedenia digitute, Gellius fibelatus, oceur in tho Mediterrancan, the last nlso on the Portuguese const.
d. Three, viz. Cladochalina armigere, Acervochalina finitima, Tcdenia digitata, in the West Indies.
e. One, viz. Cladochalize peryoatatacca, near the Brazilian coast.
f. One, viz. Siphonochalinut tubelost, is known from the Cape of Good Hope.
9. Three, viz. Tibulorligitus communis, Spivostrellat vayabunda, Grokia globostellifera, from Ceylon; the first also from Kurrachee.
h. Fourteen (comprising + Ceratosa, 1 or 2 each of Calcarea, Tetractinellida. and of each family of the Monactinellida except the Suberitidx) from the tropical parts of the Western Indian Ocean (see Part II. of this Report).
i. Six, viz. Torochalina foliaides, Gellins cmelhi, G. varins, Rhizochalina singaporensis, Iotrochota purpmern, ''la thrin frondifera, from the Straits of Malacca.
i. One. riz. Tonochalint folioides, from Neis Guinea.

It should be noticed that the most widely ranging forms belong in most eases to very generalized types, such as might be expected to pussess considerable antiquity, and hence a wido distribution. Another Digitized Dy milcrosortial 2 в 2
explanation seems, howerer, to suggest itself as possibly applicable to some cases of extremely generalized and indefinite types (e.g. Remicra indistineta and Hymeniacidon carunenta, which are common to the British and Anstralian seas), viz. an independent origin of the same species, or of what to a zoologist's cye is the same species, at two different localitics. The number of points by which it is possible to distinguish species of (e.g.) Reniera, Hymeniacidon, Amorphina, and Suberites from one another is so small, and these points are so variable and so relative in their character, that it is quite possible that the same end (i.e. the same specifie characters) may be attained by derelopment in the same direction of two distinet species, the result being a soological but not a natural species, or, in other words, of species which are distinct from each other but which cannot be shown to be so.

2. Distribution of 'Aleat' Species within Australian Seas.

List of the Species colleeted on the Australian coasts, or in the Arafura Sea, by H.M.S. 'Alert,' 1881, with their known distribution in those waters. [The localitios for Southern and Western Australia, and in one or two cases for Port Jackson, are given from previons writings; the rest are those due to the 'Alert' investigations.]
Note- - Where the distribntion of a variety of a species is given, the distribution of the typical form is also given (when Australian) opposite the name of the species. The stars opposite the name of the variety refer exclusively to the variety.

9. Carterispongia otahitica, Esper. 		*	*				
Family IIIRCINHDE. 12. Hirciuia horrens, Selenka \qquad 13. -, sp.	*		*				
Family DISIDEIDE.							
14. Dysidea farosa, Marshall 15. - fisca (Carter?)			*		*		
16. - digitfera, n. sp...			*				
\qquad 		*					
18. Pammopemma sensum, var. subfibrosa, nor. ...			*				
Family APLISSINID.E.							
19. Aplysina membranosa, Pallas			*				
20. Lanthella flabeliformis, Pallus..					*		
Order Silicea.							
Suborder Moxactinellida.							
Family CHILINID.							
21. Chalinu monilata, u. ap. 20. Oladochalina urmigera, Duch. f" Mich	*	*	*				
			*				
24. - nuda, n. sp...............			*				
25. - subarmigera, ni. sp.			*				
26. - perganentacea, Iidlcy			*				
27. Acerrochalina finitima, Sehmidt	*	*	*				
29, - confoderata Lamarek?')			*				
30. Siphonochalina tubulosa, Esper. var...		*	*				
31. Tubulodipius commumis, Cartor	*						
32. Toxochalina folioides, Bowerbunk	*						

It is at once apparent from this Table that by far the largest number of species ($6+4$ in all) have heen obtained from Torres Straits; that is, no doubt, partly due to the large number of dredgings taken and the number of minor loenlities investigated here. The Renieride are the only family of Nilicea or Ccratosa which are not strongly represented. The forms most abundant here are lotiorhoter prorpercet,
\pm It is uncertain to which eariety the locality given by Hackel refers.

Gelliotes fibulate, Rhizochulina sintraporrasis, var., and Chethria reimuardti, var. subcylindrica. Detyonido and 'letractinellida are relatively the most rich in species in this subequatoriat region, 12 out of the 17 species collected of the first and 7 out of the 8 of the latter gromp being obtained here. It is remarkable that the only Siliceons species hitherto recorded with certainty from the locality, so far as I am aware (Lenospongiu putelliformis, Cray, P. Z. S. 1858, p. $229, \mathrm{p} 1.12$), has not appeared on this vecasion ; it was, however, perhaps obtamed from deep water, as its apparent affinity to Ilalichemda, Bowerbank, of the British seas would sugrest. and no specimens were obtained on this oceasion from deep water (if such exists) in Torres Straits.

Of the other localitics. Port Darwin on the norti-west and the eastern Qneensland coast on the east have been the most productive. As might have been expected from the wide extent of moderately deep sea which separates Jort Darwin from Torres Straits, there are very considerable differences between their Sponge-fannas, althongh a larger number of dredgings made at the former wonld probably have reduced these differences. We find, howerer, the lotiochota (pupurcu) so common at Torres Straits replaced by another species, 1. buculifcru: Gclliochs fibulute and likizochalina sinyoporensis do not oren appear ; the Eetyonilie, so fir from being common, have but a single species here ; and the Renieride, so poorly ropresented at Torres Straits, have here 10 species. Unly a few suecies are here shown to extend across the Guif' of Carpentaria (Towvehuliuce folioides, Mhizochalina canalis, Stelletter purperca).

The Arafura Sca represents it somewhat deeper area, but, as might have been expected, shows affinities with Torres Straits on the one hand and Port Darwin on the other; 3 species of Mkizoctuliza and 2 Stellette are its chief representatives in the collection.

The Queensland const does not appear to be so rieh in Sponges as in Aleyonaria; in particular, the absence of Tetractinellida and almost total absence of suberitide characterizes the collections obtained from this region. The oceurrence either here or in Torres Straits of the whole of the 12 species assigned to species deseribed by lamarek is evidence in favour of the view that it was here that a considerable proportion of the Sponges described by him as coliected by MDI. Péron and Lesneur in the 'Mers Instrales' were obtained.

Port Jackson shows peeuliarities comected with its sonthern latitude, producing two British Suberitida besides Sonth-dustralian species of Lexconit and TViwinit: still, it has some species in common with Torres Straits. Six species range from the south to the north of Australia.

Classification.-I have followed no one author in this matter. The subject is in a state of transition, and I have adopted those dirisions which secmed most in accordance with the present state of our knowledge. Remarks on the characters of the different groups will be found under their names; in some cases (especially Chatinite, Desmacilinidue) important modifieations in scope or characters seem required by the results of the present eollection.
bigitizea ny riflctosurt

Terms employed. - These are essentially those used by Mr. Carter, as in my lieport on the 'Alert' collections from the South-American coast (1'roc. Zool. Soc. 1*81). The measurements given for spicules are the arirage maximem measurements; the diameter of a spienle is its yrectest diameter : spines are not included in spriculemeasurements.

CERATOSA.

Cernospongix, Schmidt, Spong. Adr. Meer. and AIf. Geb.

SLONGIID.E.

Bibulida, and Hircinida, pars, Carter, Aur. F. Mag. N. Il. (4) xvi. p. 132.

1. Cacospongia mollior.

Schmidt, Adr. Meer. p. 27.
A specimen in spirit, pedicellate, consisting of one prominent lobe and a lower broader portion, and a fragmentary pkeleton. The apices of the conuli are about - millim. apart ; the consistence is firm but compressible and clastic, the dermis black and glabrons, the sarcode rather opaque yollowish brown; the primary fibres long, straight, and with very rare foreign bodies, diameter 1 millim.: the secondaries making very varions angles with the primaries, and forming numerous irregular meshes of variable size and angular shape; diameter of tibre $\cdot 035$ to $\cdot 07$ millim. ; fibre of both kuds coarscly laminated.

The sperimen is 68 millim. (23 inches) high, 25 millim, in greatest breadth, 12 millim. in greatest thickness, and seems to agrce in the main with Schmidt's species, although the network of the fibre is less regular and close.

Hab. Prince of Wales Chanuel, Torres Straits, 5-7 fms.
Distribution. Adriatic (Schmidt).

2. Euspongia foliacea.

\& Spongia foliacea, Esper, Pflonzeuthiere, Furtartz. i. p, 201, pl. Ivi, P Platychalina foliacea, Ehlers, Dic Espersch. Spong. p. 21.
It is with much regret that I have to express a doubt whether the sponge for which that careful observer, P'rof. Ehlers, establishod the above genus is, as he asserts, a Chalinid. My reasons are as follows :-From II.M.S. 'Alert' there has been obtained a sponge, in fine preservation although dry, agrecing minutely with 1sper's figure and description, except that the "pores" are smaller and more scattered and numerons, and not placed on the back, but on the front. With the exception of a rery few fragments of spicules of different thicknesses, fomd singly and rarcly in a few fibres, there are no spicules at all, mad the sponge is evidently a Ceratose species, differing from the common species of Ensponyia only in its thattened form. The fibres of the main skeleton agree in their consistency
and non-rectangular arrancement with those of Ensponyia, and, as stated already, foreign bodies are the cxception eren in the surfacetufts; the diameter of the filmes is + to 7 millim. (Fhlers gives 5 to - 8), except in the delieato Ditelu-network of the surface and interstices, where it is r008.) to roze millim. Ehlers says that the fibres contain "in der dxu vereinzelte solir dünae spitz-spritze Nadeln ($0 \cdot 1 \mathrm{~mm}$. lang, $\cdot 006 \mathrm{~mm}$. breit) welche nur in den kegelfirmigen Zuspitznngen an der Oberthiche des Schwammes etiras dichter gehäntt sind." Their ocenrrence singly ("vercinzelte") and not in longitudinal scries, if that is what is implied, is not the usual mode of occurrence of spienles in thic filses of Chaliniden (though it ocenrs oceasionally in some fibres of (luchectatitur), nor is their greater abundance in the surface-tufts, so fur as I know, usual in this family. These statements appear to me to point towards the true explanation of the nnture of these spicules, viz. that they are foreign, and taken in (as is thanally the case in Fuspongia) as foreign bodics in small quantities into the surface-tults. I re-examination of the original specimen is desirable. If Esper's species is a Chalinid, then the present species is a Frispomyir-isomorph of a Chalinid form, like the Chalinopsid represcutatives of Siphonochuliang and Iochyrhalike which Sehmidt (Spong. Meerhusen Mexico, p. 80) has deseribed as Siphonocherlinopsis and Pachychatiropsis.

I hare satisfied myself that another explanation which might be stggested, riz. the dissolution of the spicules from the fibre of the Sponge (as in Carter's Aplysinuc chatinoides, atterwards found to be a true Chalinid), cannot apply to this case. I have studied the fibre rery carefully, with and without the aid of potash, and can assert that it uerer possessed "proper " spicules.

The respective localitics (Cape and Torres Straits) perhaps constitute relative objections to the specific identity of the present with Esper's species.

Hob. West Island, Torres Straits.
Distribution. Esper's species is from the Cape of Good Hope.

3. Euspongia officinalis, Liané, var, cavernosa. (Plite XLI. fig.g.)

From a depth of 10 fathoms in Torres Straits we have a small turnip-like sponge, unfortunately presorved only in the dry state, which to the unaided eye presents the gencral appearance of a Rhizochalina fistulosa, with sereral tubular processes, 10 to 85 millim. long and 8 to 10 millim, in greatest median diameter, on its upper surface; these processes are, however, ragged in outline at their distal ends, and evidently in life opened through the fringed aperture, now obscured by the falling together of the sides; their sides are in some eases fenestrate. The body of the sponge is rudely globular, and is drawn up above into monticular elevations, which are terminated by the tubes just described; the base is somewhat flattened, and has apparently been attached at three points to rock or gravel at thesca-bottom, portions of which are still left imbedded in the sponge. The chief horizontal diameters of the sponge-body are 45 and 55
millim. respectively ; the vertical height, viz. to base of uppormost tube, is 30 millim. The surface is darkish umber-brown in colour, that of the body has a slightly irregularly wrinkled parchment-like appearance, that of the tubes is somewhat wrinkled in the direction of their length, and one of them presents further a somewhat shagreen-like surface, as if beset with rery short conuli (scarcely 1 millim. high). On dissection it is found that whereas the tubes are chiefly (in the dry state) composed of a horny skeleton, 1-2 millim. thick, the body is a very cavernous mass whose bulk is largely occupied by large canals or chambers, 7-10 millim. wide, opening directly into the bases of the similarly wide tubes, the skeleton of the body thus consisting of trabecule with smooth, rounded surfaces ; the subglobular appearance of the body is produced by the bridging over of the spaces between these trabecule by a brown paper-like membrane, which is found on microscopic examination to contain no horny elements, but may or may not enclose a certain quantity of minute foreign bodies (sponge-spicules, de.).

Examining the skeleton of the body with the microscope, I find from rertical sections that it consists of a close reticulation of solid celindrical horny fibres, distinguishable as :-(1) primary, stouter, approximately straight and parallel to each other, abont $\cdot \mathbf{7}-04$ millim. apart, more or less vertical to the surface, according to position, thickness about - $03-04$ millim. ; and (2) secondary, similar to primary, and more or less rertical to them, but often royy obliquely placed, thickness about $\cdot 013$-03 millim.: distance apart rery variable, from 14 millim, upwards. Colorr of fibre, pale to medium amber-colour. Although single primary fibres do not appear to project in the way strikingly exhibited in the more typical forms of Euspongiu officinutis, where they project well abore the general surface, and where distinct "conuli" are formed by the dermis around their bases, yet the sections show an aggregation and projection of the geueral skeleton at certain points, apparently representiug connli, but not (in the present state of the sponge) finding expression on the outer surface in the conical eminences which usually occur here in Eusponyiu. On the tubes the dermis (immedintely below a membranous substance contnining a few foreign bodies) is formed by a very close and regular horny network, composed of primary and secondary fibres, like the main skeleton, but arranged parallel, instead of vertically, to the surface. The proportions of the fibres are about the same. respectively, as those of the main skeleton, but the primaries are only $\cdot 03-1$ millim. apart. All the skeletonfibres are deroid of sand-core, but are coated (in parts strougly) by the minute strongly refractive brown globnles which Prof. F. E. schulze has considered to be probably of Cryptogamous affinities.

In two points is this monge of especial interest, viz. (1) in the almost comblete subordination of the geucral arrangement of the skeletal framework to the largely developed excretory canals: (2) in the almost total suppression of the "conuli." A further point is the alisence of sand-cored fibres. I was at first inclined to separate it generically from Euspongue, as laving the large meandrine
excretory chambers, separated by comparatively narrow and shectlike skeletal trubecule, with even surfaces, which distingnish Ilippooponyuts; but on looking at the bricf description given by Prof. F. E. Sehulze (Zeitsch, wiss. \%ool. xxxii. p. $62(0)$ of the. driafic form which he has placed under Buspontrice officiaulis, as var. tubelose, I saw that he had had a closely similar form before him. It agrees with our speeimen in the long tubes (of mneh less diameter, howerer, in the Adriatic tubulose than here) aud in the absence of sandcored fibres: but it appears to want the following striking peculiarities of our form:-(1) subglobular form (inerusting in Schalze's specimens) : (2) trabecular structure of main boly: (3) absence of conuli (they are stated by Nelhuze to occur on the general body of the sponge, but in a very well-preserred specimen in absolute alcohol which he has liberally presented to the National Collection, I find them only on some small digitate lobes which spring from the body : those possibly occurring upon one of the tubes in rar. ctevernoste are eridently only exceptional) : (4) approximate equality in stoutness of fibres throughout (in var. tubulosk those near the surface are said to be thinner than elsewhere).

In a preparation made from Prof. Schnlze's specimen I do not notice a special thimness of the fibres at the surface, but they seem to have a slightly greater diameter throughout than in our form.

Considering the dry state of this single specimen and the evident plasticity of form in E. officimalis, I think it best to associate this form provisionally with that termed by Prof. Schulze var. tubulosa, feeling that it may be only a mere extreme variation of the species in the same direction as that varicty, deferring (as I feel bound to do ou a question which Prof. Schulze has made so eminently his own) to Prof. Schulze's judgment in specifically uniting aberrant forms like these with those familiarly known as E. officinutis: [am, however, induced, from the points of divergence from tubulosa noted above, to assign to it a distinct rarietal designation.

Hub. Torres Straits, 10 fms.
Distribution (of species). Mediterranean (Schelze, \&c.).

4. Euspongia septosa.

PSpongia septosn, Lamarck, -Ann. Mus. Mist. Nitt. xx. p. 373.

It is possible that Lamarek's species, of which I have access to the description only, is a Dendrosponyiat (Hyatt), as its somewhat honeycomb-like surface renders not impossible: but it seems to resemble a species in this collection, represented by two small specimens in spirit, of a dark grey colour, each attached to two or more stones, over which they form horizontally expanded lamine which rise into subeylindrical lobes 5 to 7 millim. in diameter. The surface is broken up by a number of sharp prominent ridges and points 1 to 3 millim. bigh ; the intermediate surface is rough. Primary skeleton-fibres set approximately at right angles to surface, thickness about 06 millim.; secondaries approximately vertical to primaries, about $\cdot 035$ to $\cdot 053$ millim, in thickness, forming with some connecting
fibres rounded-angled meshes, $\cdot 14$ to $\cdot 21$ millim. in diameter, between the primaries, which are abont 42 millim. apart. Skeleton-fibres amber-yellow in colour, nsually homogeneous in appearance throughout. Primaries cored to some little distance from surface by a usually single series of small forcign bodies: scoondaries uncored. Sarcode dull pile brown, subtransparent. Textare of spouge in spirit very tongh and clastic.

Heb. Alert Island, Torres Straits, 7 fms .
[Distribution, "Australian Seas" (Lamurcl) ?]

HIPPOSPONGIA.

Schulse, Zcitsch. wiss, Zonl. xxxii. p. 614.

Under this head, owing to the sheet-like aggregation of the skeleton-fibres on the different surfaces, and the large tubular cavities formed by the exeretory canals, I am for the present including those Spongiide with mreandrine main excretory canals, as Cacospangia cuvernasa, Esper, and Spongit intestinulis, Lamarek, as a subdivision of the genus. Characters may, perhaps, in the future be discorered in their soft parts to justify their separation from that genus. The following is a third species referable to this seotion of Mippospongia.

5. Hippospongia derasa ${ }^{*}$. (1'lute XLJ. fig. A.)

Sponge sulblobose ; surface and interior of skeleton honeycombed by meandering and branching exeretory canals 2 to 3 millim. in diameter at the surface, opening into larger spaces at a short distance within the sponge. Texture of sponge firm, but elastic, in dry state: colour buff, becoming ochreons in parts.

Skeleton at surface betweon openings of canals smooth and compaet, as if pared by a knife; walls of canals smooth. Primary fibres simple, straight, either (1) cored and set at right angles to surface, but not projecting beyond it, diameter. where not distended by foreign bodies, (05 millim.; or (2) not cored by forcign hodies, set approximately at right angles to cored primaries, diameter about 035 millim. Secondaries forming either sobrectangular or irregular meshes between the primaries ; diameter -018 to 022 millim, Diameter of the ultimate meshes 07 to 14 millim. : distance between primary filres 18 millim. Fibre dense, homogencons, elastic; colour pale amber-yellow.

Hab. West Tsland, Torres Straits (washed up).
The single dry specimen is subhemispherical, and measures 60 millim. (22 inches) in length by 35 millim. ($1 \frac{1}{2}$ inch) in height. The species is most nearly allied to H. (Spomict) intestinalis. Latmarck, but has the fibres ouly about two thirds the stoutness of those of that species, and it is suhglobose instead of being clongated and tubular. The texture of intestinalis is coarser and hapsher than that of this species, partly owing to the thickness of the fibres

[^1]and the greater number of cored primarics. Spmajia cavernosa, Esper, differs from both in having the surface between the canals chinated with tufts.

The peculiarly smooth and nubroken character of the surfaco of the skeleton between the openings of tho exeretory emals appears to be due mainly to the remarkable moditication of the nsual position of the meored primary fibres, by which, instead of ruming parallel to the cored primaries, and so meeting the general surface at right angles and (as is usnally the ease) by a superficial projection, they run approximately at right angles to the very scanty cored fibres, and so parallel to the general surface of the sponge ; the very closo interstitial network further adds to its density and evenness of the texture.

STELOSPONGUS.

Stelospongos, Schmuidt, Att. Geb. p. 29; Hyatt, Mem. Bost. Soc. ii. pt. 3, p. i2s.
Polyibrospongia, Bowerbunk, P. Z.S. 1872, p. 459.
Stelospongia, F. E. Schmize, Zeitsch. veiss. Zork, xxxii. p. 613. Stellospongia, Marshall, Keitsch. wiss. Zool. xxxv. pp. 90, 118.
I eannot sce amy snfficient reason for Marshall's mode of writing the name of this gems. The tirst part of the word appears to be based on orind, a column. from the frequency with which Sclmidt alludes to the columns ("Säulen") formed by the main fibres of the skeleton.

6. Stelospongus excavatus. (Phtm N.L..I. fig. A.)

A small spirit-specimen, obtained at Port Molle. Qneensland, has a head which arises from a short pedicel, is broad and semitruncate above, and cap-like, being excavated on its upper surfaco by four pits, the deepest ocempying a great part of the thickness of the sponge; each pit contains a vent ; the vents vary in size from about $\cdot 25$ to 3 millim. The colour in spirit is greyish white (puity colonr) : the dermis conceals all the skecton but the ends of the primary fibres, which appear as low points over the whole of the onter surface and just inside the margins of the pits.
The skeleton-lines measure about 33 millim. in diameter, the individual fibres of primary lines from 018 to 028 millim. in diameter, those of the large secondary lines $\cdot 07$ millim. Both the secondary and primary fibres enclose more or less foreign matter, which also occurs on the outside of the primary tibres and dermis, forming a kind of mosaic. Greatest height and lreadth of the single specimen 31 and 25 millim, respectively. Several large nucleated and unsegmented ova are discernible in the tissues, scattered or aggregated in groups of two or three; the diameter of the largest is about 06 millim. : one was also observed which had apparently divided into four segments.

A fine dry specimen, 300 millim. in gross height by 95 in the maximum diameter of the cup, provided with a slender pedicel 150 millim. long, breaking up below into a number of long stringy rooting
fibres, was also obtained. No far as the rents can be made out, they are numerons, and occur in a zone just inside the margin of the enp. The primary fibres are very stout at the margin of cop, riz, about 5 to $\cdot 7$ millim. in diarneter, exclusive of their sandy coating.

Hab. Port Molle, Quecnsland, between tide-marks; Arafura Sea, off north coast of Anstralia, $32-36$ fins. (the larger sjecimen).

The external position of the sund on the fibres recalls Mauricea, Carter (Ann. © Mag. N. H. (4) xx. p, 17t), for which see below (Corterispoagia). In this point, and in the arrangement, proportions, and other characters of the skeleton-filies, the species strongly resembles Bowerbank's Polyfilrospongia flulellifera (Proc. Zool. Soc. 1577. p. 459), from the north of New Guinea: but the shape of that species is entirely different, being fan-shaped and quite thin, and the vents are describel as inconspricuous.

7. Stelospongus implexus. (Puite XXXLN. fig. B.)

Stipitate, with short, usnally flattened or compound pedicel : subturlinate, the wall usually proliferating inwards, and then anastomosing. forming a chambered cup, with thin walls (2 to 4 millim. thick). Outer and inner surfoes even, the outer marked strongly, in the dry state, by longitudinal projecting skecton-ridges, the inner slightly so by the subreetangular superficial skeleton-network. Vents? Texture in dry state harsh, but yielding and rathor brittle. Colour pale greyish brown.

Main skeleton at some distance below surface consisting of stout fascicles of primary fibres, vertien to the surface, about $\cdot 17$ millim. in diameter (the indicidnul fibrils about 025 millim.), densely coated by a mosuic of small sand-grains, counceted towards the surface by secondury lines of similar structnre, about 05 millim. in diameter: the primarics, when near the surface, become cored with foreign bodies, and become more condensed, sometimes forming int a single fibre. 1 millim. thick. Dermal skeleton on exterior of oup consisting of parallel single fibres 1 to $\cdot 17$ millim. in diameter, conted, and to some extent cored. by small foreign bodies ; intermediate membrane sparsely strewn with similar foreign bodies. Nareode pale amber-yellow, transparent. Skeleton-fibre very pale yellow in the stuall, deep amber in the large fibres.

Hub. Port Molle, Queensland, coral-reef.
This species differs in external form from all those described by Hyatt (Mem, host, Koc. ii.). In the only cup-shaped form alluded to by Schmidt (Atl, (ieb, p. 2ti) the walls would appear to be relatively mnch thicker, as is the case in S. excuratus, mihi (sumpù). This form approaches that species closely, the skeleton- and surfacestructure being almost identical in the two cases; but the wellmarked tendeney to proliferation and formation of secondary cavities in the cup and the shortness of the pedieel further distinguish S. imphocus. This is a small species : all four specimens obtained (whieh were dry) were in their natural state between 40 and 60 millim. high, alid between 40 and 60 millim, in greatest diameter at the tip.

8. Stelospongus intertextus.

? IIyatt, Mem. Bost. Soc. ii. p. 532 .
A fragment of what was probably cither a cup-shaped or flabellate specimen is, perhaps, referable to this species : the structure of the skeleton agrees faidy with Hyatt's description : at some little distance below the surface the primary skeleton-lines are very stout, vi\%. 14 millim, and upwards in diameter, and mostly cored, not coated, by foreign material; the skeleton is elastic and very compressible.

Heb. Port Jackson, 0-5 fms.
Distribution. Mauritius? (IIyatt)?

CARTERISPONGIA.

Halispongin, Bowerbank, Mon. Brit. Spony, i. p. 207 (nec De Blainville).
Carteriospongia, ILyatt, Mem. Rost, Soc. ii. p. 540.
Mauricea, Curter, Anu. \&. Mag. N. II. (4) xx. p. 174.
De Blainsille founded the genus IIalispougia (Man. Actinol. p. 532) to contain a number of sponges, of which the first is Spongia papillaris, Grant (=Halichondrice paniceu, Johnston), and which are stated in the generic diagnosis to contain siliceous spicules; therefore Bowerbank is clearly wrong when he describes and figures (Mon. Brit. Spong. i. pp. 207, 278) an obriously horny sponge as typical of the genus. The sponges which he has referred by name to this genus (H. choanoides, mantelli, ventriculoides, stellifera) appear to be all in accordance with his, but not with De Blainville's idea of the genus. Hyatt formed the genus Curteriospoagia nominally for a species called by him otalitica, Esper, which is, however, apparently lemellosa, Esper, to the plate of which he refers. This species differs in outward form from the cup-shaped or palmate Halispongie of Bowerbank, but agrees with them in the skeleton structure, while some Halispongio agree in possessiug the cabbagelike growth which characterizes Hyatt's typical Curteriospongice. So many species (Hatisponyia ventriculoides, spongia fissorata, Lamk., \&c.), which appear to agree in all other points with Hyatt's ronception of the genus, have, nevertheless, the secondary fibres sand-cored, that I venture to omit the character "absence of foreign matter from the secondary or connecting fibres," which he attributes not only to the genus, but to the entire family Phyllospongiade in which he places it. Schulze (Z. wiss. Zool, xxxii. p. 613) upholds this genus as a true member of the family Spongiida as revised by himself. In the second part of this work I shall explain the reasons why I cannot admit Mauricee as a distinct genus.

9. Carterispongia otahitica.

Spongia otahitica, Esper, Planzenth, Fortsetz, 1. p. 209, pl. Ixi. figs. 7, 8 .
Halispongia ventriculoides, Boacerbank, P. Z.S. 1874, p. 301, pl. xlvii. tigs. 1, 2.

$$
\text { Digitized by Microsoft }{ }^{(8)}
$$

? Cacospongia poculum, Selenka, Z. wiss. Zool. xvii, p. 567, pl. xxxr. fig. 7.
The specimens agree well with Esper's figure 7 and Bowerbank's specimens.
$11 a b$. Bird Islaud, N.E. Australia (from coral-reef).
Distribution. J.E. Anstralia (B.11.coll.); [Melbourne (SelenKa)?]; Otahcite (Ellis).

10. Carterispongia lamellosa.

Spongin lamellosa, Esper, PRansenth. ii. p. 270, pl. xlir. Cacospongia lamellosa, Ehlers, Espersch. Spong. p. 15. PCarteriospongia otahitica, Hyatt, Mem. Bost. Soc. ii. p. 541.

Fine dry examples showing the cabbage-like growth characteristic of Hyatt's genus. Also specimens with single stem (showing, however, traces of being composed of two or more united axes) and simply flabellar, with more or less prominent longitudinal ridges on one side, sometimes forming secondary flabellate expansions. The specimens, being still invested with dried sareode, have an umberbrown colour and a stiffuess, which contrasts strongly with the very pale colour and the flexibility of washed-out specimens.

I cannot agree with Prof. Ehlers in placing this sponge, with its elose network, mider Cacosponyia, which is distinguished by the loose wide meshes formed by the fibres.

Hrb. Port Molle, Queensland, and "North-east coast of Australin." Distribution. Uncertain.

11. Carterispongia fissurata.

Spongia fissurata, Lamarck, Amn. Mus. Mist. Nat. xx. p. 382.
Carteriospougia verwifera, Myatt, Mem. Bost. Soc. p. 5.3.
Cabbage-like heads formed of flabelliform expansions, which fold round at their lateral extremities, which then may, or may not, unite with similar fronds which arise parallel to cach other from the multiple-stalked base or from the surfaces of other fronds. The surface of the skeleton is even, without projecting ridges, but honeycombed with small longitudinal, comnected by short horizontal, demi-canals, between which intervene small, usually lougitudinally elongate ridges, which all lie on one level. The fibres show very distinct lamination of the ceratinous material: both primary and secondary fibres are sand-cored, but the sand is often wanting over certain areas of the skeleton. Represented by dry specimens.

Hub. Thursday Island and Channel Rock, Torres Straits.
Distribution. "Australian seas" (Lamarck); Phillip's Island probably near Melbourne (Hyatt).

HIRCLNIID.E.

Schulze, Zeitsch, wiss. Zool. xxxii. p. 594.

12. Hircinia horrens.

?Spongelia horrens, Selenka, Zeitsch, wiss. Zool, xvii. p. 500.
Differs from Selenka's deseription in the pale colour (dull yellow or putty-colour) of the sponge as a whole and the pale brownish colour of the sarcodo ; the former is perhaps due to the absence from the dermis of the dark bodies described as nuelei. The fibres are closely retienlate in the conuli and in parts of the dermis; in other parts the latter is homogeneous, but of a ceratinons appearance; the diameter of the fibres is $\cdot 0+2$ to 0085 millim. (Selenka gives $\cdot 07$ to -15). The counli are, as in Selenka's specimen, about 5 to 10 millim. apart, but not so prominent as most of those in that specimen. The specimen is an irregular lohate mass growing over some bottom material, and is itself much overgrown by a sponge (lotrochota), a Didemnid Ascidian, and a creeping Aleyonarian (Cullipodiun). This latter fact may account for the pale colour, which is perhaps owing to a sickly condition produced by the growth of other animals obscuring the pores; and indeed an orange colour in one part of the sponge itself seems likely to be due to local death. It is possible that Selenka's species may prove to be an A_{p} lysina. The specimen is preserved in spirit.

> Hab. Prince of Wales Channel, Torres Straits, 7 fins.
> Distribution. Bass's Strait (Sclenka)?

13. Hircinia, sp.

Three specimens in spirit, incrusting in growth; colour fleshtint. The primary fibres are almost full of foreign bodies in the Torres-Straits specimen, less often so in the Port-Jackson one, and are about $\cdot 18$ millim. in diameter; the secondaries at aeute angles to the primaries, generally free from foreign bodies, and about -06 millim. in diameter.

I had referred this to a species of Selenka's which I now see has been referred to Aplysilla by Prof. F. E. Schulze. I hope to describe it more fully at a future time.

Hab. West Island, Torres Straits, 7 fms.; Port Jackson, $0-5$ fms.

DTSIDEIDA.

Gray, P. Z. S. 1867, p. 511.
Gray appears to have been the first to give a distinctire name to this family, although Bowerbank (Mon. Brit. Spong. i. p. 211), in 1864, makes Dysidea the type of a distinet suborder, to which he gives no name. Marshall ("Ueber Dysideiden und Phoriospongien," Zeitsch. wiss. Zool. xxxy. p. 92) employs the same name; and as his arguments for the retention of the generic term Dysidea instead of Spongelia appear to me to be ralid, it seems desirable to retain the old family name, which is derived from it, in preference to spon-

$$
\text { Digitized by Microsoft © } \mathrm{E}_{6} \mathrm{C}^{2}
$$

gelidx, which Vosmaer has reeently (Mitth. Zool. Stat. Neapel, iv. pp. $444,4+5)$ employed. On the geographieal distribution of the members of the Family see the subsequent Report on the Collections made in the Western Indian Ucean.

14. Dysidea favosa.

Marshull, Keilsch, wiss. Zool. xxxv. p. 98, pl. vi. figs. G-11.
Fragments ; exhibiting, howeser, the secondary pouches in the wall of the tube. into which the excretory cavals open, as described by Marshatl. Here also, as in Marshall's specimens, the foreign contents of the fibres are chiefly sponge-spieules, but linear siliceous forms seem to prevail.

Hab. Port Darwin, between tide-marks.
Distribution. Bass's Strait (Marshall).

15. Dysidea fusca.

? Hircinia fusea, Curter, Ann. \& MIag. N. II. (5) ri. p. 36.
One specimen is composed of two anastomosing lobes, somewhat compressed, 9-17 millim. in diameter, one being pointed and 45 millim. high, the other shorter and blunt. Vents few, scattered between conuli; tubereular, about 1 millim. across. Counli 2-3 millim. apart, about 1 millim. high, apex often ridge-like ; intermediate surfaces coneave, depressed, glabrous. Texture in spirit fairly tongh ; colour dark reddish brown. Mr. Carter speaks of the fibre being " corered" with foreign material. In this specimen it is very coarse, viz. 07 to $\cdot 25$ millim, thick, and has the structure of that of Dysidea (i.e. is filled with coarse foreign bodies). Sarcede dense, reddish brown, granular. Main skcleton somewhat irregular, primary fibres plainly distinguishable only near surface; secondary fibres stont, irregular in direction. Dermal skeleton chiefly composed of coarse fibres, $\cdot 25 \mathrm{millim}$. broad, radiating from conuli. The fibres of the main skeleton contain a distinet yellow horny substance, and are oceasionally devoid of foreign bodies for a short distance.

It seems possilile that this may be Mr. Carter's species, but his description is too short to deeide the matter. In a second specimen, which covers the upper surfaces of the body and limbs of a crab, throwing up short lobose projections at intervals, the conuli are smaller, pointed, and only 1 millim, apart, and the colour is a dull reddish brown.

Hab. Prince of Wales Channel, Tharsday Island, Torres Straito, 3-4 and 7 or 9 fims.

Distrihution. Ceylon (Carter)?
Histoloy!!. The cortex and subjacent tissues contain large quantities of granular reddish-brown cells, with cireular outline, apparently those of the ectoderm (Schulze) lining the excretory carities, which give the sponge its peculiar colour. In some parts of the paler-coloured sponge they are still distinguishable, but in others they are scarcely demarcated from the general transparent sur-
rounding tissues. The paler colour, to the natural oye, of the latter sponge appears to bo due to the greater concentration of the pigment within the cells : a similar effect is produced by a similar causo in some Cephalopoda (Loligo).

16. Dysidea digitifera. (Pheste NLL, fig. C.)

Curred and anastomosing eylindrieal digitations, about 3 millim. in diameter, arising from the upper aspect of :un erect, compressed, irregular basal mass, and tapering gradnally to pointed ends. Surface even, minutely ronghened by the presence in the dermis of a coarse, reticulate, horizontal skeleton. Vents fer, seattered on main mass of sponge, subeireular, leading deeply into sponge. Texture (in spirit) very friable; colour pale greyishi brown. Main skeleton composed of large forcign bodies, united by a thin, almost colourless membrane (not risible unless the fibre is broken) : primary * fibres running approximately at right angles to surface; secondaries (tertiery of Marshall) approximately parallel to surface, very short; meshes narrow, about -07 to 09 millim. broad, rounded; fibres 019 to $\cdot 0.5 \mathrm{millim}$. thick. Dermal skeleton formed of fibre similar to that of the main skeletou, about -025 to 055 millim, thick, forming circular or oral meshes, 032 to 09 millim. broad. Sarcode pale greyish brown, rather granular.

Hab. Albany Island, Torres Straits, 8 fms.
This is a delicate species, distinguished from all other deseribed species by its closed digitate processes (those of D.callosa, Marshall, bear rents) ; in being devoid of conuli it differs from most species, but seems to agree with Dusidea kirkii, Carter (Amn. \& Mag. N. H. (5) vii. p. 374), ? Bowerbank.

Height of sponge 40 millim. ($1 \frac{3}{5}$ inch) ; greatest lateral extension 25 millim. (1 inch): longest individual digitation, 20 millim. ($\frac{4}{5}$ inch). The sponge has grown up amongst and over some specimens of Eudendrium.

17. Dysidea semicanalis. (Plate NLI. fig. B.)

A hollow flattened vertical common stem, giving rise to several vertical cloacal tubes, some of which are open on one side (cridently formed in some cases by the folding over of surface-ridges), united moreor less by their projecting knife-like adjacent edges. Tubes about 60 millim. ($2 \frac{1}{3}$ inches) in greatest length; mean internal diameter about 6 millim. ; contracted at mouth, their walls 3 to 4 millim. in greatest thickness; inner surface provided with a few shallow pits. Onter surface bearing a few long, but not prominent, ridges running from near base to near the upper end; surface between ridges even, minutely honeycombed in dry state by small, longitudinally elongated spaces, separated by fibres of dormal skelcton, and about 5 millim. in their smaller diameter. Texture, in dry state, rather harsh to the touch, firm but elastic, compressible and somewhat tough. Colour pale yellowish brown.

[^2]Main skeleton forming rectangular meshes ; primary fibres strong, running at right angles to surface, exhibiting horny margins (which may form as much as one third of total thickness of fibre), about $\cdot 25$ to $\cdot 35$ millim, apart, $\cdot 1$ to $\cdot 18$ millim, thick. Secondary fibres vertical to primarics, at about the same intersals, either without foreign bodies or with only about half to two thirds of the thickness oceupied by them; in the former case $\cdot 035$ to $\cdot 0+3$ millim, thick, in the latter $\cdot 053$ to $\cdot 1$ millim, thick, Longitudinal fibres (prinary of Marshall) of same structure as primaries, but less homy, $\cdot 18$ to $\cdot 28$ millim, apart, $\cdot 14$ to $\cdot 21$ millim. thick, running upwards and spreading out somewhat from each other. Dermal skeleton composed of long compound fibres, the primaries running parallel to each other and to the long axis of the spouge, 35 to $\cdot 43$ millim. apart; the secondaries extended between them at considerable intervals; primaries $\cdot 1+$ to $\because 8$ millim. broad, secondaries $\cdot 1$ to $\cdot 14$ millim., the horny matter of the former usually, of the latter often, obscured by the foreign bodies, which often project much from the fibre. Horny substance amber-yellow. Sarcode amber-yellow, transparent. Foreign bodies of fibres small, chiefly sand.

Hab. North-east coast of Australia.
The single specimen is 105 millim. (41 inches) high by 65 millim. greatest width. In its eren compact surface it differs from all other Dysidee except D. farose, Marshall, with which it also agrees in the large development of the tubular form which it exhibits. The strongly horny character of the sccondary fibre, howerer, distinguishes it from this (as from most, if not all other) species, and allies it to Hircinia. These striking characters, and the good preservation of the specimen, seem to warrant its description.

18. Psammopemma densum, Marshall, var. subfibrosa. (Plate NLL. fig. h.)

Psammopemma densum, Marshall, Zeitsch. wiss. Zool. xxxr. p. 113.
Agreeing closely in size and oxternal characters with Marshall's account of this strange form is a specimen in spirit in the present collection. It has the size and almost the shape of a horse-bem, und is of a grey colomr. The dermal membrane contains mumerous foreign bodics, but is in parts transparent, thongh fibrillated. Owing to an inferior amount of contained sand, a distinct net work of wholly sandy fibres is to bemade out, which Marshall did not find in his specimens ; the meshes are round, abont 3 millim. in diameter, in the natural state almost filled up with sarcode containing foreign bodics. sareode very pale brown, sultransparent. The radiating tubes indieated in Marshall's figure (6) appear to me possibly to represent spaces between primary filbres: hut those fibres in the present specimen are not straight, but hend right and left to meet the short secondary lines; thas a vertical scetion of the sponge exhilits a somewhat honeycoml-like appearance. No trace of horny matter was observed.

Ilub. Thumday Island, Torres Straits, 3-4 fms.
Ihistrihution. Tnsmanin (Marshall).

APLISINTD.E.

Aplysinida, Carter, Aun. \&. Mag. N. H. (5) xvi. p. 132.
This name is used in a wider sense than that to which Vosmaer (Mitth. Zool. Neapel, iv. p. +14) limits it.

19. Aplysina membranosa.

Spongia membranosa, Pallas, Elenrh. Zouph. p. 30s. Spongia membranacea, Exper, Iylunzenth. ii. p. 25i, pl. xxxiv. ? Ianthella concentrica, $\mathrm{II}_{\mathrm{yatt}, \mathrm{Mem} . \text { Bust, Soc, ii. p. } 407 .}$? Aplysina purpurea, Carter, Ann. \&. Muy. N. II. (j) vi. p. 36.
A rery fine species, fortunately preserred in spirit as well as in tho dry state. It forms a erlindrical mass, which has the same general form as that given in Esper's figure (l. c.) : the base of the wet specimen is about 40 millim. ($1 \frac{3}{\hbar}$ ineh) in diameter. The dry specimen, which is mneh the largest of the two, is .jwo millim. (221 inches) high, and the maximum diameter, which is at ahout 5 inches above the base, is about 40 millim. ($1 \frac{3}{2}$ inch). At 77 millim. (3 inches) above the base a branch is given off, 22 millim. (78 inch) in maximum diameter and $1-45$ millim. (9) inches) in length, and on the same side, about 30 millim. higher up, a smaller branch, 12 millim. ($\frac{1}{2}$ inch) in maximum diameter and 75 millim. (3 inches) in height. The skeleton consists of a very open and irregular network of fibres, 1.5 to 2 millim. in thickness, which arise at the base of the sponge, and take a longitudinal but somewhat sinuous course along the interior of the cylindrical column of which the sponge consists. They throw out branches somewhat freely from their sides, and subdivido terminally into ramifying branches; the resulting twigs anastomose freely, the superficial ones end in ontwardly and upwardly directed points, usually bi- or tri-furcate, which are just eovered by the tongh dermis ; the apices are 18 to 25 millim. in diameter. The dermis and the internal membranes consist of a tough membrane of a puce or dull purple colour in spirit, almost black in the dry state. The membrune is seen with the uaked eye to be marked with numerous raised thickened lines, which radiate from the projecting apices of the dermal conuli (formed by the tension of the dermis over the points of the skeleton, as mentioned above), and branch and anastomose on the membrancs. Under the microscope they are seen not to be special fibre-structures, bat to consist simply of thickened membrane. The membrane is coloured by purplish cells, which are about . 03 millim. in diameter, and are crowded with semiopaque granules, to which they owe their colour. The fibres of the skeleton have a wide central carity, occupping abont half their diameter, and filled, or almost so. with a trausjarent substance coloured diffusely of a purplish-red colour. The walls of the fibre are composed of lamine which separate readily, and may then be seen to consist of a dark aubstance, mither readily torn, thickly set with fine dark purple-red
granules, lying in a diffusely stained subtransparent matrix of the same colour, but paler. A transparent membrane, consisting of an almost colourless matrix, containing few purple granules, appears to invest the fibre.

Iluh. Thursday Island, Torres Straits, 4-5 fms. ; bottom sand, or sand and rock.

Jistribution. "Indian Ocean" (Pallas).
Obs. In many particulars this species recalls Aplysina puppurea of Carter, but appears to differ fundamentally in the distinctness, large size, and non-multiplicity of the fibres: whereas in that species the axes of the conuli and the skeleton generally consist of aggregated masses of fine fibrils. If Hyatt's species is really like lunthella homer, with which he compares it, it cannot be this sponge, as it would be of flattened growth; but he appears to be uncertain on the point.

If one of the dermal concs, with the surrounding membranes, is treated with a strong solution of canstic potash, a dark brownishyellow colouring-matter is dissolved ont, thereby differing from that of Iuntlella, which is said to be riolet under similar circumstances (Gray, Proc. Zool. Soc. 1869, p. 50) ; nothing of the tissucs is left but a branched fibre or two and some tloceulent matter: therefore the only truly fibrous structures here are the terminal twigs of the skeleton.

The wall of the main skeleton-fibre of this species is much thicker than in most Aplysince, and its axial substance is not granular.

20. Ianthella flabelliformis.

Spongia flabelliformis, Pallus, Elench. Zoonh. p. B80. Inuthella flabelliformis, Gray, P. Z. S. 1869, p. 50.
A speeimen in spirit, somewhat imperfect, and not showing any of those exfoliations of the lateral surfaces which specimens commonly exhibit.

Hab. I'ort Darwin, 7-12 fms.; bottom sand.
DistriLution. Indian Occan (Pallus); "Anstralia" (Gray).

CHALINIDA.

In this family must now be included some forms with minute flesh-spienles. Homerodictya, Ehlers, is the earliest discovered case of this combination ; and 1 am able to add another, in a new genus, Toxochalina, which possesses fine tricurrates seattered in the sareode. I have relegated Thizochalinu to the Dessnacidinide for reasons given below (family Desmacidinidte). I have also given reasons for a belief that Platychalina, Ehlers, is a Ceratose sponge (see Enspongia, suprì).

The fact eannot be ignored that the genus Toxochaline, charneterized below, runs counter to the plan of classification hitherto
usually adopted in the family Chalinide, viz. that by the external form, in which both Carter and Selmidt agree. So long as, in the remaining features of their organization, the different members of the family did not present any sufficiently distinetive eharacters, it was impossible to do otherwise than arrauge them by this character, which, indeed, uppears to possess, from its approximate constancy in the species, more importunce than in some other families of Monactinellida. Now, howerer, that two markedly distinct types of tleshspienles have been found to occur (cff, the anchorate in IIomurolicty, (Chulinu, Carter) pulmate, Johnston), in addition to the normal acerate or fine suberlindrical, it scems necussary to apply the same rule as in other families, and nllow the spicular characters, where they are well marked, precedence over those derived from tho general form. Thus 1 have thought it right to unite here species which would. cuteris paribus, be elassed in groups Riptuter and Aculcatu of two distinct families (Chalinida and Cavochalinida) of Mr. Carter's classification. This single spicnlar character is supported in this case by the coesistence of a firm texture and a rectangular arrangement of the skeleton-fibre.

On the comparatively slight value of aeuleation of the surface and of erest or decumbent growth, see below under Chutlochatinu suthurnuigers.

In the present collection the family is represented by no less than 7 genera (8 , if Siphonochetina is to be regarded as distinct from Tubre) and 15 species, of which 1 genus and 5 species are deseribed as new. The latter are probably not forms of any great rarity, but owe their novelty to the very slight attention which has hitherto been paid to the Chalinidæ of the Iudo-Pacific region ; the chief contributors to the fana hitherto being Mr. Carter, who has deseribed or re-identified some 8 or 9 forms from this region, and Dr. Bowerbank, with 3 or 4 species. The identification of two of the speeies is unfortunately somewhat unecrtain, from the very scanty descriptions given by Lamarek, their original describer.

With the exception of Tocochalina, the species have a strong resemblance to Atlantic forms, and in three cases (Clarlochulina armigera, C. pergamentacea and Acervochalina fivitimut have been satisfactorily determined as identical with spocies found near the eastern coast of Ameriea (West Indies and lirazil).

CHALINA, Bowerbank.

This genus was merely mentioned by name in Grant's 'Tabular View of the Animal Kingdom * (1861). In 1864 Dr. Bowerbank* (first) defincd correctly the genus, assigning to it Spongiu oculata, Pallas, as its type speeies. Schmidt therefore appears to me to be in the wrong when he (Atl. Geb. p. 32) removes this species to his genus Chalinula, of 1868 , and restricts Chatinut to species which have the habitus of Euspongia and Cacospongia,

* Mon. Brit. Spong. i. p. 2 (18.

21. Chalina monilata*. (Plate XLL. fig. k.)

Erect, dichotomously branched; branches circular in transserse section, round at the ends, solid, 4 to 6 millim. in diameter, swelling out gently, neeklace-like, about every 8 or 10 millim. of their length : terminal oncs 35 to 55 millim. long, generally broad and compressed at point of bifurcation. Stem short, no stonter than most of the branches. Surface smooth, glabrous. Vents circular, edges flush with the surface, diameter about 2 millim., few, scattered irregularly on surface. Texture in spirit compressible, elastic, moderately tough ; dermis tough, parchment-like; colour opaque jellowish brown.

Main skeleton irregularly rectangular, fibres very flexible, pale amber-yellow : primaries about $04 \underline{2}$ millim. in diameter, spicnles 3 - to 4 -serial ; secondarics about 035 millim. in diameter, spicules 1 - to 3 -serial: primaries 35 to 53 millim. apart at surface, secondaries 1t to *30 millim. Dermal skeleton-a wide-meshed, irregular polygonal network of strong fibre, 035 to .07 millim. thick; spicules numerons, 3 - to 8 -serial: within its meshes a dense and regular, nsually rectangular, network of very pale horny filre, $\cdot 006$ to $\cdot 042$ millim. in diameter; meshes $\cdot 05$ to $\cdot 1$ millim, in diameter; spicules of fibre usually 1 -serial: fibres of characters transitional between these two kinds also occur. Sarcodo very pale brown, slightly granular. Spicules smooth, accrate, usually tapering gradually to fine points, size $\cdot 1$ by 001 , millim. : more rarely tapering slightly from centre to about two diameters from ends, and then suddents to sharp points ; size '085 by 0021 millim.

Hab. P'ort Jackson, 0-5 fms.
Sereral specimens in spirit, the largest 175 millim. (7 inches) in height. This species has the general habit of Chalina oculata, Pallas: but the rents are less numerons and regular, the dermis is tough, instead of being soft and relvet-like, and the branches are moniliform, not strictly eylindrical, and the slender acerate spicules are sery different from the stont fusiform ones of C. oculata. I am unable to assign this species to any of the numerous probable Chalinidæ which Lamarek has deseribed under his section "Masses rameuses," \&c.t The tongh outer layer, the spiculation, or the habit distingmish it alike from these and all other Chaline with which I am aequainted.

22. Cladochalina armigera.

Tuba armigera, Duch. de Fonbressin \& Michelotti.
Two dry specimens and one in spirit. Agree well in external characters with the original figure (-pong. Mer Cnraïb, pl, viii. fig. 3) and in the characters of the fibre, except that the spicules are far more abundant (6 to s series in the primary and proportionally

[^3]more in the secondary fibres) than is the case with the mounting which the Museum possesses from Prof. Schmidt. The spicules are chiefly acerate, tapering gradually to sharp points, characters which I have already described in those of Schmidt's specimen (1, Z.S. 1s81, p. 11t); but here I find also a considerable number of eylindricals, in some places with well-ronnded extremitics ; the size of both kinds is 00 by 0025 millim, which is almost exactly the size I gare for those of Schmidt's slide (l. c. p. 114). On re-examination of the latter, I find a few of the exlindricals present there also, and the position of the spienles in the fibre is normally axial on the whole, and not superticial only, as I stated in the paper referred to: I was misled as to these points by the scantiness and badly preserred condition of the small mounting which represents the species. Thus, with the exception of the more strongly spicular character of the fibre, the present specimens do not differ cssentially from West Indian specimens of the species. The diameter of the stem raries from 5 to $!$ millim. (exclusive of the spines), and the spines are strong, viz. 2 to 3 millim. high. Vents at intervals of 6 to 12 millim. along the stem.

Huh. Thursday and Alert Islands, Torres Straits, 3-i fuse ; Port Denison. Quecnsland, 4 fms.

Distribution. Caribbcan Sea (Duch. \& Mich.); Florida, 9 fms. (Schmidt).

It is interesting to have such a well authenticated case of identity of a West-Indian and an Australian sponge.

23. Cladochalina, sp.

A spirit-specimen, of sub-erect habit, with stout amber-yellow horny fibre and fusiform acerates, uni- or biserial, measuring 25 by - 016 millim. Stem subeylindrical, about 12 millim, thick, without surface aculeations. I prefer to await more perfect specimens rather than risk an incorrect determinntion and description.

Hab. Prince of Wales Channel, Torres Straits, 5-7 fms. ; bottom sand and shells.

24. Cladochalina nuda. (l'mite NLI. fig. i.)

Decumbent. Stems solid, slender, tortuous (branches?; none occur in the specimens), irregularly cylindrical, more or less compressed from above in places, especially at points at which large vents oceur; generally bullately swollen out laterally at the same points ; diameter irregular, 2 to 7 , or 5 to 9 millim. in different specimens. Surface eren, minutely rongh to the tonch, with occasional low pointed projections. Tents uniserial, approximately confined to upper surface, 6 to 12 millim. apart, circular, opening level with the surface, or occacionally with edges drawn up, 1 to 3 millim. in diameter, 1 to 3 millim. deep; walis cavernous, perforated by numerous excretory canal-openings. Texture in spirit compressible, but resistent, rery elastic ; outer wall parchment-like, tough ; colour pale umber-brown.
Digitized by Microsoft (B)

Main skeleton strietly rectangular; primary fibres ${ }^{2} 8$ to 3 . 5 millim. apart at surface, secondaries 24 to 2 s millim.; primarics $\cdot 053$ to 07 millim. in dianeter, spicules 2 - or 3 -seriul : sceondaries -035 to $\cdot 07$ millim. in diameter, spicules uniserial; horny matter strong, pale amber-yellow, composing two thirds of the fibre in the primary, and five sixths in the secondary fibres. Dermal skeleton a strong, usually quadrangular network, tending to be rectangular, of similar composition to the main skeleton; between its meshes is intercabited a close angular network of finer and paler uniserially spiculate fibre, 01 S to 024 millim. in diameter, the meshes 0.53 to 14 millim. in diameter. Sarcode pale umberbrown, granular. Spicule slightly bent, smonth accrate, tapering gradually to sharp points from three or four diameters from cids : size 115 by 007 millim.

Ifeb. Alert and West Islands, Torres Straits, 7 fms, ; bottom sand.

Three good and some more or less fragmentary specimens in spirit. The two largest are 120 and 115 millim. ($4 \frac{3}{5}$ and 48 inches) in length. The largest is composed of two stems, apparently of independent origin, but one of them attached to and united with the other at two points by broad masses of common substance. The species is nearly allied to C. stubermingera, and hardly differs at all exteriorly from the smooth form of that species except in its apparently slight tendency to form branches, but has the spicules of about twice the diameter, and much fewer in number in proportion to the horny matter, and the network of the main skeleton closer.

It resembles Chalinu montumui, Bowerbank (? Fleming) (Great Britain), in the gencral form and the size and shape of the spicules; but the fibre in that species is less horny and stout, and has but one or two series of spienles.

It is a curious fact that at one of the points of union between the two stems, as above described, a rent, originally belonging to one of the stems, seems to have come into commumication with the canalsystem of the other stem.

Cladochalina nuda, var. abruptispicula. (Plate XLL. fig.j.)

Repent?, with single series of vents on one surface about 2 millim. in diameter, from 15 millim. and upwards apart, margins level with surface. Stem S to 12 millim. in diametor, slightly compressed, unbranched : surface even. Colour, in dry state, brown. Texture tongh, elnstic. Main skeleton rectangular. Fibre strong, pale amber-yellow; primary fibres ahout (0-s millim. thick, spicules axial, about 3 -serial, 35 to 5 millim. apart, with a margin of horny matter; secondary fibres, as primaries. but $0+4$ to 0 0 88 millim. thick, spicules somewhat loosely aggregated, 1- to 3 -serinl. Dermal skeleton as in the typical form, but with stouter main fibres. Sarcode pale yellow-lirown. transparent. Spicules smooth acerate, straight ot almost so, coming abruptly to sharp points within $1 \frac{1}{2}$ diameter from ends : size 107 by -006:3 millim.

Hab. Thursday Island. Torros Straits.
The abrupt termination of the spicules and the stouter fibro distinguish this form of C. nudd. A single dry specimen, 105 millim. ($4 \frac{1}{4}$ inches) long.

25. Cladochalina subarmigera. (Plate NXNLN. fig. H: Platk MLL. figs, l, l.)

Repent, tortuous, solid, subeylindrical: stems 4 to 8 millim. in diameter (2 to 4 in is dwarf form), hranching dichotomously at rather long interrals, somewhat thattuned above. Branches of same general character as stems, often increasing somewhat in diameter towards apices, maximum length about 45 millim., attached at various points of lower surface. A fow sharp points 1 to 2 millim. long project from sides of stem and branches here und there, especially in the neighbourhood of the larger vents; absent in some specimens; surface otherwise ereu. Vents ummerous, in a single serics, 2 to 6 millim. apart, along upper surfuces of stom and branches, circular, 1 to 2 millim. deep, 1 to $2 \cdot 5$ millim. in diameter ; lumen cylindrieal: margins level with the flattened upper surface of tho sponge. Texture in spirit compressible, clastic, tough; surface somewhat harsh to the touch; colour umber-brown.

Main skeleton strictly rectangular in arrangement, rather variable in size of meshes and diameter of fibres in different specimens; thus the distance betreen primaries is 25 to $\cdot 7$ millim., between secondaries $\cdot 042$ to $\cdot 28$ millim. ; diameter of primaries $\cdot 0.53$ to $\cdot 09$ millim., of secondaries 035 to 053 millim. (in dwarf form, primaries $\cdot 035$ to $\cdot 053$, secondaries $\cdot(023$ to $\cdot 035$ millim.) ; fibre almost entirely spicular, a very narrow horny margin alone being usually discernible (rarely in the dwarf specimen) ; spicules 6- to polyserial in primaries, 3 - to 5 -serial in secondaries (in the dwarf form, 4 - to S -serial in the former, $\geq-$ to 4 - in the latter). Dermal skeleton of irregular wide meshes, composed of fibres of the same structare as those of the main skeletou; between these a close angular uetwork of fine unispicular fibre, meshes 0.53 to 08 millim. in diametor. Horny matter of fibres amber-yellow. Sarcode rich yellowish brown, finely granular. Spicules smooth acerate, slender, almost eylindrical to within three diameters of ends, whence they taper to sharp points; size $\cdot 08$ by $\cdot 0032$ millim., 09 by $\cdot 0032$, 055 by $\cdot 002$, to $\cdot 12$ by -002 (in different specimens).

Hub. Warrior lieef, Alert Island, Thursday 1sland. Prince of Wales Channel, Torres straits, $t-\bar{i}$ ims., \&c.; bottom pearl-shells or sand, \&e. Albany Islaud, N. coast of Australia, 3-4 fms. ; bottom mud (dwarf form).

A few spirit-specimens represent the larger form of the species, one of them is 10.5 millim. ($4 \frac{1}{4}$ inches) in maximum extent. A small specimen, 25 millim. long, is the dwarf form above mentioned.

The species is perhaps most closely allied to Cladochatina armigera, Duch. \& Mich., of described species ; the surface-spines, however, which are the most striking external feature of C. armigera, are
here few in number and reduced in dimensions; the primary fibres are more slender and much more strongly spicular, and I have not observed here the cylindrical form of spicule which accompanies the acerate in C.armigera; the vents are more abundant and the growth is repent, instead of suberect. Still I beliere the species to be not remotely allied; and this near relation between two species, one of which has an acnleated surface and an erect growth, while the other is decumbent and scarcely at all aculcated, shows how little value for the group-distinction of the Chalinidee such characters may possess. The rariation shown by different speeimens (see description) is somewhat wide.

26. Cladochalina pergamentacea.

Cladochalina armigen, var. pergamentacea *, Ridley, P. Z. S. 1881, p. 112 , pi. x. fig. 4 .

A young specimen of compressed form. smooth surface, and with a row of rents along each margin, with the fibre as in C. armigera, and spicules measuring 09 by 0016 millim. and shaped like those of C. armigera, seems to belong to the above form.

Hab. Thursday Island, Torres Straits, 3-+ fms. (on Retepora).
Distribution. Hotspar Bank, off S.E. Brazil (Ridley).

ACERVOCHALINA, g. n.

Chalina, Schmidt, Suppl. ii. Adr. Meer. p. 10 (nec Bowerbank).

Massive, sessilo Chalinidæ. Fibrestrongly ceratinous, containing asially or diffusely arranged slender acerate spicules, which do not exceed in bulk the horny material of the fibre which contains them. Vents distiuct, ranged aloug upper surface.

Type Uhelina limbutu, Bowerbank (Mon. Brit. Spong. ii. p. 373; ? Montagu).

This genus appears to be most closely allied to Cladochalina, by its strong relative development of keratose, its fine acerate spicnles, and its serial vents. Mr. Carter indicated the distinctness of such forms as long ago as 1875 , when (Amn. \& Mag. N. H. (4) xvi. pp. 142, 162) ho established the family Acerrochalinida, making his first group of the family Solidit, in which Acervochalina would come. He himself suggested the name which I have adopted, and has sent me a specimen illustrating his view of the species which should be assigned to the genus. The constancy in form of both this and the following species, and their agreement in other points, show them to be no mere dwarfed forms of erect Chalinide.

Schmidt has on reconsideration (Atl. Geb. p. 33) referred Chalina limbata to Chulinula; but that genus is equivalent to Chalina,

[^4]and besides being primarily based on an crect species, requires the spicules to form the greater part of the skeleton-fibre, which he reconciles with the structure of C. limbata by stating that the horny matter in this species slrivels when dried.

27. Acervochalina finitima.

Chalina finitima, Schmidt, Att. Geb. p. 3\%.
Several specimens agrecing with this Atlantic species. They have the general habit of Clethrit oroikes, Schmidt, which from a low massive body throws out blant spurs. On the spars are placed numerous small rents, $1-4$ millim. in diameter, biserially or irregularly arranged. Texture in spirit very soft and clastic ; colour pale yellowish brown. Skeleton network close. rectangular : fibres stout, pale yellow or colourless : spicnles multiserial in primary, biserial or miserial in secondary fibres. Spicules smooth, gradually and sharply pointed; size abont $\cdot 1$ by $\cdot 0018$ millim. (i.e. a little thinuer than in West-Indian specimens).

Hab. Port Jackson, 0-5 fms., Perey Island, Quecnsland, 0-5 fms.: Alert Island, Torres Straits, 7 fms.

Distrilution, Florida, Alitilles (Schaidt).
A. finitima differs from the British species limbata in its general shape, that of limbuta being globular to lobate.

The specimens measure about 50 millim. (2 inches) in greatest diameter, and 25 millim. in height.

2S. Tuba bullata.

> ? Spangia bullata, Lamarck, Am. Hus. Hist. Nat. xx. p. 48 (nee var. β) : nec Siphonochalina bullata, Schmidt.
> Spongia aculeata, Linué, pare, Syot. Tat. ed. 12, p. 1207.

Wide-mouthed tubes. 50 to 200 millim. high (2 to 8 inches), rising from a common horizontal lamina, from which they appear to be formed by the reversion and curling of its edges. Tubes irregular in lumen, 35 to 125 millim. ($1 \frac{1}{2}$ to 5 inches) in maximum diameter. Surface asperated by a network of low sharp ridges, beset with numerous sharp points, 1 to 3 millim. high. Mouth of tubes somewhat constrieted, imner surface smooth. The surface-tufts are seen on examination generally to proceed from narrow suyerficial ridges which run orer the surface in different directions. The prolongation of the margin spoken of by Lamarck is not to be made out distinetly:

Skeleton of narrow rectangular meshes. Primary fibres about $\cdot 1$ to 14 millim., secondary 42 to 7 millim. in diameter, both full (in most places) of the acerate spicules, though these are somemhat closely aggregated. Spicules (i.) fusiform. tapering to sharp points from within about two diametersof the apices, 18 by 0095 millim.; also (ii.), probably a rariety of (i.) acnate, about $\cdot 14$ by $\cdot 00683$ millim.

This species appears to bo widely distributed between Japan and

Australia. I have, at any rate, seen picces of a sponge closely allied to, if not identical with, this substituted for the original sponge of Hyalonema sieboldi, probably belouging to the species alluded to as occurring in this connexion in Japan by L. Döderlcin (Arch. für Naturg. xlix. p. 114), under the pame of Siphonochatine papyracee: it is in any case not referable to that speeies, but possibly to Tadee megustomi, Duch. \& Mich., or T. (Spongia) bursaria, Lamarek. Limed seems to hare confounded two or more species under the name aculecta.

Hel. Port Molle and Port Curtis, Qucensland (from coral-recf, \&e.).

Distribution. Australian seas (Lamarcl).

29. Tuba confæderata.

PSpongia coufederata, Lamarck, Aim. Mus. Mist. Nat. xx. p. 438.
Groups of erect, straight, laterally united tubes, each about 25 millim. (1 inch) in greatest internal diancter in the present (dry and somewhat compressed) state, the surface corered with numerous sharp but low aculeations, about 2 to 3 millim. high and 3 to 5 millim, apart, seem to me to possibly represent this species. 1 am , howerer, donbtful whether Seba's figure to which Lamarek refers (viz. Thesaurus, iii. pl. xevii. fig. 2) professes to represent the surface aculeations which I have described; in that figure the tabes are shorter in proportion to their diameter than here. In this specimen the surface betreen the aculeations is smooth, and the tubes decrease bat slightly in diameter towards the mouth, which is fringed with a row of small, flexible, tag-like aculeations 2 to 3 millim. long. The tubes are 95 to 120 millim. long, and have evidently been torn from a common hollow horizontal base (as is shown by another, very battered specimen, which also shows the real length of the tubes to be approximately as stated above for the detached tubes) ; they are united up to their summits or to within a very short distance of them. The walls are 1 to 3 millim. thick. Vents numerous, small, . 5 to 1 millim. in diameter, on the inner (otherwise smooth) surface of the tabes. The colour is pale brown.

The maiu skeleton-fibre is tough, flexible, amber-yellow: the spicules of the primary fibres form about 3 or 4 series in axis of fibre, of which they occupy about one fourth of the total breadth, which is $\cdot 07$ to $\cdot 1$ millim. : the spienles of the secondary fibres are in two or three axial series, diameter of fibre about $\cdot 07$ millim. Secondary fibres generally long, not far apart, approximately vertical to the primaries. Dermal skeleton consisting of stout main fibres about 14 millim. in diameter, intermediate fibres 035 to $\cdot 1$ millim. broad; fibres usually spicular, with little or no visible horny mattor. Sarcode wanting. Spicules smooth acerate, tapering to sharp points from ahout three diameters from ends: size $\cdot 1$ by $\cdot 0063$ to $\cdot 0075$ millim.

Represented by three more or less washed dry specimens.
Hab. West Island, Torres Straits (from beach).

This species has a great resemblance to tho West-Fmlian Tula sororiur of Thehnsaing de Fonbressin and Micheloth, but differs from the West-hudian species ineluded by schmidt in his Siphonochaline papyraces, of which T. suroriat is one, in having the spienles $\cdot 0063$ millim. and upwards thick, instead of only $\cdot 002$ to $\cdot 00 \pm 2$, as stated by Schmidt for those species.

SIPHONOCHALINA, Schmidt.

Although apparently published (Spong. Kiist. Alg. p. 7) as distinct from Tuha of Duch. de Fonbr. and Michelotti, it seems to be coextensive with that (older) genus. I hare, howerer, procisionally retained the name for convenience, for a few forms with narrow, thick-walled tubes, like those of the type species S. coriaced (l. c.).
30. Siphonochalina tubulosa, var.

Spongia tubulosa, Esper, Pflanzeuth. Fortselz. i. p. 199, pl. liv.
Siphonochalina tubulosa, Ehlers, Die Papersch. Spoug. p. 19.

- P Spongia bullata var. B, Lemarck, Amu. Mus. Hist. Nat. xx. p. 437.

Small colonies, some agrecing well with Esper's figure, some with the tubes scarecly rising above the general surface. The skeletonspicules are rather longer and more slender than is indicated by Ehlers's measurements, viz. $\cdot 17$ by $\cdot 009$ millim. (Ehlers gives $\cdot 11$ to $\cdot 13$ by 012 millim.) ; the smaller ones mentioned by him are obriously young.

Several specimens, dry and in spirit.
Hab. Thursday Island, Channel Rock, Torres Straits, depth ?; Port Molle, Queensland, "beach."

Distribution. Cape of Good Hope (Esper).

31. Tubulodigitus communis.

Carter, Ann. \& Mag. N. II. (5) ix. p. 307.

The present specimens, preserved in spirit, agree sufficiently with Mr. Carter's description as regards external characters. The colour (in spirit) is chiefly a dark earthy brown, which may very probably have been altered from the parple described by Mr. Carter. The fibro is strongly horny, slender, and very flexible, . 035 to $\cdot 0.42$ millim, in diameter in the case of the primaries, 028 to 035 in the secondaries; spicules 1 - to 3 - (rarely $1-$) serial in the primaries, 1 - or 2-serial in the scoondaries. In Mr. Carter's specimens the spicules appear to be relatively somewhat more abundant. Colour pale amber-sellow. Although I have not observed in these specimens a constant difference in size hetreen the axial and peripheral spioules of the fibre, such as that which Mr. Carter notices (l.c.), there is, nevertheless, a very marked dimorphism in the spicules. Between those of the commoner, slender acerate form, gralually sharp-pointod, size $\cdot 1$ by 005 millim., are intercalated in various places stouter ones of similar shape, but in size 14 by $\cdot 0063$ millim., and they sometimes oceur by the side of the slenderer form. From the

$$
\text { Digitized by Microsoft }(B){ }^{2}
$$

resemblance in external characters and in this remarkable structural point between Mr. Carter's species and the present specimens. I assign the latter with little doubt to that species, although Mr. Carter has not given the measurements of the spicules.

IIab. I'ort Jackson. 0-ī fms.
Distrilution. Ceylon (Carter) ; Kurrachee (coll. Mus. Brit.).
The absence of this species from the hauls made in the tropical waters of Northern Australia perhaps indicates that its matural habitat is in snbtropieal seas, like those of Northern India and Port Jackson.

TOXOCHALINA*, g. n.

Chalinide with well-developed horny fibre arranged rectangularly. Spicules, a skeleton acerate and a tricurvate acerate ("Bogen," German) flesh-spicule.

Ols. The tricurrate flesh-spicule distinguishes this genus from all other Chalinidæ; the only parallels for the occurrence of a fleshspicule in this group with which I am acquainted are found in the species Halichondria palmata of Johnston, lately (Ann. \& Mag. Nat. Hist. (5) x. p. 109) redeseribed and assigned by Mr. Carter to the genus Chalina, and Sponyia (Desmacidon, Ehlers) compressa, Esper, also referred (1. c. p. 112) by Mrr. Carter to Chalina, and in a species described by O. Schmidt (' Meerbus. Mexico,' p. 76) as Rhizochaliza? fibulate, which has bihamates. The fact of on intimate connexion, which seems to have been thas already discovered, between the Chalinida and Desmacidinide, appears to receise confirmation from the present cases of the oecurrence of a tricurvate llesh-spicule in members of the former family:

32. Toxochalina folioides. (Plate NLI. figs. $m-m^{\prime \prime}$.)

Desmacidon folioides, Borerbank, P. Z. S. 1875, p. 295.
In one Bowerbankian specimen from New Guinea and one 'Alert' specimen from Anstralia the form is vallate, produced by the lateral mion of a series of tules; the other 'Alert' specimens agree with the type (see Bowerbank, l. c.) in its external form, and the former specimens may be termed var. vallata. This is a true Chalinid, although the amomnt of horny material in the fibre is no more than enough to unite the spicules into a tongh and clastic mass, and is not visible outside the spicules. I have detected in the type specimen of this species small, smooth, finely-pointed, tricurvate acerates, about $\cdot 04$ by $\cdot 001$ millim. in size, in the dermal membrane; I have not yet detected them in the subjacent tissues, though this has been dono for another specimen of the species in the Bowerbankian collection (from New Guinea). The skeleton-spicules vary from rather tapering eylindrical, with rounded ends, to tapering acerate, with sharp ends, size about $\cdot 11$ by $\cdot 00+2$ millim. in the tspical, and $\cdot 16$ by 0085 millim. in the Jort Darwin specimens. The New-Guinea

[^5]and Anstralian specimens have rather thicker branches than thoso from the Straits of Malacca, viz. 12 to 25 millim. as against about 10 millim.

Hab. Prince of Wales Channel and Thursday Island, Torres Straits, beach and 7-9 fims. ; lort Darwin. 7-12 fms.

Distribution. Straits of Malucea (Bowerbenk); New Guinen (Bowerbank coll.).

33. Toxochalina robusta. (Plate NXXLX. fig. G; I'late NLI. figs. n, μ^{\prime}.)

Repent, branching, attached usually liy the lower surface of the main stem or branches. Stem and branches subeylindrical, uneren in places, subnodular, varying in diameter within short distances; solid, not tubular. Branches given oft at intervals of 1 to 2 inches, at angles of from abont 30° to 80°, sometimes anastomosing. Stem and main branches usually 10 to 18 millim. in greatest diameter, some small branches descend to 4 and 5 millim. Vents few, approximately one to the space between each two branches, the margins usually sharp and projceting somewhat; diameter 3 to 6 millim. ; excretory canals penetrating straight and decply into the substance of the sponge. Sponge, in spirit, tough, but yielding and pliable (almost as much so as Chalinu oculata, Pallas). Internal fibres soft and clastic, forming a close network. Dermal membrane firmer, parchment-like, even, glabrous, slightly marked by the apices of the primary skeleton-fibres and the dermal skeletonnetwork. Colour of sponge in spirit pale brown, inclined to ycllow.

Main skelcton consisting of straight, stont, bright amber-ycllow, horny primary fibres, $\cdot 05$ to $\cdot 075$ millim. thick, and about $\cdot 5$ to $\cdot 7$ millim. apart at surface, meeting the surface at right angles, and sometimes projecting slightly : their apices are, howerer, comnected by a system of fine horizontal fibre-network; spicules closely aggregated, confined to the axis of fibre, forming a band there of about 6 to 8 spicules broad, and occupying, near the surface of the sponge, only about one third of the total thickness of the fibre. Secondary fibres at right angles to primarics, of paler ycllow horny fibre, about -035 to .05 millim. in diameter and $\cdot 28$ to 35 millim. apart; spicules of axis in a unispicular serics (occasionally two spicules broad), often interrupted altogether or wholly wanting. Dermal skeleton formed by a few very stont, dark yellow fibres, 05 to $\cdot 1$ millim. thick and 1 to $1 \cdot 4$ millim, apart, enclosing angular spaces filled by a close subrectangular network of paler, mostly non-spiculate fibres from 009 to $\cdot 045$ millim. in diameter. Sarcode very pale yellow, transparent, with mumerous small dark gramules.

Skeleton-spicnle acerate, tapering abruptly from within about $1 \frac{1}{2}$ diameters of ends to very sharp points; size $\cdot 1$ by 0032 to $\cdot 0042$ millim. Flesh-spicule tricurvate acerate, curves moderately bold, tapering gradually to sharp points from centre; size 05 to $\cdot 063$ by .0017 to . 0021 millim. ; found in superficial and deeper parts of the sponge, fairly abundant.

Hab. Port Jackson, 0-5 fms.

The maximum lateral extent of the largest of the specimens appears to have been about 270 millim. (103 inches), another measures 250 millim. (10 inches) across the branches, while individual branches may attain a length of 90 millim. ($3 \frac{1}{2}$ inches). In habitus the species differs from T. folioides mainly in having the general surface approximately even, and not asperated by projecting points; in the structure of the fibre, the horny element shows a far greater development, and the tricurvate is much stouter than in that species.

34. Toxochalina murata*.

Low, brond, wall-like masses, onclosing a scries of vertical tubes, 5 to 8 millim. in diamcter, which rise straight from near the baso of the mass, and are separated by 8 to 10 millim. of sponge-substance; the mouths of the tubes may project slightly, but are rather contracted. General surface of sponge asperated with low, sharp, monticular elevations 3 to 7 millim, apart, 1 to 2 millim. high, often connected by low ridges; surface between ridges and elevations smooth in dry state. Texture in dry state elastic but firm ; colour pale yellowish brown. Fibre very tongh.

Main skeleton-meshes chiefly very wide, rectangular, formed by primary and secondary fibres of approximately equal diameter ; at intervals a less regular network of smaller secondary fibres combined with the straight primaries; larger fibres $\cdot 022$ millim. broad, smaller -0095 to 016 millim.; primaries cored by 1 to 4 series of axially placed acorate spicules, sometimes wanting ; secondaries by 1 to 2 series, often wanting altogether. Colour of fibre pale yellow-brown.

Spicules-(1) skeleton acerate, straight, smooth, tapering to very sharp points from about two diamoters from ends, size $\cdot 1$ by $\cdot 005$ millim.; (2) tricurvate accrate of sarcode, smooth, curres gentle, tapering gradually to fine points, size •063 by 0016 millim.

Hub. Port Molle, Queensland, 12-20 fms.
The average greatest height of the single(dry) specimen is 30 millim.

This species has very much the external habit of T. folioides, var. vallata, but the points on the surface are less prominent than in that species ; the very strougly horny character of the fibre separates it more decidedly, so that it is impossible to confound the two species under the microscope. In the case of T. rolusto, mihi, the repent habit, the solid and smooth branches, and the slighter and more strongly spiculate fibre constitute ample means of differentiation.

35. Pachychalina lobata, var.

P Spongia lobata, Expcr, Iffanzenth. ii. p. 273, pl. xlvi.
I have thought it best to assign, with doubt, to the above species (as a variety) a form with strong, rudoly cylindrical main axis and branches, which was apparently semidecumbent in life, and which

[^6]has a slightly but regularly uneven surface, the tissue covoring it being, however, almost smooth. Vents with thin uverted nargins about 5 millim. high, abundant, irregularly uniserial, 1 to 3 millim. in diameter on one (prestumably the upper) side of the stem and branches, less abundant and generally smallor on the opposite side. Branching dichotomous, at angles of 50° to 60°; the brauches rather flexuous; brauches and stem S to 1 s millim. in diameter. Texturo in spirit firm, but flexible, tough : colour dark dull grey. Main skeleton composed of tongh, flexible primary fibros of closely packed spienles, about 6 - to 12 -serial, running approximately at right angles to surface (no horny uniting-matter visible), the fibres nearly approximated to each other; and of irregular and often loose crossing secondary tracts of spicules 2 to 4 spiculus broad, not strictly at right angles to primaries. Dermal skeleton a closely-set coat of subparallel spiculo-fibres about 8 spicules hroad, Sarcodo dark brownish, granular. Spicules accrate, slightly but sharply bent, tapering slightly from middle, and rather suddenly from within about two diumeters of ends, to moderately sharp points; size $\cdot 2$ by -0128 millim.

Hab. Port Darwin, 7-12 fms.; bottom mud aud sand.
Distribution. East-Indian seas (Esper)?
The only specimen measures 150 millim, (6 inches) in extreme length. The species is at any rate distinct from Spongia arborescens of Lamarek, who gires S. lobata, Esper, as a synonym of his species. It stands on the borderland between Puchychalina and the branched and large-rented Renieridæ. I nssign it to the former, as its fibres are eridently formed in part by a flexible horny material. It differs from the described specimens of S. lobeta in haring approximately cylindrical branches and bearing some vents on both sides.

36. Pachychalina macrodactyla. (Plate NL. figs. B, B'; Plite XLI. fig. o.)

Spongia macrodactyla, Lamarck, Aun. Mus. Hist. Nat. xx. p. 457.
Guided only by the short and superficial deseription given by Lamarek, and by the locality ("probably Indian Ocean ") assigned by him, I refer to his species some dry fragments of an exquisite Puchychalina, possibly originally belonging to one specimet. It has some external resemblance to Sponyia aspurayus, Lamarek, of which I have seen a specimen; but the branches in the latter are cylindrical, the rents open on the level of the general surface, and the fibre-structure is that of Chalina rather than Puchyychetina. I will proceed to supplement the original incomplete description by a foller one.

The stem and branches are flattened out, somewhat knife-like, in most places, the edges being sometimes guite sharp; the lateral diameter is here about twice the antero-posterior one (viz, about 13 millim. at largest part of stem, 9 millim. just below apex of branches) : the stem near the base appears to be normally cylindricnl, abont 6 millim. in diameter. Branches (in present specimens) given off pinDigitized by Microsoft(8)
nately from one side of the main stem at very acute angles, soon becoming nlmest parallel with the stem itself; their length raries from 60 to $1: 20$ millim. ($2 \frac{1}{3}$ to $+\frac{3}{4}$ inches). The vents are numerons, .5 to 1 millim. in diameter, cirenlar, with sharp, prominent margins, about 5 to 1 millim. above the gencral surface: ranged in a single row down each margin of the stem and branches, and also scattered (more sparsely) on their anterior and posterior faces; they are 2 to 5 millim. apart on the margins. Gencral surface of sponge level, only rendered a little uneven by the slight elerations which carry the vents, composed of a closo meshwork; meshes $\cdot 2.5$ wide, $\cdot 25$ to $\cdot 5$ millim. apart. Texture firm, incompressible in stem, clastic, somewhat compressible towards ends of branches, brittle ; the strface and internal fibre soft, like leather. Colour in dry state-surface pale groy; interior browuish yellow in present specimens, owing to a parasitic microphyte of some find. Sareode apparently transparent, almost colourless.

Main skeleton-meshes strictly rectangular, very close; primary fibres about $\cdot 11$ willim., secondarics about $\cdot 14$ millim. apart near surface: horny material uniting fibres only visible distinetly at some depth in the sponge; primary fibres 3 or 4 spicules broad, sceondaries 2 or 3 spicules broad. Dermal skeleton composed of meshes of various sizes and a varying number of angles, formed by the projecting ends of the primary main-skeleton fibres and the uppermost secondary fibres. Horny matter almost colourloss. Spieules-(1) skeleton acerate, smooth, slightly eurvel, tapering to sharp points from near middle: size 16 by 0063 millim.

Hab. Friday Ishand, Torres Straits.
Distriinutiou. "Probably lndian Ocean " (Lemarck).
Purasite. The horny matter of the fibres is covered with immense numbers of a small, strongly refractive globular body about 0015 millim. in diameter, similar to that which gives a rust-brown colour to the fibres of many Euspongir, recently stated by Prof. F. E. Schulze (" Der Badeschwamm," Westermann's Illustr. Deutsch. Monatshefte, 1882, pp. 188-210) to be probably of parasitic nature. Certainly, judging by the friable character of these and other similarly affected specimens, these bodies would appear to bare exercised some distinctly deterioratiug influence.

RENTERIDE.

Renierida, Carter, Anu, of Mag. N. II. (4) xvi. p. 133.

Under this heading I include only those Monactinellida which have mercly accrato spienles not enclosed in a distinct horny fibre. The genus Reaiera very commonly has strong indications of a horny material maicing the ends of the spienles, and thus approaches Chatine and Pachychutinu, where, howerer, the horny element is distinet enough to bear the name of a fibre ; but there is no sharp line between the Renieride and Chalinide. In several cases, where the specimens have been imperfeet, I have preferred to give no specific
name, for want of charaeters by which to identify species with others which I know merely by descriptions; I have, however, given descriptions in these eases, in order that the species may be identified (if possible) by future comparisons with specimens of species to which 1 have not access at present.

reniera, Nordo.

This genus is distinguished by the regularity of its main skeleton, the small size of its spicules, aud the want of an evident distinct dermal skeleton. The latter point, however, is not very satisfactorily indicated in all the species which seem otherwise referable to the genus.
37. Reniera indistincta, var.

Isodictra indistinctn, Bowerbenk, Mon. Brit. Spong. ii. p. 290, iii. pl. li. figs. 1-1, iv. p. 119.
A small specimon in spirit, incrusting stones. The surface is smoath, formed of a thin but strong membrane, of grey colour (in spirit), penetrated by moderately numerous round perforations, - 5 millim. across. Vents fow, occasionally slightly elevated, 2 to 3 millim. in diameter. Main skeleton agreeing fairly with the typical specimen of the species; a dermal network, uni- to bispienlar (in the type specimen it appears to exist, although Bowerbank denies it, but it is somewhat irregular there). Sarcode yellowish brown, slightly granular (it is more yellow in the type). Spicules : shape as in type ; size 16 by 0063 millim., the same as in the type. The vents are rather smalier in the type, and the colour in the dry state is reddish brown ; but the agreement in the churacters on the whole is so close that I have little hesitation in making this identification.

Hab. Prince of Wales Channel, Torres Straits, 7-9 fms.
Distribution. British Islands and Guernsey (Bowerbenk).
A specimen without distinct rents, but with a curions system of branching grooves on the surface, and of a dark greenish colour, appears to be also refcrable to this form.

Hab. Alert Island, Torres Straits, 7 fims.

38. Reniera scyphonoides.

Spougia scyphonoides, Lamarck, Amn. Mus. ITist. Nat. xx. p. 437.
An elegant, slightly tortnous, tubular Reniera, 45 millim. high, tapering from its subeylindrical basal portion, which is 3-4 millim. thick, to an elliptical, slightly bullate summit, preceded immediately by a more decidedly flattened portion, the two diameters of which are respectively 4 and 8 millim. Long and short diameters of mouth of tube $2 \frac{1}{2}$ and 4 millim. respectively. Two small vents, 1 millim. in diameter, open on one margin of the compressed part of the sponge, and one of about 4 millim. diameter on the opposite margin.

Surface even, very slightly ronghened by the projecting primary skeleton-lines, which form a fine velvet-like pile. Texture in spirit soft, compressible, clastio; colour pale brown, with a slight (prossibly accidental) tinge of purple. Main skeleton-network rectnngular: fibre to the eye wholly composed of spienles loosely agroregated, especially in the secondary fibres : primary fibres rumning at right angles to surface. spienles 3 - to 5 -serial ; secondary fibres, spicules 1- to 3-serial : intervals between primaries about 17 millim., and the same between secondaries. Nospecinl dermal skeleton. Sarende dark umber-brown. Spicules smooth acerate, slightly and gradually curved, tapering gradually to sharp points from near centre; size $\cdot 21$ by 011 millim.

Hab. West Lsland, Torres Straits, 7 fms.; bottom mud and coral.

Distribution. St. Peter and St. Francis 1slands, Australia (Lemarck).

The "leviter inerusta fibre" and the " 2 - sen 3-fidi tubuli" of Lamarck's description are the only points not quite in agreement with our specimen: but it is evidently young, and might have branched when older; and the "incrustæ" apparently alludes to the sarcode, which here, as in Lamarck's var. filis suhaulis, has not all been retained; his specimens were $18-25$ centimetres ($7-10$ inches) in length. Schmidt's Reniera allat (Adr. Meer. p. 73), from tho Adriatic, seems to resemble the specics, but a wiserial network is figured for its skeleton.

39. Reniera ferula.

Isodictya ferula, Bozerbank, Mon. Brit. Spong. iv. p. 11G, pl. viii. figs. 1-3.
A small specimen of the size and shape of a hazel-nut, with few vents about 8 millim. in diameter : colour (in spirit) dull brown. It does not bear the interesting handle-like process on which Dr. Bowerbank lays so much woight as a "caudal appendage," which is (as the type specimens appear to have been young) perhaps a form of a stolon, like that described by Mereschkowsky in an Esperice from the White Sea (Mém. Acad. Pétersb. axri. no. 7, p. 22, pls. i. \& iii. figs.), but which, as boing apparently sessile by its whole length, as a stolon would normally be, Dr. Bowerbank cannot be right in comparing (l.c. p. 117) with the erect digitate processes which distinguish the genus Iodymastic. The absence of this lobe does not appear to be of sufficient importance to separate this species from Bowerbank's. The spicules measure '21 by 0079 millim., wherens those of Bowerbank's type specimen are 19 by 01 millim., and are thus decidedly stouter; the arrangement of the skeleton is essentially the same in both species. The specimen is attnelied to what seems to be a Hydroid stem.

Heb. Port Darwin, 7-12 fms.; bottom sand and mud.
Distribution. Ireland (Buwerberal).

40. Reniera aquæductus.

Reniera aquaductus, Schmidt, Spong, Alr. Meer, p. 73, pl. vii. figs, (i), $6 a, 6\}$.

Two speeimens, 65 and 70 millim. ($2 \frac{2}{3}$ and $2 \frac{3}{2}$ inches) long, branched, forming very thick-walled tubes which open at the extremities of the branches, appear to represent this species. The branches and stem are somewhat irregular in ontline, and deeidedly compressed antero-postoriorly ; their surface is rendered uneven by vory low, almost obsolete rifiges or ominenees, though it is smooth between these; mnximum dimmeter of stum and branches 7 to 12 millim., that of lumen of tube 3 to 4 millim. Texture in spirit firm, slightly compressible, moderately tongh; normal colour apparently a palo brownish grey. Main skelaton-a rather irregnlar network of primary and secondary spiculo-fibres, about $\&$ to 6 spicules broad, with much interstitial 1- or 2-scrial spicular network; dermal skeleton composed of long compact spiculo-fibres, 6 to 12 spicules broad. Sarcode pale yellowish, slightly granular. Spicules ehiefly smooth acerate, eurved, tapering gradually to sharp points from about four diameters from ends, or subacuate, tapering somewhat to the rounded end, or strictly acuute with well-rounded head; size $\cdot 17$ to $\cdot 19$ by 011 millim.

Hab. Port Darwin, between tide-marks.
Distribution. Adriatic (Schmiett): Black Sea (Czermiavsky).
The Adriatic form thas a decided tough uniting material between the ends of the spicules, and the tube is relatively wider in the specimen figured by Nchmidt, otherwise the two forms appear to agree. I find the spicules in a slide obtained from Prof., Sehmidt to measure $\cdot 19$ by -0095 millim, in average maximum dimensions; he himself gives (Atl. Geb. p. 40) - 16852 millim. for the length.
"Reniera, yellow" of Carter (Inn. N. H. (5) vi. p. 48, pl. v. fig. 17), from Ceylon, is probably not far from this species, but the spieule appears to be about half as stout again as here.

41. Reniera testudinaria. (Plate XXXLX. fig. D ; Plate XLI. figs. u, u^{\prime}.)

Alcyonium testudinarium, Lamarck, Mém. Mus. Mist. Nat. i. p. 167.
One of the present specimens originally formed part of a much larger one, probably as much as 6 inches long by 6 broad by $2 \frac{1}{2}$ thick, covered with prominent jagged ridges; the other is a fine cup-shaped form, with wide mouth, thin edges, the ridges only appearing near the base. The skeleton-fibre is stout, strong, polyspicular, and of the Renierid type ; it is composed of stout, smooth, eylindrical spicules, rounded at each end, sometimes tapering somewhat to the ends, and of a small number of smaller acerate forms, tapering suddenly to their points; average maximum size about $: 32$ by '016 millim.

The speeies belongs to that group of Renieride which Mr. Carter, in his "Notes Jutroductory to the Study and Classification of the Digitized by Microsoft ${ }^{(8)}$

Spongida" (Ann. \& Mag. N. H. (4) xvi. p. 178) calls Crassa; in its cup-shaped form and cylindrical spicules it is evidently nearly allied to R. cratera, Schmidt (Adr. Meer. p. 73). It was described by Lamarek in 1815, and has not been since identified as a sponge or redescribed. The prosent specimen agrees well with the description, and with the specimen which represents the species in the Museum, in both the larger and the minuter characters. It is certainly not, as Lamarck suggests (l.c.), the Spongia cristata of Ellis and Solander.

Hub. Port Denison, Queensland, 4 fms.
Distribution. Lamarek's conjecture as to the locality, viz. "Seas of Enrope, " can hardly be correct.

42. Reniera, sp.

Wall-like. A small specimen attached to a filnmentous Alga. It is erect, broad, laterally compressed; maximum thickness 6 millim., length 25 millim., height 19 millim. On the sloping and narrow upper margin is placed one blind rounded eminence and the suborbienlar opening, 4-5 millim. wide, of a deep cloacal cavity, which rises from near the base of the sponge. The skeleton-fibres have 1- or 2 -serially arranged spieules : the latter are short, smooth, curved accrates, taperiug to sharp points from within about three diameters of ends, size $\cdot 11$ by $\cdot 006$ millim. Texture of sponge in spirit soft, brittle ; colour dull pinkish grey. Surface even, glabrous.

Hab. Port Darwin, between tide-marks; bottom mud and roek.

43. Reniera, sp.

Laminar. Some fragments of a laminar Remiera (s, str.) of erect habit oceur in the collcetion. The lamina is 1 to 2 millim, thick, and exhibits curres in some pieces, perhaps indicating that the original form was cup-shaped; its free edge is quite thin; both surfaces are quite even and of a texture resembling fine cloth, exhibiting very minute apertures, closely set, all over. Texture of sponge in spirit very soft and compressible, subelastic, but rery readily torn; colour dull pale yellowish brown. Main skeleton very regular ; primary lines biserial, running parallel or obliquely to lateral surfaces in centre of lamina, but curring out towards the surface of the sponge, which they meet at right angles; these lines seareely one spicule's length apart; secondary lines uniserial, the single spicules usually crossing obliquely the spaces between the primarics. Sarcode dull brown, rather granular. Spieules smooth acerate, very slightly curved, tapering gradully to sharp points from about five diameters from ends ; size $\cdot 175$ by 0079 millim.

The specimen when entire must have been two or three inckes high and as many wide. It strongly resembles Isodictya infundibuliformis. Bowerbank, in growth, texture, and surface-characters, but its spieules are less stont and do not include acuate forms. It is a striking species, and should be recognized from the above description when met with in a perfect state; until that
time I forbear to assign a specific name ; it appears not to have been described before. It also resembles spongia plancella, Lamarck (a Chalinid with strong fibre and smaller spicules), externally. Future researches will, no doubt, prove this to be a distinct species, to which the name Rexierce infiendibularis may be given.

Hub. Thursday Island, Torres Straits, $4-6$ fms. ; bottom sand and roek.

44. Reniera, sp.

Honeycombed. An imperfect specimen. From an incrusting base arise narrow trabeculæ, which meet above and enclose meandering channels, 3 to 5 millim. in diameter. The asject of the mass is that of a picce of wood almost reduced to fragments by some boring animal, or of a much folded piece of chamois-leather. Texture of sponge in spirit compaet, brittle; colour very pale buff. Surface (apart from the large ridges and canals) even, smooth. Main skeleton-general arrangement rectangular near surface, irregular near base ; spicules of fibre very loosely aggregated; both primary and secondary fibres bi- to multispicular, primary fibres • 14 to -18 millim. apart. Lines of growth very apparent. Dermal skeleton a 1 - to 2 -serial network of spicales, with triangular polygonal meshes. Sarcode very pale buff, opaque. Spicules smooth acerate, slightly curved, tapering to sharp points from about three diameters from ends; size 2 by 0055 millim.

I can find no such species described from Australia, and I know of no European form like it.

Hab. Port Darwin, 8-12 fms.

PELLINA.

Schmidt, Spong. Atl, Gieb. p. 41.
The want of regularity and definiteness in the structure and arrangement of the fibres, and the large size of the spicules, appear to me to be more distinctive attributes of Pellina than Schmidt's character, riz. the possession of a distinct dermis ; but it is to species combining a reticular dermis with these two characters that I here apply the name.

45. Pellina muricata. (Plate NXNIN. fig. J; Plate XLI. fig. v^{\prime}.)

Aggregations of irregularly united short parallel tubes, 6 to 10 millim. in diameter, lumen 3 to 7 millim. aeross ; tubes cylindrical, summit usually widely open. Surface asperated with sharp monticular points, 1 to 2 millim. high ; glabrous betreen and over bases of points. Texture in spirit firm, slightly compressible, but somewhat brittle. Surface harsh to tonch; normal colour apparently pale brown. Main skeleton composed of compact spiculo-fibre, the spicules united by a colourless transparent substance : the primary fibres
Digitized by Microsoft (B)
wide apart, rertical to surface, 3 to 8 spicules broad; secondaries at less intervals, 3 to 6 spicules broad ; the interstices occupied by much irregular 1-or 2 -serial network. Dermal skeleton of stont spiculo-fibre, similar to that of main skeleton; the spicules 3 - to s-serial, forming a network of subrectangular meshes, \ddagger to $\cdot 7$ millim. wide, enclosing detached or loosely aggregated spicules. Sarcode rery pale yellowish brown, slightly granular. Spicules smooth acerate, slightly and gradually curved, tapering to sharp points from about three diameters from ends (varieties oeeur having one end tapering more or less to a blunt rounded extremity, or with one end rounded and as stout ns the middle of the spicule, thus becoming truly neuate); size $\because 2$ by 0127 millim.

Hab, lort Darisin, 7 fms.; bottom sand.
This species is perhaps allied to Reniera aquaductus. It differs from that speeies in the anastomosing and externally spinons tubes and in the superior diameter of the spicule, which does not execed -0095 millim. in that species. The speeimen forms a low hedge-like series of nanastomosing tubes, which are almost horizontal at their lower ends ; maximnm height of colony 55 millim. ($2 \frac{1}{5}$ inches), maximum lateral extent 100 millim. (4 inches). It has a remarkablo external resemblance to a form of the Chalinid, Tuba acapulcensis, Carter.

46. Pellina aliformis. (Plate XXXLN. fig. O; Plate XLI. fig. ie.)

Erect, with slender pediclo; expanding into one or more wing-liko lobes, 4 to 6 millim. thick, 14 to 20 millim. in greatest width; the free edges looking upwards and dowuwards respeetively and the apex directed horizoutally. Surface more or less roughened (especially on the flat surface of the lobes) by the conuli, about ' 6 millim. apart, which enclose the ends of the primary skeieton-fibres: the margins of the lobes, and sometimes thicir sides, are covered by a glabrons semitransparent membrane. Vents few, subornl, 2 millim. in greatest diameter, with thin membranons margins, generally placed on the edges of the lobes; their cavity oblique, entered by pumerous excretory canals. Texture in spirit brittle, slightly elastic: colour very pale brown.

Main skeleton-spiculo-fibres lonse, no perceptible horny uniting substance; primary fibres approximately rertical to surface, ' 6 to - 85 millim. apart, 8 to 10 spicules broad: sceondary fibres at varions angles to primaries, at some distance apart, about 5 spicules broad. Dermal skeleton thick, formed of very loose spieular tracts of various sizes, croseing each other at varions angles, leaving small spaces between them. Sarcode rather granular, pale brown. Spicules smooth acerate, slightly eurved, tapering to sharp points from near centre ; size 5 by 025 millim.

Huh. I'ort Darwin, 8-12 fms.: botiom sand and mud.
Represented by one whole specimen and one fragment, in spirit. The former 33 millim. high by ahout the same wide, atid formed
by a short narrow pedicle, which rises broadening and flattening, and producing two broad expansions, about 25 millim. long, which bend to one side, where they meet and unite by their apices. The fragment consists of a similar wing-like expansion; so that this claracter is probably more or less constant in the species. The large size of the spieules and the coarse, though vague, dermal skeleton seem to justify the generie position I have assigned to tho sponge. Pellinu bibula, Schmidt (Baltic), resembles it in form, but has no apparent vents, and the spicules measure only $\cdot 13$ to $\cdot 24$ millim. in length.

47. Pellina, sp.

Tubular. Part of a specimen, consisting of a detached subeylindrical tube, 30 millim. long, 10 millim. in extreme diameter, wall 2.5 millim. in greatest thickness; tube contracted towards mouth, which is 4 millim. aeross and has a thin margin. Consistence firm, brittle; colour dull brown. Skeleton irregular; tracts bose. Spienles smooth acerate, slightly curved, tapering very gradually to sharp points ; size 6 by 02 millim.

The spicules are larger than in the European species of the genus; but I do not nssign a specific name, as the specimen is imperfect.

Hab. Port Curtis, Queensland, 11 fms.
Some very small, massive, rounded specimens from Port Darwin, between tide-marks, with spicules measuring 8 by 02 millim., are perhaps young forms of a rariety of this species.

48. Pellina, sp.

Massive. Nearly allied to "Reniera, yellow" of Carter (Ann. \& Mag. N. H. (5) vi. p. 48), from the Gulf of Manaar, and possibly identical with it, although that form seems to be paler in colour, and its spienle as described would be about $\cdot 24$ by 02 millim. in size. It seems to consist normally of a massive base, which sends up digitate processes, suboval in transverse section and about 15 millim. in greatest basal and 5 millim. in greatest apienl diameter respectively. Consistence in spirit firm, brittle; colour dull browu. Surface even, covered by thin glabrous dermal membrane. Vents few, seattered usually on the narrow margin of the sponge, receiving the larger excretory canals at a slight distance below surface, oblong, maximum greater and less diameters usually 3 and 1.5 to 2 millim. respectively. Main skeleton composed of loose spiculo-fibro 1 to 2 spicules broad; the primaries only approximately vertical to surface; the secondaries irregular in direction. Dermal skeleton reticulate; fibre usually $2-3$-serial, very loose. Sarcode reddish brown, somewhat granular. Spicules smooth acerate, tapering to sharp points from about four diameters from ends; size $\cdot 38$ by $\cdot 0127$ millim. Specimens fragmentary.

Another compressed specimen, terminating in an angle above, and with a single orbicular vent about 3 millim, wide, leading deeply
Digitized by Microsoft (B)
into the sponge, agrees fairly with this species. Sponge 30 millim. long, 20 millim. high, 10 millim, in greatest thickness. The main-skeleton lines are somowhat more abundantly spicular.

Hab. The first specimen, Port Curtis, Queensland, 11 fms. ; the latter specimen, Port Darwin.

49. Pellina eusiphonia. (Plate XLI, fig. x.)

Massive, sessile, horizontal in growth. Surface even, smooth. Vents formed by prominent thin-walled tubes, 3 to 4 millim. in diameter, ranging in length up to 12 millim., numerous, aggregated on upper surface of sponge, anastomosing with cach other; thickness of wall abont \sim_{2}^{2} millim. Texture in spirit-basal portion firm, rather brittle; of rents soft, very yielding; colour in spirit dull pinkish brown. Main skeleton-no risible horny matter, spicules loosely aggregated in fibres; primary fibres rertical to surface, 28 to - 42 millim. apart, 3 to 5 spicules broad; secondary fibres approximately vertieal to primaries, about - 28 to 42 millim. apart, 2 to 5 spicules broad. Dermal skeleton composed of long subparallel spiculo-fibres, rather compaet, without risible horny material, 3 to 10 spicules broad, 53 to $\cdot 7$ millim, apart; the intermediate spaces are oceupied by an irregular 1-2-spicular network. Subjacent sarcode transparent, pale brown; that of dermis almost colourless, pinkish. Spicules smooth acerate, tapering to moderately sharp points from within about two diameters of ends ; size 33 by 0125 to -019 millim.

Hab. Port Darwin, between tide-marks ; bottom rook and sand.

The specimen is an irregularly flattened mass, 75 millim. (3 inches) long, 35 millim. broad, 20 millim. in greatest thickness, and inrolves several stones in its substance. The peeuliar arrangement of the excretory tubes distinguishes it from any species which I can find described. In the allied form Pellina semitubulosa, Lieberkiihn (Schmidt, Adr. Meer. p. 75 ; Atl. Geb. p. 41), perhaps the most nearly related described species, the spicnles taper very gradually to sharp points, as in Amorplina panicea, Johnston, and measure 38 to 44 by 01 millim., and no true rent-tubes seem to be formed either in this or in the other species referred to Pellina by Schmidt.

50. Protoschmidtia hispidula. (Plate XLI. figs. p, p^{\prime}.)

Erect, lobose, nodular, the subeylindrical lobes have a slight tendency to brauch sideways and a strong tendency to anastomoso; lobes about 4 to 6 millim. in diameter. Growth bushy (i.e. in more than one plane). Surface beset with a velvet-like pile of fine hair-like poiats, 5 to 1 millim. apart and about $\cdot 25$ to $\cdot 75$ millim. high : between points, leathery and glabrous. Vents? Texture in spirit clastic and fairly compressible, tough ; colour dark reddish brown. Main skeleton consisting of spiculo-fibre 4 to 6 spicntes broad, closely but not firmly united; numerous short parallel
primary fibres run vertically to surface, mostly into the surfacepoints ; these are connected below by long secondary fibres, approximately at right angles to them ; internal skeleton consisting chiefly of long more or less enrred spienlo-fibres and membranous expansions, containing non-aggregated spicules, surrounding rounded spaces. Dermal skeleton formed by the projection of the ends of the primary main-skcleton lines; the spaces between these are oceupied by numerous spicules irregularly scattered over the membrane which corers the surface, occusionally aggregated into irregular loose paucispicular tracts. Sarcode of interior reddish brown (darkest around the fibres), rather granular, of conuli very dark opaque red-brown Spicules smooth acerate, rery slightly curved, tapering to sharp points from abont three diameters from ends; size $\cdot 14$ by 0063 millim.

Hab. Albany Island, Northern Australia, 3-4 fms.; bottom mud.

A specimen and a fragment, both in spirit, the former 45 millim. ($14 \frac{4}{5}$ inch) high by 40 millim. across ; a serpula is imbedded in the lewer part, which forms (from anastomosis) almost one continuous mass, and small speeimens of Serialurice are growing on it. The tenacity of the internal fibres and membranes shows the presence of a stronger element than ordinary sarcode; but horuy outlincs are not to be distinguished on the fibres, although the sarcode is darker herc.

It is nearly allied to Hymeniaciton bretti and thomasi, Bowerbank (British seas) ; but the spicules of these species are far longer than those here, and the surface-roughness does not extend to the production of the characteristic hair-like points found here, which resemble those of Euspongia. Dr. Gray (P. Z. S. 1867, p. 518) retains these species in Reaiern, with most of the acerate-spiculed species of Hymeniacidon described by Bowerbank : Schmidt (Atl. Geb. p. 76) assigns them to Amorphina. Protoschmidtia foraminosu, Czerniavsky (Bull. Soc. Mosc. 1879, p. 9ヵ), Black Sea, agrees in the proportions and forms of its spieules, in colour, sc., differing mainly in its much less rough surface and distinet rents; so I place this species in the same genus in preference to Amorphina, which, if Halichondria panicea is to be regarded as typical of its structure, should include forms with a distinetly reticulate dermal skeleton and absence of tough and deeply coloured sarcode from the fibres.

51. Schmidtia variabilis. (Pbite XXXIN. fig. N ; Plate XLI. fig. t.)

Decumbent; consisting of elongated horizontal (sometimes rertically flattened-out) lobes of very irregular, more or less angular outline, sometimes branching and anastomosing; the upper margin rises at intervals into low elerations, which consist of thick-walled, wide, rounded tubes, 3 to 7 millim. in diameter at the mouth, within which the true rents unite at about 6 millim. helow mouth; Digifized by I/ICrosoft (B)
or the tubes are almost level with the elge of a wall-like ridge which terminates the sponge above: margin of tubes simple. Surface of sponge between the coarso iuequalities smooth, imperforate to maked eje. Texture in spirit firm but brittle; colour dull and pale umber-brown.

Main skeleton-very loose primary lines of spicnles, about three spicules broad, running irregularly towards surface, crossed by secondary tracts of similar character, 2 or 3 spicules broad, at right angles to tho primaries and about $+\mathcal{\text { millim. apart. Dermal }}$ skeleton-extremely loose tracts of irregularly parallel spienles, 3 or 4 spicules broad, surrounding roundish or polygonal areas from 18 to $\cdot 28$ millim. in diameter. Sarcode dense, gramular, yellowish brown, containing much foreign material. Spicules smooth acerate, slighly curved, tapering to fairly sharp points from centre, more rapidly towards the ends than near the centre; size $\cdot 4$ by 019 millim.

Hab. Port Darwin, N. coast of Australia, 7-12 fuss. ; bottom sand and mud.

The vertical and horizontal dimensions of the irregular lobes both vary from abont 12 to 22 millim. The specimens are all broken; the greatest length represented among the pieces is 60 millim. (21 inches). By the very slight extent to which the tubes which chictly characterize the genus are developed, the species is distinguished from S. llura, Schmidt; by the large size of the skeletonspicules, from S. anlopera. It has somewhat the general habit of the specimen figured by Schmidt (Atl. Geb. pl. r. fig. 8) for the latter species, and of Thetlysias subtriangularis, Dech. de Fonbressin and Michelotti; but has a more contort character than the latter, and the spicules are far larger than those of the former. It is also quite distinet in habit and spriculation from the form termed Thalysias triangularis by Carter (Phil. Trans. clxviii. p. 257), from Kerguelen Island, the spicules in this being (as I have ascertained from the original specimens, now in the Museum) only $\cdot 19$ to 2 by 014 to - 016 millim. in dimensions. In Schenidtia (Isodietya, Bowerbank) mirabitis, Bowerbank, another hido-Pacific species, the spicules are only about half the size of the present species, although the hahit is similar. It is perhaps nearly allied to S.clavata (Balsamo-Crivelli), Esper, by its general habit and large strong spicules; lut those of that species, as figured by Balsamo-Crivelli (Atti Soc. Ital. v. pl. ir. fig. 12), are considerably stouter than those of S. variabilis.

52. Amorphina megalorrhaphis.

$$
\text { Carter, Am. \& May. N. II. (5) vii. p. } 368 .
$$

A remarkable small specimen, which at first sight appears to be pedicillate, with a fusiform head, but is in reality horizontal in growth. It is a sulfasiform mass, which tapers rapidly to a blunt point at one end, rus out as a long narrow eylindrical lobe at the other, and is attached by one side of its thickest part, so that the two ends mentioucd project horizontally outwards to right and left of the
Digitized by Microsoft (®)
point of attachment : the length (horizontal) is 39 millim. ($1 \frac{1}{2}$ inch), greatest (vertical) thickness s millim... aterage thickness of narrow lobe 2 millim. Colour (in spirit) white ; texture rather firm, hash (Carter says "tender"). I small aperture, about *3 millim. in diameter, at the end of the shorter lolic is the only perceptible rent. Surface obscurely wrinkled. Spicules as in A. penicece, measuring 8 to 1 millim. by 012 to 018 millim.

This specimen agrees well in size and in its general and spicular characters with these described by Mr. Carter from Ceylon.

Hab. Prince of Wales Channel, Torres Straits, $5-7$ fms.
Distribution. Basse Rocks. Ceylon, Kerguelen Island (Cwiter), (Atlantic ?, Certer, 1.c.).

53. Tedania digitata, varr.

Reniera digitata, Schmidl, Atr. Mrer. p. 7n, pl. vii. fig. 11. Reniera ambiqua, il. Adr. Meex. Suppl. p. 29. pl. iv. Gig. 8, Reniera mugriana, id. Spong. Aly. p. 농.
Tedania digitata et mugrima, (iray, I. Z. S. 180π, p. fi20.
Toltmia nigrexerns, Schmidt, Adr. Meer, p. 74, is probably not distinet from the above species : but, as it was not intelligibly deseribed until after T. riyituta, the latter name in any ease takes precedence.

From a comparison of the specimens and slides of these different species in the Museum inter ve and with Schmidt's descriptions, 1 come to very much the same conclusion as Schmidt (Atl. Geb. p. 43), riz. that they are all mere rarieties. Schmidt's expression is that it is merely a matter of taste whether they are called species or varieties. The differences in outward form have cansed him his greatest doubts as to their identity : and it is true that, while some specimens bear large lobate elevations, others are massive, and that whereas some have large vents, in others they are all small and scattered. But I find that all agree in a more or less massire babit, caventons structure, and strongly ridged or papillose surface; whereas the Atlantic form, T. suctoria, Schmidt, and the Chilian T. turicapritata, mihi, have an almost even surface.

The forms of the spieules are practically the same in all cases, and the micro-spination of the heads of the cylindrical "tibiella" is undonbted throughout, whereas in the tmo specified species the heads are quite smooth.

The Port-Darwin specimens differ deeidedly in the propertions of the acuate spicule. as will be scen below, from the rest. None of the varieties pointed out seem to stand out with sufficient distinctness from the rest to receive distinct varietal names. A specimen lately received from Kurrachee agrees essentially with all the above specimens, the spienles being only rather small : the surface is broken up into a dense mass of slender, almost filiform processes and lamellar ridges, from 1 to 5 wr 6 millim. high.

I append a Table showing the chief rariations in the proportions of the spicules:-

Proportions of Spicules (in millim.).

	Snooth Acuate.	Tiniella (including heads nad their diameter).	Fine Acerate.
Mediterranean specimens of 1. degitata, nigrescens, amhgun, muggiana	$-29 \mathrm{by}$ 011 to 012	28 to 25 by 00013	-18 to -2 by . 0016 to 0017
$\left.\begin{array}{r}\text { T. digitata, var., Kurrachee } \\ \text { sp-cimen }\end{array}\right\}$	$\cdots 2$ by 007	-16 by $\cdot 00 \pm 2$	14 by 002
Do., Thursday and Alert Islands, Torres Straits, specimens (2)	-19 by 0063	$\left\{\begin{array}{c}\text { uthont } 228 \\ \text { by } 006\end{array}\right.$	about 18 by 0015
Do., Prince of Walea Cbannel, ? Torres Straits, specimen...	$\because 25$ by 0063	22 by 0042	22 by 002
$\left.\begin{array}{c}\text { Do., Port Darwin (Australia) } \\ \text { specimens (} 2 \text {) }\end{array}\right\}$	- 3 by 0095	$\left\{\begin{array}{l} 2 \text { to } 25 \text { by } \\ 006 \text { to } 0003 \% \end{array}\right.$	-18 to -19 by .0021 to 0032

In the present collection are some more or less fragmentary specimens, and two which inernst crabs, all well preserved in spirit; they are either broad, massive, about 25 millim. (1 inch) thick, or incrusting, 1 to abont 6 millim. thick. The surface is covered with more or less closely-set ridges or monticular clevations, from 1 to 3 millim. high. The colour is pale grey of different shades (a purple colour in one case being apparently derived from a purple sponge which arrived in the same bottle of spirit). The spicules agree closely in form with those of Mediterranean specimens; and the only notable difference in proportion is that the diameter of tho acnate is from $\frac{1}{2}$ to $\frac{1}{4}$ less than that of those spocimens. The colour is paler than in the Mediterranean forms; but these exhibit a wider range of rariation in this respect than is shown by a comparison of the darkest Australian and palest Mediterrancan specimen. Therefore I feel fully justified in uniting the twe gronps of forms as ono species, remarkable for its wide geographical distribution, polymorphic external habit, and great range of spicular rariation.

Hah. Alert and Thursday Islands, and Prince of Wales Channel, Torres straits, 3-9 fms. : Port Darwin, between tide-marks.

Distrihution. Mediterranean (Schmidt): Atlantic (Schmidt): Antigna (Curter): Kurrachee (coll. Brit. Mus.).

T' incriscens, Schmidt, JB. Comm. Unters, dentsch. Mecr. ii.-iii. p. 115 (off S.W. Norway), differs from these and all describod species in having a spinulate head to most of the smooth acuates.

DESMACIDLNTDE (Schmidt, 1870).

If all those sponges which contain hooked or bow-like fleshspicules were, in accordance with Tismaer's views, as expressed in his very useful Revision (Notes Roy, Mus. Netherl. ii. p. 99), inchided in this family, it would not only be the largest, in all probability, of the families of siliceons spmpes, but it would leave some of the remaining ones mere skeletons, Judged by the facts now known, the boundary region between the Desmacidinide and Chalinide is now narrow, but not in reality so narrow as it would be if the abore definition is insisted on. Whatever may be the affinitics of Homoorlictyn, with its anchorate flesh-spicules (referred by Mr. Carter to the Chalinida), those of Torochalina, mihi (see Chalinidm, suprà), are undoubtedly with that group; yet it has a bow-like flesh-spicule in conjunction with a Chalinid acerate skeleton-spieule, horny fibre, and digitate habit. Until the homologies of the flesh-spicules are better understood than they are at present, I beliese that cases such as those just mentioned will have to be considered separately on their individual merits as they arise, having special regard to the direction in which the greater assemblage of affinities point. It seems probable that this family will only prore a fresh illustration of the maxim " Natura nou facit saltum." Besides Torochalina I here exclude from the family those genera (e. g. Cluthria, Acurnus, Echinonema) in which any of the spicules project laterally from the fibre; such forms as these scem to pass by gradations (E.hinadictyem, Raspuilie) almost into Arinella and Plocellia, by losing, in the first case, the fieshspicules, and in the second (-hemelle se.) the spined cehinating eylindricals, Rhizochalina, on the other hand, seems linked to the family by its oceasionally horny fibres, and by its ally Oceanopice with its bihamate tlesh-spicnle ; and I have ranged it (although only prorisionally) here as a degraded Desmacidine. It probably owes its peculiar form to its mud-loving habits. Two new generic types, Gelliodes and Ietrochutra, are described belors.

RHIZOCHALINA.

Schmialt, Att. Geb. p. 35.
Pbloodictyon, Carter, Aun. \& Mag. Nat. Mist. 1882, x. p. 122.
This form is so aberrant in its coarser anatomy that I think there can be little doubt that Carter has done right (l, c.) in making it the type of a distinet group, although we have as yet no satisfactory information about the arrangement nud structure of the snft parts. Although I can see no sufficient reason why the name Occencipic, Jorman, should give way to the above names for such species as Desmacidon jeffecysi, Bowerhank, whose spiculation includes a bihamate, yet it scems not undesirable to retain the older of the two for those which have simply an acerate spicule. With regard to the question of syste-
tnatic position, which Corter (l.c.) is inclined to regard as among the Renieridac, I notice that Rhizocherlina olerucea, at any rate, has a true Chatinid fibre: lut Bowerbank's and Carter's species never approweh this condition more closely than by producing a few scattered eompact fibres, wholly composed of spicules, like those of some Prechychelinur: but the greater part of the organization is Renicrid, anl it appears to appronch Sichnicttia, Balsamo-Crevelli. On the other hand, Oceinat pin, which seems to be nearly allied, has the bihamate spicule. Taking this fact in conjunction with the horny fibre of Mh . oleracat, it seems to me best to place the two genera in the Desmacidiuide.
54. Rhizochalina fistulosa, Bowerbanl; var, infradensata, nov.
? Aleronium putridosum, Lamarck, Mem. Mus, Hist. Nat, i. p. 168.
Desmacidon fistulosa, Boncerbunk, P'. Z. S. 107.3, p. 19, pl. iv. firs. 7, \&
Twn more or less imperfect specimens in spirit, the largest about 25 millim. (1 inch) across the body, and some detached dry tabes. An arrangement here found, which 1 have not seen described in this species. is that of a dense layer of the skeleton-spicules, packed side by side, at right angles to and abont -25 to $\cdot 8$ millim. below the surface of the sponce-below, that is to say, the superficial Isodietyal, or rather Halichondrioid (in Bowerbank's sense) network containing the subcortical erypts and other cavities. This layer recalls the vertical layer of smnhl subspinulates of Rimulide uberrima. Schmidt, only that it is not, as there, placed at the surface. It is represented in the type specimen of the species by a layer in which the spionles are set obliqnely to the surface at rarions angles. As both the present specimens present this peculiarity, I think it well to establish for them a distinet rariety.

One of the specimens exhibits the small crateriform eminences figured on the outside of liowerbank's specimen, but the other does not: hence they probably have no systematic, and but little physiolozical importance. The spicnles agree closely in proportions with those of the type.

Arafura Sea, Arafura Sea,
ype specimen. Spee-no. 1. Spee. no. 2.
Acerate spicule, 27 by 011 to $0127 \quad 25$ by $0111-25$ by 012 mm .
Huh. Arafura Sea, N.W. coast of Austrulia, : $32-36 \mathrm{fms}$; bottom mud, sand, and shells.

Distribution. Fremantle, W. Australia (Bowerbank) (the typical form).

The dermal membrane of one of the specimens contains a large number of smooth acerate spicales of about half the length and Inexith of the proper spicules : they do not occur below the memhrane. nor, apparently, in the other specimen. A similar cireumstance occurs in R. siagaporensis described below: in that case a number of short blunt eylindrical spicules oecur of the normal, or almort the normal thickuess, but only one half to two thirds the length of the adult form.
55. Rhizochalina singaporensis, Carter, var. (Plate XLLI, fig, s.)

Phloodictyon singrporense, Cartor, Ahn. S). May. I. II. (IA8:\%) xii. p. 326 , pl. xiii. lig. 17.

With this species 1 identify a series of specimens which usually bave the ontward habit of iR. fistuluse, but in wheh a large proportion of tho (usnally acerate) spicnles lave both ends more or less rounded. In the most perfect specimen the cortex is glabrons, chestnut to parplish-brown in colonr, thin: the fistule are wanting on one, presumably the lower, surface. I smaller specimen consists of a barzel-shaped mass adhereut ly its lower surface to two other sponges, and giving oft from one lateral extremity one, from the other two fistula and no others. I detached fistula exhihits furcation, dividing into two unequal branches at an angle of about 30° to each other. In one remarkable specimen the central part of the body is clongate, slightly compressed, and measures 110 millim. ($4 \frac{2}{3}$ inches) in its present length, while its diameter does not exceed 12 millim. anywhere; in its other characters it agrees well with the above specimens. A fragment of the bulbous part of a large specimen shows that part of this specimen, when perfect, to have possessed a diameter of about 75 millim. (3 inches).

The ends of the spicules show almost every stage between a merely blunted point and a ronnded end like that of the hase of an ordinary acuate spicule: some thin, completely accrate firms, which ocenr mixed with the blunt forms in the subeortical tissues, are perhaps the young of the latter, indicating the typieal shape from which the adult spicules have diverged. The largest adult spicules have nearly the same size as the acerates of the typical form of R. fistulosit, ciz, 3 by '0127 millim., hat they vary immensely in Ienyth ; the thin acerates measure $\because S$ by $00+$ millim. In Cuter's specimen the acerates measure $\cdot 3$ by $\cdot 017$, the blunt forms $\cdot 64-$ ils by 004 millim.

Three fistule retain their ends, and these are tinger-like and closed.

Hab. Prince of Wales Channel, West and Alert Islands, Torres Straits. 7 fms.

Distribution. Singapore (Carter).
I may explain that 1 had at first distingnisbed this form as a varicty of R. fistulose: but as Mr. Carter has, since then, published a description of it as a distinct species, and ns 1 hiad already felt that it should perhaps be so deseribed, I assign the name proposed by him to the Australian specimens.

56. Rhizochalina spathulifera.

 (Plate XixiN. fig. E: Plate NLI, fig. q.)Main bedy elongated. flexnous, cylindrical or somewhat enmpressed, 12-17 millim. in greatest diameter. External portion (cortex) in dry state eren. hard and dense on the stem. where it is about $\overline{7}$ millim. thick; rather uneren, porous and compressible on the branches:

> Digitized by Microsoft (®)
rather brittle, white, marked (at any rate on the stem) on its inner surface by closely-set clongate or reticulate ridges; covered by a thin, wriukled, paper-like, pale yellow-brown membrame. Branches given off towards end of stem, in succession, in one plane ; 7-8 millim. in diametor at bases, slightly loss towards apices, 25 to 60 millim. (1 to 2 / finches) long; cylindrical at base, becoming compressed at apex into tlattened subcircular or kuife-like expansions, about 10 to 12 millim. in width and 1.5 millim. in thickness; the frec ends often (if not always) imperforate. Skeleton of cortex a rather elose Halichondrioid network. with meshes $\cdot 07-14$ millim, wide, fibre 3 to 6 or 7 spicules broad. Main skeleton below cortex coarsely retienlate with immense aggregations of spicules into coarse spiculofibre. Sarcode in axial tissues brown, transparent, in cortex almost colourless. Spicules smonth acerate, tapering gradually to sharp points from about seven diameters from ends; size $\cdot 22$ by 0098 millim.

Hab. Thursday Island, Torres Straits, +5 fmis. ; bottom mud.
A single specimen, 175 millim. (7 inches) long, composed of two laterally fused specimens. One end is broken across, and shows the interior to be filled with flocenlent spienlo-tissue; it is thus donbtful whether this end bore any tubes. This species differs, in its very drawn-ont form, from all the described species oxeept, perhaps, Phtuodictyon honcturasense, which is known only from a tubnlar fragment; but the spicules of that species are considerably smaller than those of this form, riz, only 16 by $\cdot 008$ millim.

No Chalinoid or even Esperia-like fibre appears to occur in any part of the sponge.

57. Rhizochalina canalis.

(Plate NXXLN. fig. F: Plate NLI. fig. r.)

Simple, unbranched, eylindrical tubes, straight or slightly bent near middle. Diameter at middle abont 10 millim. (in large specimens), gradually (sometimes very slightly) decreasing towards ends; ends finger-like, closed, 3 to 4 millim. broad. Surface somewhat uneven. Tents apparently represented by circular perforations of cortex, 5 to 8 millim. wide, few, seattered. Cortex in dry state hard, rather brittle, slightly compressible towards ends, dense; colour greyish: thickness abont $\cdot \tau$ millim. : onter layer hard, abont $\cdot 2$ millim. thick: inner layer bast-like, closely reticulate, about 3 millim. thiok, Axial substance? Skeleton of cortex composed of very strong rertical spiculo-fibres 5-12 spieules broad, interlacing closely at the surface to form the hard onter layer ; they are abont $\cdot 14$ to $\cdot 18$ millim. apart and about $\cdot 7$ millim. long at the thickest part of the cortex, beinm met at their imer extremitics by a strong sccondary fibre (parallel to the surface) about 10 spieules broad. Sareode pale brown, transparent. Spicules smonth acerate, becoming rounded off (rather than tapering) to sharp points from about four diameters from ends ; size $\cdot 27$ by 014 millim.

Hab. Port Darwin, 8-12 fms., bottom sand, mud, se. ; Arafura Sea, $32-36 \mathrm{fms}$, bottom sand, mud, and shells : Torres Straits.

Several dry, more or less imperfect specimens, all somewhat overgrown by Polyzoa, Hydroids, or other Sponges: and one in spirit, showing the only at all complete extremity. The largest measures 155 millim. (6 250 millim. (12 inches) long when perfect. The species is an extreme form of the same elongnte type as R. sputhentifera, but does not branch, and there is no indication in the present specimens of flattened extremitics like those of that specics ; the spiento is stouter. longer, and more approaching a eylindrical form than in that species.

GELLIUS.

Gray, P. Z. S. 1867, p. 638.
Asychis, id. l. c. p. 539.
Desmacodes, Sclmidt, Spong. All. Geb. p. 64 ; Vosmuer, Notes Roy. Mus. Netherl, ii, p. 104.
Fibalarin, Carter, Am. \& May. N: II. 1882, ix. p. 282.
The identity of Sehmidt's genus with Gray's might appear to he questiomable, as Schmidt, besides tho reerate and lihamate spicules on which Gray bases his definition, deseribes also a spiunlate and cylindrical one ("Stift") ; bat I fail to find these forms on the slido of the type species which the Mnsenm possesses from Prof. Schmidt. The genus, which may be defined as "consisting of massive or erect forms, with loose brittle texture, and a skeleton smooth acerate, and a flesh bihamate spienle," is widely distributed; the proportions of the spicules vary little, and the external form has chiefly to be relied upon in distinguishing the species. It is unfortumate that Dr. Gray's genus, which, liko many others made by him, is sufficiently characterized, and is prior to names assigned to the genos by other authors, has not come into general use, since many synonyms have been thercby created. Sollas (Ann. © Mag. N. II. 1852, ix. p. 427) mpholds Gray's genus Thenea against all comers in a similar may, and is supported by Norman (apued Bowerbank, Monograph Brit. Sponges, iv. p. 29).

Horuy matter is not usually to be detected in the skeleton.
5S. Gellins couchi, Bowerbank, var, ceratina, nov.
Halichondria couchi, Boterbank, Mon. Brit. Spong. iii. p. 203, pl. 1xxxi. figs, 1-15.
Halichondria elegantin, id. I. Z. S. 1875, p. 286.
As Vosmaer (l.c.) has suspecter, the abore two species are both congenerie with Dcsmacodes fibulatus (Schmidt, sp.) and agree with it in having a spiculation composed of an acerate and bihaunte.

Bowerhank's type apecimen of I. couchi, which I have examined. contains plenty of the latter spicule : and his own statement to the contrary (P. 7. S. 1875, p. 264) is obsionsly an error, as he himself deseribes and figures these spicules from this species (Mon.

Brit. Spong. iii. p. 204, pl. 1xxiii. fig. 15); Tosmaer notes this diserepancs.

The British form of Gellies couchi has external characters similar to those of Intlichomlrin elegontia, and differs from it butslightly in the spiculation. In the present collection occurs a specimen with very similar spiculation, but the acerate is thiuner and the filre is very distinef, the spicnles being nuited ly a yellow substance which appears lecond the spienles on each side of the fibre. It has grown over a Sertularian Hydroid, to which eircmmstance it probably owes its elongate cylindrieal form (that of G. couchi is usually massive, compact, and the spienlo-fibre is loose). The vents are seattered ou the surface, and metastre only about 2 millim, in diameter. It may be distinguished as var. ceratinct. The following fable gives the proportions of the spicules in the type specimens of each of the three forms here united:-

	Acerate. millim.	Bibamate. millim.
Hal. couchi, Bowerbank		

Heb. Arafura Sea, 32-36 fms.
Distribution. Straits of Malacca (Bowerhemli): Cornwall (Bower$b a n k i)$.

59. Gellius varius.

Halichondria varia, Bowerlank, P. Z. S. 1875, p. 202.
Isodictya virgata, id. l. e. p. 294.
The above tro species must be united. The erect crlindrical form of well-grown specimens forms a good external distinctive specific character, while the superior diameter (see below) of the skeletonspicule readily distingnishes it under the microscope. Two fragments, exhibiting a cylindrieal erect habit, occur ; the skeleton-fibre is rigid and brittle, even in spirit-specimens, and agrees sufficiontly with that of the typical specimens; the proportions of the spicules are as follows:-

	Acerate. millim.	Bilamate. millim.
Hal. variat (type)	22 by 016	. 025 to -032 by $\cdot 0$
Isodictya virgata (type)	-22 by 014	-025 by -0021
G. varia (from Pt, Darwin)	$\cdot 25$ by 015	-019 by 0015

Hob. Port Darwin, 8-1: fms.
Distribution. Straits of Malacea (Bowerbauli).

(90. Gellius fibulatus.

Reniera fibulata, Schoult, Adr. Mexr. (1ع62), p. 78 ; Atl. Geb. (1<70), p. 40 .
? Isodictya juposa, Bowerbank, Mon, lirit, Spong. ii. p. 296, iii. pl. 2. figs, 11-1 4 .

Schmidt's Portuguese specimen differs from the specimen which was originally described by him (and which was from Triest) in its more massive hahit and in the much larger size of its hihamato. which (as 1 find in the slide in the British Museum) measures e(14 to $\cdot 07$ millim, in leugth, or $\cdot 0353$ ($3: 337$ millim, seems to be a misprint), as he himself states at p. 40 of the 'spong. Atl. Geb.' Isolictyf jumpore agrees closely with this form in the proportions of its spicules, but was based on a very yomg specimen, so that its extermal characters can harilly he appealed to; it differs from the specimens described below in its rough surface.

Several specimens have lately becn added to the National collection from the neighbonrhood of Kurrachee (Hindostan), which consist usually of stout, horizontally spreading and amastomosing lobes, with a row of vents of various sizes, about 10 millim. or less in diameter, ranged along their upper margins. The surface of the sponge is quite smooth in most plaess, and the texture soft and brittle. The spiculation closely resembles that of Reniort fibulata.

Lastly, in the present collection oceur:-(i.) a small but massive soft specimen from Torres Straits, with a few oscula on its summit : it has a somerrhat pyriform shape, apparently owing to its having grown upon the stem of what seems to be a filamentons Hydroid: (ii.) a fragmentary specimen, which apparently had when perfect the same general habit as the Kurrachee specimens just referred to ; the spiculation is similar. I propose to unite all these forms except 1. jugose under the name fibulute ; I give the spiculations of all for comparison :-

	R. fibulata.		1. jugosa.	Kurachee specimens.	TorresStraits *ресішеп.	PortJackson specimen.
	Triest.	Portugal.				
Acerate ... $\{$	millim. ?	millim. 22 by 0095	millim. 27 by 4095	millim. -16-19 by $\cdot 0079-10084$	millim. 19 by 0079	millim. 19 by 006
$\underset{\text { Bihamate }}{\text { length). }}\}$	923	-038-07	-025-038	.019-02.	.019-038	-036-042

The slender proportions of the acerate and the soft texture of the sponge distinguish the species from G. caria, Bowk., and its distinet rents from G. couchi, Bowk.

Hal. Torres Straits, 10 fms, : Port Jackson, 0-5 fms.
Distribution. Adriatic, coast of Portugal (Schmidt); coast near Kurrachee (coll. Mus. Brit.).

61. Gellius cymiformis. (Plate XLL, fig. z.)

Spongia cymaeformis, Esper, 1Htansenth. Fortsetz. i. p. 43, Spong. pl. Xxix.
Isodictya cymeformis, Ehlers, Espersch. Spang. p. 24.
The external charaeters agree well with those of Esper's species, Digitized by Microsoft (8)
and the fibre appears to agree with Ehlers's account of the species, but I do not find the acnate spicules mentioned by him as oceurring less abundantly than the acerates ; the size of the latter in the present specimens is -15 to 16 by 00.55 to $\cdot 007$ millim. (Ehlers gives $\cdot 17$ millim. for the length); and I find (what Ehlers does not mention) fine bihamates measuring 02 by 001 to 0016 millim. But a more extraordinary fact connected with the species is that the spongetissue is almost entirely replaced (this seems to bo the true explanation of the facts) by a ramifying and anastomosing algal fibre, $\cdot 1$ to $\cdot 18$ millim in diameter, of a semitransparent uppearance and tough clastic texture in the dry state, like that of dry isinglass: the component cells are about 007 millim. in their smallest diameter. It appears to be the same species as that which forms the substratum of the mass described by Bowerbank (P. Z. S. 1876, p. 771, pl . Ixxx.) as Ophlituspongin fucoirles, which is nothing more than a coating Suberitid songe running over the fibrons filaments of this same alga, which Bowerbank has taken, though not without hesitation (see p. 772, , c.) for the horny fibro of an Ophlitispongia, although he has identified isolated portions as alga. In this case also it is not until examined with the microscope that the algal nature of most of the structure is identified with certainty. This form of symbiasis has been lately noticed by Prof. K. Semper in •Die natiurlichen Existenz-Bedingungen' ('Animat Life,' International Scientific Series), where Spongia cartileginert, Esper, is used in illustration; it is probably of not uncommon ocenrence in the Spongida. A Formosa specimen agrees elosely in the characters both of the sponge and alga with those from Anstralia. Mr. Carter (Ann. \& Mag. Nat. Hist. 1878, ii. p. 163) describes exactly the same circumstance in an allied species from Hong Kony, and adds other similar instances. Neveral specimens, dry and in spirit.

Inal. Thursday Island, Prince of Wales Channel, Torres Straits, $7-9 \mathrm{fms}$: Port Molle, Queensland, coral-reef.

Distribution. Coylon (Esper) : Formosa (coll. Brit. Mus.).
This species has a similar habit to G. varius, if the form may be regarded as that of the sponge and not of the alga; but its acerate spicules are not so long and scarcely half as thick as those of that species.

GELLIODES, g. n.

Desmacidinide of erect habit and well-defined form, fibre distinct and compact : outer surface of sponge beset with pointed eminences. Spicules smooth skeletou acerate and bihamate.

This genus unites the habit of Echinonemata with the fibre of Desmacidinide and the spiculation of Gellins (Desmacodes). Mr, Carter (Aun. \& Mag. N. H. 188., ix. p. 2-8) has referred his species Aros filutute to the genus I'horbus. Duch. and Mich., together with his A. Leos anchorate, which can bardly be generically identical with it, as its spienlation is an acerate and an anchorate, while Pherturs amarunthus, the second speciex of the genus, has only an
acerate. Judging by the present specimens, A. fibulata wants nlso the purple colour of Phorbas, ou which Mr. Carter lays so mueh weight; so that I see nothing but the general external form by which to counect this species with I'horkas, and this cannot suffice for a point of affinity in the Spongiida.

62. Gelliodes fibulata.

(Plate NXNIN. fig. I: Plate XLI. figs, bb-bb".)
? Spongia rubispina, Lamarck, Ann. Mins. Mist, Nat. xx. p. 450.
? Axos fibulata, Corter, Almu. ई May. N. II. 1881, vii. p. 383, pl. xriii. fig. 4.
Long cylindrical stems, given off from a common base. but not in a plane, irregularly curved, awastomosing at points of contact, aculeated at intervals of about 2 to 5 millim. by strong but slender sharp spines 2 to 3 millim. long; intermediate snrface more or less casernous, the spaces more or less tympanized by membrane which is semitrausparent in spirit, transparent in the dried state. Skeletonfibre very compact, but exhilitiug no horny material; main fibres going direct to surface, $\cdot 18$ to $\cdot 2$ s millim. thick: secondaries given off at various angles from primaries and at intervals of 43 millim. and upwards, os8 to $\cdot 18$ millim, thick. Sarcode transparent, with only the faintest tint of yellow. Spicnles:-(1) Acerate, smooth, tapering gradually to sharp points from near middle, slightly and gradually curved: size $\because 5.5$ by 0063 millim.; forming the fibres. (2) Bihamate, smooth. slender, with fine points, well curred; sizo $\cdot 016$ by $\cdot 001$ millim. Texture of sjouge in dry state firm, very harsh to touch, slightly flexible : colour pale or darkish brown.

Hab. Prince of Wales Channel and Thursday Island, Torres Straits, 3-10 fms. Abundant.

Distribution. Bass's Straits (Carter)?
Single branches attain a length of about 100 millim. (4 inches), and the largest colony is 160 millim. ($6 \frac{2}{5}$ inebes) high. The species difers from Lamarck's description of S , rubispina in wanting the white inerustation, and in not being branched in a fan-like manner : it is doubtful what he means by an "encroùtement corince." A specimen in the Lamarckian collection named Spongia licheniformis haring apparently formed part of a turbinate or flattened mass, even on one side and beset with low but sharp distant monticular eminences on the other. has an almost identical spiculation, but the fibres are less stont and are decidedly loose in their stracture. It seems to me that we hare here a small natural assemblage of forms representing a more primitive type of Desmacidinidx than the forms with anchorate spicules.

AMPHILECTUS.

Fosmaer, Family Desmacidinitla, Notes Roy. Nuss. Netherl. ii. p. 109.
Although this genus as defined hy Vosmaer appears to hare
somewhat too wide a scope, it is at the same time true that a resting place or places must he found for those numerons and varied species which are intermediate between the more plainly marked genera Desmacidon, Esperiue, and Myxilla. For some of these forms older genera may be emplojel. e.g. Dirrhopalum (Plocamict) for A. coriaceus and microcionides (as 1 have endenvoured to show in a paper" On the Genus Plocamiue \&c.," Journ. Linn, Soc., Zool. xv. pp. +51, 482), For some such species (chyssi, phlyctadid s) Mr. Carter employs the old term Hutichondria; but the type of Fleming's genns Hulichoutrit is Spougiat papilluris, Pallas, which appears to be a synonym of Ihalichombria (Amorphina, Schmidt) pmeicen, viz. a Renierid and not a Desmucidine, and so the genus Malichondrit, if maintained, should be restricted to Renieridæ.

Amphilectus, it seems to me, may be kept with adrantage for forms with dentate or navicnlar equianchorate flesh-spicnles, with smooth skeleton-spicules and absence of any chinating spicules : the type of the genus is Isodictya gracilis of Bowerbank. It may be perhaps necessary to admit forms in which the tibiella (when present) is slightly spined, as in Desmacidon arceps, Nchmidt. Vosmaer's limitation of Desmacielon to species with horny fibre is not justified by the species he has assigned to it.

63. Amphilectus tibiellifer. (Plate NLII. figs. $t-t^{\prime \prime}$.)

Ercet, massive, sessile by broad base; sponge broader than high and higher than it is thick, decreasing in thickness towards upyer margin, which presents a uarrow edge. Sponge-mass honeycombed by a system of tortuons, anastomosing spaces, 3 millim. and upwards in diameter, separated in most cases merely by trabecula of substance. Surfaco perforated by the closely-set openings of the abosementioned spaces: surface of sponge and of the trabeeube between openings even, slightly villous in spirit. Texture of sponge in spirit firm, subelastic. tongh; colour dark reddish nmber-brown. Sarcode pale reddish brown, rather soft. Main skeleton consisting of compact spienlo-fibre formed of spicule no. 1, showing no horny uniting substance, about 3 to 6 spieules broad. irregnlar; some only of the primary fibres go straight to surface, the secondary fibres usually meet the primaries at acute angles; primaries about 5 millim, apart. Dermal skeleton consisting of a network of spiculo-fibre 2 to 4 spienles broad, the spicnles mostly loosely aggregated; meshes of network ahout :35 millim. apart.

Spicules :-(1) Skeleton acuate, strong, smooth, straight or slightly curved: hase rather squarely rounded, shaft eylindrical, tapering to point from about three diameters from end: size 34 by -014 millim. (2) Tibiella, slender, almost straight: shaft smooth, of same diameter thronghont, passing gradually into an oval smooth head about half as thick again as shaft; sizc -25 by 0042 millim. (thickness of head): abundant in dermal membrane and interior. (3) Equianchorate, navieular or shuttle-shaped, with palms rather
longer than broad, inner margins truncte, as soen from front, tubercle distinet ; shaft slightly and gradually eurved; size -016 millim. long : abundant, especially in dermal membrane. (\dagger) Triemrvate, smooth, strong, the curves bold, the points sharp : size $\cdot 15$ by 006 millim.

Hal. Prince of Wales Channel, Torres Straits, 7 fms.; bottom sand.

A specimen and a fragment in spirit, the former 80 millim. broad by 75 high by 40 thick at present base ; it is nlmost semicircular in outline, the round margin uppermost; it appears to have been torn from a rather larger specimen.

The presence of a tibiella with smooth ends distinguishes it from all allied species of Desmacilon (Schmidt) but D. emphysema, Schmidł (JB. Comm, Unters, dentsch. Mcer. ii.-iii. p. 118), and D. physa (id. 1.c.), the latter of which, however, has the surface of the sponge even and the sponge itself tlask-shaped; in the former the sponge is covered with bubble-like elevations. Desmacidon areifirum, Schmidt, which has a similar tibiella, appears to be an Ophëitis, moufin, from the strong horny fibre and the echinating arrangement of some of its acuates. D. dictar, id., has, besides, the tridentate anchorates of My, cille and a strongly horny fibre: and both it and D. anceps, id., possess the forcipiform spicules which oceur in Ilalichondia forcipis, Bl.

6.4. Amphilectus hispidulus. (Plate XL. fig. C: Plate XLI. figs. $y-y^{\prime \prime}$.)

Erect, clathrous; formed of a number of irregularly branching and anastomosing masses, their surface more or less covered with low eylindrical or ridge-like elerations. Vents? Surface bispid with elosely set, hair-like terminations of the primary skeleton-filses. Texture of sponge in dry state firm, elastic. but readily torn, in spirit soft, clastic; colour dull pale brown in dry state, in spirit pale pinkish brown.

Main skeleton of the type known as "isodictyal," viz. consisting of primary lines running straight to the surrace, at right augles to it. connected by numerous transverse sccondary lines set at right angles to the pimaries; distance between primaries at surface about 25 millim., between secondaries $\cdot 17$ millim., length of the surface processes of primaries abont 3 millim. Fibres formed of pale yellow horny material, cored by the axial spicules (no. 1) to the extent of about one third of their total thickness in the case of the secondary fibres, about three quarters in the primaries ; margins of horny material clearly seen outside the spicules, except in the surface-tufts of the primaries, which are opaque and dark-coloured; spicules in scries of 3 or 4 in the primary, of 2 in the secondary fibres, of about 6 in the dermal tufts of the primaries. Dermal skeleton consisting of an irregular reticulation with polygonal meshes made up of fibres, some of which resemble the primaries,
others the secondaries of the main skeleton. Sareode very pale brownish yellow, thin and transparent.

Spicules:-(1) Skeleton acuate, smooth, straight or slightly curved, with rounded base slightly smaller than the middle of the shaft, which tapers gradnally to a fine point from near the middle of the spicule; size of spienle 18 to $\cdot \underline{2}$ by 046 to 0063 millim. : in middle of fibre. (2) Flesh-spicule, equianchorate, navicular, shaft gradually eurred, slender ; length of spicule -013 to 016 millim.

Hab. Thursday 1sland, Torres Straits, 3-15 fms. (on bivalve shell and Hydroid).

Represented by a dry specimen and by one in spirit : the larger one is 50 millim, high by 55 in extreme diameter. The species is distiuguished by its regularly rectangular main skeleton and well-developed horny fibre.

(65. Myxilla arborescens.

 (Plate XL. fig. G; Plate XLII. figs. $a-a^{\prime \prime}$.)FHalichondria plomosa, Cirter, Thil. Traus vol. 168, p. 28 (nee Spongia phumosa, Montagu, Mern. Mem. ii. p. 116).
Erect, pedicellate, branched, branching not confined to one plane, forming "heads" by the aggregation and partial anastomosis of many different pedicellate branched growths arising from one or more common stems : mode of branching dicho- to pollacitomons *. Stems, both primary and secondary, slender, of angnlated outline, owing to the lateral projection from them of n number of prominent, jagged, longitudinal ridges. Branches palmate, the edges sharp, the Hat surfaces covered with longitudinal, very prominent ridges and upwardly projecting points, the tips of the branches snbtruncate, Thickness of secondary stems, exclnsive of surface-projections, about 1.5 millim., of palmate parts of branches $\cdot \frac{5}{5}$ to 5 millim. Hinute appearance of surface in spirit gramulated (i. e. corered with minute rounded elevations, which are smooth and glabrous in spirit). Texture in spirit tongh, sery plinble, of very imperfect elasticity. Tents apparently represented by round or oblong apertures, $\cdot \overline{2}$ to 1 millim, in maximum diameter. numerons, placed between prominences of surface of branches. Colour in spirit dull pale brown. Sarcode rather gramular, pale yellow-brown, soft. Skeleton consisting of longitudinal lines of loosely aggregated spienles (nos. 1 and 2), about 8 to 10 spicules broad, surrounded by some loose spicules of the same kind and echinated by spieule no. 1; the lines run approximately parallel with exch other. occasionally branching and anastomusing at acute angles: at the surface these primary lines either become loose and form loose tracts of skeletonspicules running along the surface, or they remain compact and project as surface-tufts.

Skeleton-bpicules:-(1) Spined acuate, tapering gradually from rounded head to sharp point, gencrally somewhat eurved ; spines

[^7]straight, sharp, slender, about $\cdot 002$ millim. long at head, where they are closely aggregated, gradually decreasing in size and numbers towards point, where they cease entirely : size of spicule $\cdot 1$ to $\cdot 17$ by $\cdot 0063$ to $\cdot 0079$ millim. (2) Hastate eylindrical or subacerate, smooth, of almost miform diameter from centre to within two diameters of ends, whence it tapers to a sharp point; size $\cdot 2$ by $00+2$ millim. Flesh-spicule, (3) Equianchorate; tridentate, with stout, strongly backwardly eurved shaft - 0026 millim. in diameter: lateral arms of heads subtriangular, about 0006 millim. long, the middle of the margin of the arm conspicuously folded inwards ; the middle arm narrow, oblong, about $\cdot 0032$ millim. long ; length of spicule 025 millim.

Hab. Port Jackson, 0 to 5 fims.
The entire "stock," or head, of which the single well-preserved spirit-specimen cousists, is 42 millim. ($1!$ inch) in height by 40 in greatest diameter ; the individual branches may be as much as 9 millim. in diameter at their broadest palmate part. I am under the impression that this is the species alluded to by Mr. Carter (l. c.) as Hatichondriat plumose, from Kerguelen Island. It differs, however, in spiculation from the typical form of that British species in having the shaft of the anchorate about twice as thick and in the longer and slenderer hastate spicule: the difference between the auchorates is perceptible erea under a low magnifying-power. It is, however, nearly allied to both it and My.cille fictitie of Bowerbank, and to some Mediterranean $1 / y$ gcille of Sclimidt.

1 add the measurements of the spicules of what is probably the type specimen of Malichondria (Microciona, Bk.) plumosa, Mont., for comparison :-

1. Spined acnate, $\cdot 16$ by $\cdot 0063$ millim.
2. Hastate acerate (hastate only at one end), $\cdot 17$ by 0063 millim.
3. Equianchorate, •016 millim. long, shaft •0013 millim. in diameter.

Mr. Carter places species of this nature in a new Group, called Plumuhatichondrinc (Ann, \& Mag. Nat. Hist. 1575, xri. p. 1H, and 1880 , vi. p. 39), as being distinguished by their habit and their angulated, not "naviculiform" anchorate ; but his genus Plamohelichondria (op.cit. 1876 , xriii. p. 236) must be carefully distinguished from this similarly named Group, for it is described as possessing a nariculiform anchorate.

CRELLA.

Crella, Gray, P. Z. S. 1867, p. 521.
Cribrella, Schmidt, Adr. Meer. p. 69.
Schmidt's generic name was already in use for a genua of Asteridean Echinodermata (L. Agassiz, 1835, Mém. Soc. Sci. Neufchâtel, i. p. 191). Dr. Gray therefore very properly altered it.

The present species, although the first assigned to the genus from
the Indo-Pacific region, agrees well with the typical form of the genus, only presenting its peculiarities, both external and internal, under a decidedly more striking form than in the Atlantic and Mediterranean species. Italichoulicia infrequens, Carter, differs from it in having the spined tuerate skeleton-spicule which oceurs in some of the Atlautio species, but agrees with it in having a bihamate; its external characters are unknown, but it will almost certainly prove to bo a Crelle.

66. Crella schmidti. (Plite XLI. fig. a a.)

Mnssive, sending up moderately thick lobes piereed by passages 1 to 4 millim. in diameter, lined by smooth surfaces bearing the pores. General surface covered with narrow longitudinal ridges about 1 millim. broad, 5 millim. high, and 1 millim. apart, rough; dermal membrane between ridges smooth, transparent. Vents few, in depressious 1 to 3 millim. dcep. Texture in spirit like crumb of bread: colour dirty yellowish white. Main skeleton somewhat irregular, spiculo-fibre devoid of horny matter : in deop parts spicules 1- or 2-serial, tibres very irregular in direction; towards the periphery primary fibres, with spienles \geq - to + -serial, run towards the surface, gencrally at an obtnse angle to it; they terminate between the intermarginal chambers in tufts of the tibiella spicule, 12 to 15 spicules broad, the distal ends of the tibiellespreading out upon the dermal membranc and forming its only skeleton. Sarcode pale brown, rather granular. Spicules:-(1) Skeleton acerate, smooth, straight or slightly curred, tapering to sharp points from near centre: size -22 by 0063 millim. (2) Tibielln of dermal tufts, straight, smooth, heads of same thickness as centre of shaft ; shaft tapering to necks below hends, neeks tapering gradually to the osal hoads ; size $\because 2$ by 0063 millim. (3) Equianchorate of flesh, tridentate, the shaft stout, strongly curred; the teeth strong, well enrved iuwards, sharp, the two lateral ones united to shaft by fateate expansions : length of spicule $\cdot 037$ millim., that of each head $\cdot 018$ millim., thickness of shaft 0044 millim. [(+) Bihamate of flesh, contort, eurse moderate, ends bent shaply inwarls : size $0: 037$ by $\cdot 0021$ millim. Possibly foreign to tho sponge, but not uncommon in both the deeper and superfieial parts of the sareode.]

Hab. Port Jackson, 0-5 fms.
The only specimen is in spirit and well preserved, but small; the external characters peeuliar to the genus are, however, well marked. Whereas the head of the tibiella is searecly defined as such in any of Schmilt's species (of which two are from the Adrintic and two from the West-Indian sens). here it is quite a striking feature of the dermal membrane when seen in section : in Heti-houdicie infroquens, Carter, above referred to, the head of the tibiella is similarly well defiued. The spicules are generally stonter than those of Selmilt's species, and none of the skeleton forms are spined, as appears to be the ease in C. clegans and papillasa, if not in hospitalis. I assnciate this species with the name of the distinguishod
spongologist to whose keen eye for generie characters we owe this very distinct and constant genus.

IOTROCHOTA *, g. u.
 Halichoudria, pars, Higyin, Lowerlounk, Curler.

Desmacidinide with smooth linear skeleton-spicules and minute birotulate flesh-spicules with straight shafts, both the heads being of the same size, eircular. and symmetrical ; surcode purple.

This genus is formed to include Malichonetriae lirotulata, Higgin (Aun, © Mag. Sat. Hist. 1577, six. p. 296) and Hetlichombria parperch, Bowerbank (P. Z. S. 1875, p. 293). Hetichondict s. str. is based on a Renierid. The peculiar tlesh-spicule of this genus is ono form of the Hesh-spieule which usually appears in the Desmacidinide under the form of an " anchorate," equi- or inequi-anchorate. The latter forms apparently originate by excentric flexion of the shaft of a birotulate form like the present, and suppression of the rays which lie on that side towards which the shaft is bent; the thin expansions uniting the arms in the birotulate apparently become the "falees" which unite the arms of the anchorate (soe Carter, Ann. \& Mag. Nat. Hist. 157, xiv. p. 207). An intermediate stage is seen in Chrondroclarliu-riz, C. virgutia, Wyrille Thomson, and C. (Ifalichonelria) aly!ssi, Uarter (Vosmaer), -the shaft of the birotulate being bent and the arm of that side almost ahorted as in a normal anchorate (see Carter, tom. cit. p. 218). Chombrocledia differs further from Iotrochota in being accompanied by a bihamate or tricurvate flesh-spiculc. Cludorrhizu, Sars (C. abyssicola, id. Some Remark. Forms \&c. i. p. 65. pl. ri. figs. 16-34), is an allied form, but not only has the shaft of the birotulate bent, and the symmetry of the head impaired by the almost total reduction of that arm of the head which thus comes into contact with the eurre of the shatt, but it is inequi-hirotulute, and corresponds in the birotulate series to the inequianchorate form of the anchorates of the common types of Desmacidinide ; it differs from lotrochote in the possession of a bihamate flesh-spicule in addition to the birotulate.

It is noteworthy that those species of this genns hitherto known are from shallow water (littoral, see below), while all other known allied forms exeopt Acos unchorata. Carter, for which the deptb is not given, are from the deep sca.

From an unusually well-preserved specimen of the green variety of I. pmrpurea from the Amirante Islands (see Pt. II. of this Report), 1 am able to make ont that the ciliated chambers are oval, the ends being well roundec, and measure 032 by $\cdot 025$ millim. They are crowded along the sides and in the parenchyma, lying between what appear to be secondary and tertiary canals of the excretory system, and also (though this may perhaps be merely apparent) upon the

[^8]$$
\text { Digitized by Microsoft }\left(®^{2 v}\right.
$$
primary skeleton-fibres : the canals 1 have mentioned range in diameter from about ${ }^{-1}=10 \cdot 14$ millim. This opening of a considerable proportion of the ciliated chambers directly into moderately wide canals agrees with what Fosmace finds to be the arrangement in many forms of the other Monactinellid familics Renieridat and Subcritide, as well as in a few other forms. viz, his third type (' Anteekeningen over Lencaulira aspern, H.,' Leyden, 1880, and Tijdsehrift Nederl, Dierk. Vereen, v, p. 144 at seq.).

67. Iotrochota purpurea.

(${ }^{\prime}$ lata XXIIX. fig. L; Plate XLII. figs, $\ell-e^{\prime \prime \prime \prime}$.)

Halichondria purpurea, Bokerbank, I'. Z. S. 1e75, p. 293.
Dr. Bowerbank's specimen (from the Straits of Malacea) is evidently quite young; the present fine series of specimens, hoth dry and in spirit (numberiug upwards of twenty), gives a better idea of the characters of the species.

The external form is nsually that of a crlindrical column, narrow, diminishing gradnally in thickness towards apex, viz. frum about 15 millim, at base to + millim, at apes in adult specimons. dividing towards the apex into two or three subequal branches; it is sometimes Hattened irregularly near the base: it occasionally forms a broad palmate frond or irtegular erect expansion, or an irregnlarly honeycombed horizontal mass which may attain a diameter of $6 \dot{5}$ millim. (21 inches). The suriace is broken up into a forest of pointed or ridge-like montienlar elerations, $1-3$ millim. apart, $1-3$ millim. high. In the typical syecimen (dry) the surface acnleations are only 5 to I millim. apart and the same in height. Texture in spirit rather firm, but soft on surface, tough and tlexible; in dry state harsh on surface, rather brittle: colour in spirit rery deep purple, in dry state dark green or pale purple. Skeleton rectangular, consisting of stont compact primary spienlo-fibres deroid of risible horny material. 10 to 20 spienles broad. and of similar secondary fibres 1 to 3 spicules broud. Skelcton-spicules smooth, acnate, rather squarcly rounded at base, tapering to a sharp point from about fire diameters from end; size chiefly 26 by vog3 millim., a few in the interior of the primary fibres 18 by 005 to 0095 millim. (in the type the prevailing size is $\cdot 16 \mathrm{by} \cdot 01 \cdot 7$ millim, and the spicule frequently increases in diameter from the base towards the centre). Flesh-spicule birotulate (not cqurienchorate, as stated by Bowerbank), shatt very slender ; rotule small, umbrella--shaped, with four equal earsed teeth; length of spicnle -016 to '019 millin. Sarcode in spirit dark purple, granular: in dry state either dark purple or dark greenish. Large specimens attain a height of about 150 millim. (6 inehes).

Hub. Torres Straits, various localities down to to fms.; Albany Island, 3-4 fins: Port Molle, coral-rect.

Distriluthion, Straits of Malacen (Borechbenh).
The specimens refertel to as being greenish in colour are all dry,
and four of the fire agree further in being the only ones of the series which present an irreqular erect expansion or horizontal mass: a specimen of the erect slender type also shows this colour : neither do I find any thing peculiar in the spienlation of greenish specimens. Two of them are the only specimens received from Port Molle, the rest are from Torres Straits. But as two flattened speeimens from the Imirante Islunds, in spirit, also possess a decided olivaccous green coloration, I conclude it to represent a rariety, uniting green colour with expanded habit of growth. lossibly tho colours may depend on sextal characters, or reproductive condition, as noted by Keller in Cluelinnlu fertilis.

The general form and surface characters resemble strongly those of the species named by Mr. Carter A.wos cenchorata, from Bass's Straits, oxcept that this is not lranched ; in this the colour is given as brown; the equianchorate appears to be a modified birotulate, but the skeleton-spicule is acerate. It is perhaps referable to Chombloctedia, Wyville Thomson, although, unlike the hitherto described species of that genus, it has no second form of flesh-spieulo.

(s. Iotrochota baculifera. (Plate NLXLN. fig. M ; Plate NLII. fig. f.)

Erect, formed of subeylindrieal lobes, terminating bluntly ; diameter of lobes about 12 millim. Surface chiefly rough, owing to the projection from it, at intervals of 5 to 1 millim., of blunt meandering ridges or conical blunt processes, 5 to 1 millim. high; dermis between eminences smooth, glabrous (in parts smooth patehes of some extent). Texture in spirit soft to touch, but rery slightly compressible and clastic; colour very dark crimson (almost black).

Main skeleton forming somewhat irregular and wide meshes ($\cdot 4$ to 6 millim. across) : consisting of stout compact primary spicular fibres running approximately at right angles to the surface, about 12 to 15 spicules broad, and of similar secondary fibres, vertien to the former in general direction, often meeting them in curves, about 10 spieules broad. Sareode purple, stained diftusely and also coloured by the presenee of very abundant dark purple cells. Dermal skeleton formed by summits of primary and by uppermost secondary fibres, and by long compact tracts of cylindrical spicules which traverse the intervening spaces.

Spicules :-(1) Smooth aenate, rather suddenly curved, base well romnded, tapering to a sharp point from about four diameters from apes, or to blint point from about $1 \frac{1}{2}$ diameters from tho apex; size 2 by $\cdot 0095$ to $\cdot 0127$ millim. : forms the main skeleton-fibre. (2) Smooth, eylindrical, straight, ends well rounded; size $\cdot 22$ to $\cdot 26$ by •0063 millim.: lies loose in dermis. (3) Dirotulate, shaft slonder, heads about ' 003 millim. across; tecth four in number, bent inwarils, umbrella-like ; length 016 millim.

Hab. Port Darwin, between tide-marks: bottom mud and rock.
The speeimen consists of an irregular horizontal mass about 40 by

15 millim. in greatest and least thicknesses respectively, spreading over and uniting three detached stones, from which arise two chief and a few incipient lobes, the largest respectively 12 and 25 millim. in height. The species differs from the Torres-Straits and Malacea species (I. purpurea) in the presence of the cylindrical dermal spicule, in the stouter stem, and the much more finely roughened surface ; it is more nearly allied to D. (Hulichoulvie) bivotulifera, Higgin (from tho West Ludies), which it resembles in stoutness of habit: but the cylindrical and acuate spicules are both twice the diameter of the correspouding spicules of that form.

69. Esperia parishi.

> Raphiodesma parishii, Bowerkumk, P. Z. S. 1875 , p. 283.
> Amphilectus parishii, Tosmaer, Notes Rog. Mns. Netherl. ii. p. 119.

An indubitable Esperia. Dr. Bowerbank's description of the spiculation of this species is defective and misleading; he omits to notice the sheaves of "trichites" which 1 find in his preparations; they are, as usual, local in their occurrence, and, from their deliente proportious, not ensy to find: the slender bihamates described may be traced by intermediate stages up to the large bihamates, which are perhaps the most striking feature of the spiculation; they are thus merely the young of these latter forms: the alleged spined aenates and tricurrates obrionsly belong to a Myxilla over which the Esperice has grown, as they oecur in abundance together, but not all orer the "basal membrane." (Some naricular equianchorutes which oceur seem to be also foreign, being found only detached and in small numbers, and but local in their distribution.) I am inclined to consider the small "palmato-inequianchorates " as young forms of the normal large one.

The following are the proportions of the different spicules proper to the sponge; they agree fairly in both the Malacea and Anstralian specimens:-

1. Smooth, subspinulate acuate, with slight elongate head; basal end slenderer than middle of shaft : 33 by 013 millim.
2. Large inequianchorate; large end comparatively short, its tubercle long and narrow : 0.57 millim. long.
3. Navienlar equianchorate: - 013 millim. long.
4. Bibamate, smooth, contort : 095 by $\cdot 008$ millim.
5. Trichite spicules in bunches of two to four or five : $\cdot 032$ to $\cdot 16$ by 0018 millim.

Some thin fragments agreeing well in all respeets with the typical pecimen occur in the present collection.
Hub. Port Darwin, between tide-marks.
Distribution. Straits of Malacea (Bowerbrukl).
This species appears to be absent from Torres Straits, judging from the results of the numerous drodgings taken there : its presence at Port Durwin is therefore probably to be accounted for by direct transit across the western end of the Arafura Sea by way of Timor and the neighbouring islands.

70. Esperia pellacida. (Plate NL. fig. K ; Plate NLII. fig. h.)

Growth horizontal, spreading over tund between stones \&e., rising at certain points into slender lobes. Surface even, glabrous. Consistence rather firm and brittle. Vents? Colour in spirit pale pink or dirty white, subtransparent. Dermal membrane gelntinous, transparent, subelastic, firm : internal structures soft. Main skeleton formed of delicate, widely inosculating fibres + to 6 spieules broad, soft, branching at obtuse angles. Dermal skeleton cousisting of angular meshes formed by distinet straight tracts of spicules, 2 to 4 spicules broad.

Spicules :-(1) Skeleton sulspinulate; straight or slightly curved: head marked hy a slight and gradnal enlargement a little below baso; head round and blunt, diameter less than maximum diameter of shaft ; shaft tapering gradually to sharp point from within about 2 to 6 diameters of apex ; size +2 by -0095 millim. (2) Large inequianchorate; shaft strong, slightly bent, of same diameter throughout except near the two ends. Large end forming about one third of total length of spicule, diameter about the same as its length. Lateral palms, as seen from front, broad, truncate below, inferior angle projecting slightly; outer margin slightly reverted throughout; median palm oval, small; tubercle distinct, small, pear-shaped : small cnd almost truncate above as seen from front, but with the supero-lateral angles sharp, slightly produced upwards, outer margins reverted thronghout: tubercle relatively large, anvilshaped; the small end of the spicule is truneate below and ahout half the diameter of the large end; length of spicule $\cdot 1$ millim. (3) Suall inequianchorate: shaft slender, gradually eurred; large end forming abont two fifths of total length of spicule; lateral palms with sharp inferior angles, being excavated on inner side, outer margin reverted throughout ; tubercle narrow, elongate ; smaller end about half the length of upper (larger) end; onter margin reverted throughout; tnberele subterminal, squarish; end truncate below; length of spieule 032 millim. (4) Bihanate, contort, slender, with wide curre ; size 057 by 0032 millim. (5) Trichites, in bundles of from 20 to 30 , with fiue points; size of individual spicules . 06 by -0015 millim.

Hab. Alert Island, Torres Straits, 7 fms , : bottom sand.
The anchorate of this spienle belongs to the more common of the types occurring in Atlantic and Mediterrancan Esperier: it is, however, larger than most, if not all, and the presence of a second form of ineguianchorate is another unusual point. The single specimen is in spirit and rms orer and between a number of locso and attached calcareous fragments, i.e. shells \&c. The upright lobes are about 16 millim. long and somewhat flattened.

71. Esperia obscura.

? Carter, Amm. \& May. Nat. Mist. 1882, ix. p. 293. pl. xi. fig. 18.
 pere," Schmidt, Simpl. Spong. .Idr. Mece. p. 31, pl, iii. fig. 11.

Mr. Carter assigued the above name to a massivo specimen from Freemantle, S.W. Australia, of which be says (l. c.) it has " all the characters of Esperia, viz. lace-like dermal layer, rigid interior fibre, and acuate (smb-pinlike) form of skeletal spicule, but with an inequianchorate about 5-f000ths" (of an inch) " long so trausparent in its detail that all I can give of it are the representations (pl. si. fig. 15), in the hope that it might be thus recognized and finnlly illustrated," In the present collection mado by II.M.S. 'Alert' oceur two small imperfect specimens of an Esperia which has (besides a larger one) a small inequianchorate spicule which strongly resembles Mr. Carter's figures abore referred to, and docs not contradiet in any point the other parts of the short description which was all that Mr. Carter was able to give of lis species. I therefore propose to refer the present specimens to that species provisionally until ofher specimens aro obtained from Freemantle or its acighbonrhood which may elear up the question of identity. The following is a description of the 'Alert' species ; it may be taken as characteristic, so far as the more minute characters go, the tissues being in a good state of preservation :-

Sponge massive, enclosing detached (and perhaps fixed) foreign bodies. Texture firm, rather brittle. Surface gently undulating. glabrous. Vents numerous, oral, 1 to 2.5 millim. in greatest diameter, scattered on general surface; margins thin. sometimes projecting somewhat: main excretory canals rising from a distance below the surface. Dermal membrane thin, glabrous, semitransparent, firm. Colour in spirit pale dull brown.

Main skeleton-spienlo-fibre moderately well defined, delicate, branching at varions angles, from 5 to 10 spicules broad. Dermal skeleton diffuse, the spicules scarcely ever arranged into definite tracts, but loosely matted. Sarcode thin, very pale yellow-brown, slightly gramular.

Spicules:-(1) Skeleton subspinulate, straight or slightly enrved, head clongate, subterminal, slight, gradually passing into a bluntlyromnded narrower extremity on the one hand, and into the shaft of the other: dinmeter of head decidedly less than that of shaft; shaft tapering gradually to within about three diameters of apex and then rapidly to a shurp point: size• 8 by $\cdot 014$ millim. (2) Large inequianchorate: shaft slightly curved, stout: larger end of spicule of same longitndinal and horizontal diameter, riz. one third as much as total length of spicule: lateral palms finely curved, ending below in sharp inwardly-curved points and redueed to narrow falleiform procusses with a narrow reverted rim as seon from front: anterior palim oblong, with rounded angles as seen from front; tubercle distituct, oval; smaller end of spienle with abrupt square upper margin:
lateral margins reverted at upper cul ; tuberclestrong, oval: breadth and length of small end about half those of larger end: length of spicule-12 millim. (3) Small inequianchorate: shaft slender, sharply bent at about middle: larser end about three fourtlis of total lensth of spicule in length and about half that amount in breadth; the lateral arms as seen from front finely curved and forming long wing-tike processes, pointed below and excavated on their inferior and imer aspects, reaching almost to the upper cilge of the smaller end of the spicale: their earre coineides with that of the lower end: smaller end like that of the large inequianchorate, but truncate at its distal extrenity : length of spicule 032 millim. (4) lihamate, contort, slender, ourse wide, points sharp: size 0.57 by 0032 millin. (5) Trichites, in sheaves of 101020 or 30 ; finely pointed, apparently straight, each about e0:2 long by -0016 millim, thick; very abuddant in some parts of dermal membrane.

Ilab. Thursday Island, Torres Straits, $4-6$ fms, ; bottom rock and sand.

Distribution. Freemantle, S.IV. Australia (Corter)?; Indian Ocean (Schnictt)?

The largerpiece is 43 millim. (13 inch) long, by 20 millim. (3 inch) broad, by 10 millim. thick: it is uncertain whether it ever had an independent stem or whether it depended for attachment on the fragments of shells de. which it inrolves in its substance, or on fixed foreign bodies: the smaller piece is similar in its relations, and perhaps both originally formed part of one specinen.

Tho large anchorate strongly resembles that fignred by Schmidt (l. c. surnè) as belonging to "eine indische Esperie," named Mycule grandis by Gray (l.c.), in the form of its larger ond, although the anterior palm is relatively larger than in that form, while the middle palm of the lower end is far smaller relatively to the spicnle and to the lateral palms than in Sichmidt's anchorate ; but it secms likely from its appearance that the lower end of the spicule was imperfeetly developed in the example figwed by Schmiat. The spicule was even larger than that of our species, viz. $1+5$ milling. long, according to Nechmidt's measurement. Gray's species is based simply on that author's description of the spicule.

PHORIOSPONGIA.

Marshall, Zeitschr. wiss. Zuol. xxxv. p. 12e.
The striking structural character on which this genus was founded receires confirmation and illustration from the following species: I have reforred to it as occurring in Clathriet (Microciona) tuberose, Bowerbank (sec 1. +4t). Fibuteriuenchorata, Carter, from Antigna (Am. \& Mag. N.H. 1882, ix. p. 203), is perhaps a Phoriosponyia.

72. Phoriospongia fibrosa. (Plate XLII. fig. \%.)

Massive, sessile, irregularly shaped: surface uneren, with irregular Digitized by Microsoft (®)
shallow depressions, eovered by a glabrous semitransparent membrane, rendered rough by the projcetion of the low ends of the primary fibres, 25 to 5 millim. apart (many smooth patehes occur); texture in spirit brittle, compressible (specimen No. 1), rather tough, clastie (specimen No. 2) ; colour pale greyish (specimen No. 1) or reddish brown (specimen No. 2). Internal structure carernous, loose. Vents numerons, scattered, circular or oval, leading decply into sponge : diameter $1 \cdot 5$ to 3 millim.

Main skeleton regular, reetangnlar in arrangement : primary fibres set at right angles to surface, $\cdot 18$ to $\cdot 3.5$ millim. apart, -013 to $\cdot 03$ millim. thiek : secondary fibres at right angles to primaries, IS to 35 millim. or upwards apart, similar to primarics in proportions; fibres wholly eomposed of foreign hodies united by an almost colourless, not dense, sulstanee. Dermal skeleton formed by small foreign bodics seattered abundantly over the dermis, tending to aggregate into slightly denser anastomosing tracts about 14 millim. broad, enelosing rounded meshes about $\cdot 18$ to $\cdot 53$ millim. in diameter, and by the eylindrieal spicules of the sponge, which by loose aggregation form traets, about + to 6 spienles broad, below the skeleton of forcign bodies, the traets branching and anastomosing not unfrequently, and ending freely on the surface in slightly expanding tufts; sarcode sultransparent, granular, colour a warm brown (slightly in specimen No. 1, strongly in specimen No. 2, in which it is more dense. Spicules:-(1) Slender acerate, smooth, with rery slightly enlarged subpyriform basal ond, the other end rather bluntly pointed: size about $\cdot 16$ to $\cdot 19$ by $\cdot 0021$ by $\cdot 0032$ millim.: forming part of dermal skeleton and seattered over main skeletonfibres. (2) Contort bihamate, smooth, curve moderately strong, points sharp, suddenly and sharply bent inwards ; size "032 by '002 millim. : abundant in subjacent tissues. (3) Tridentate equianchorate, shaft weil eurved, abont -0016 millim. thick; teeth slender, sharp, curved inwards, about 008 millim. long; spicule 0.22 millim. long. Foreign bodies small in speeimen No. 1; large, for the most part, in specimen No. 2.

Hab. Specimen No. 1: Prince of Wales Channel, Torres straits, 7-9 fins. : bottom sand. Specimen No. 2: Port Jackson, $0-5$ fms.

Two speeimens in spirit. No. 1 has apparently been torn from a larger mass; it is much penetrated by some thin Algre, on which it seems to have grown much as Aumphlina ponicea grows over weed; it measures 60 millim. by 2.2 millim, in its two chief dimensions. No. 2 is somewhat compressed on one side, and measures 36 by 19 by 12 miilim. The anchorate spienle is searee in one of the specimens (that from Port Jackson), while it is abundant in the other.

The rariability in eolour and texture, and perhaps in the secondary fibres. is considerable, but not surprising, considering the distance between the stationsat which the spreimens were obtained; in other points the ngrecment is close. The speeies is a very diofinct one, differing from both Marshall's species in the presence of a well-defined reticnlate skeleton and of an anchorate flesh-spicule,
in the slenderness of the bihamate spicnles, and the almost absolute absence of a head to the sery slender linear spienle; the resemblance in spiculation seems conclusive as to the generic identity of the three forms, in spite of the remarkable differences in the skeleton. The mulberry-like bodies described by Marshall in P. solitu [cannot see in the present species; when treated with hydrochloric acid the superficial layer of the dermis parts with all hard elements except the spicules and some amorphous tramsparent fragments. Marshall himself does not mention these bodies in P. wticulum, so that they eannot be of more than specific or individual importance.

The spiculation of Phoriosponyput is perhaps nearer to that of Amphilectus than of any other genns. Thus, besides Clathria (see C. tuberosa, 1. 444), we have a second genus of Siliceous Sponges which may normally exhibit the phenomenon of intussusception of sand into the fibre. It seems to me that intussusception is the most probable hypothesis on which to account for the presence of the sand in this genus, althongh Marshall, whom I understand to describe Phorinspongia as penetrating and spinning up masses of sand ("durchziehen und umspimen Sandmassen, sie zn Klumpen rereinigend"), muy be right in this interpretation of the origin of the sand in the genus Phoriospongia; however, in P. filmost we find a real system of fibres which does not appear to ocour in P. solita and reticulum ; and although I have not been able to detect a horny material, like that of Dysider. uniting the sand grains, which might, as held by Bowerbank and Marshall, pick them up, it seems to me that, remembering the readiness with which siliceous sponges, whether possessing a horny fibre or not, take up foreign bodies, there is no reason why the sand of Phoriospongia should not be taken up, and not be due to the penetration of masses of sand by the sponge. This riew is supported by the spiculation, which is not Suberitid like that of Vioa, but, as alove remarked, Desmacidine; the presence of the spiunlate spieule is common to it and many Desmacidines : while the absence of the remarkable eversible funnel which distinguishes the termination of the excretory camalsystem in Viou seems to indicate a different uffinity. Renieru fibulatn, Schmidt, to which Marshall refers in support of his view that bihamates occur in sponges other than Desmacidinide, has been placed by Vosmaer in that group under the genus Desmucodes, Schmidt, apparently not without reason : and Schmidt (Spong, Atl. Gel. p. 40) himself inclines to the riew of its Desmacidine affinities : but the presence of bihamates in Suberitide is hitherto manown.

ECTYONLD.E.

Eetyonida, Carter. Amu. f. Mag. N. H. 1875, xvi. p. 133.
Schmidt (Spong. Atl. (ieb. 1870, p. 1333) grouped Chatinopsis ($=$ Ectyou) and its allies, with Arinella. Phucellia, \&e., under the heading Chalinopsidine ($=$ Echinonemata, Carter, l. c.). Mr.Carter Digitized by Microsoff (B)
has, howerer, done good service in pointing ont an essential difference between the two groups into which he divides the Chalinopsidinae, viz. in the way in which their echinating spienles are attached. It must, however, be remarked thut E.himorlictynem, milhi, as now understood, approaches Axinclle decidedly in this point.

The presence of spined echinating spicules is not (see Riaspeilia, infria) distinctive of the family as here constituted.

The absence or slightly pronomeed tendener to difference in size and form between the corresponding spicules of alliod spocies, when the ontward form of the sponge differs numistakably, is a most characteristic feature of this family, and is especinlly well exhibited in the genera Echinomema, Clathria, Echinatictynu, and Maspuilia (s. str.), whereas in Axinellidee the relative thickness of the spicules usually gives good characters (see Acuntlellu, sp., p. 463, where the external form differs little from A. obtusum).

OPHLITISPONGIA.

Ophlitaspongia, Bozerbank, Mron. Brit. Spong, ii. p. 14.
Vosmace (Family Desmacid. p. 107) places O, seriuti, Bowerbank, the typical species of this genus, under Desmacodes, and says (l.c. p. 155) of O. papilla, id., which seems to me not to be specifically distinct from it, that it is probably a Cluthria, bnt that no anchorate spicules have beon deseribed in it; I have examined the original slides (Bowerbankian) withont tinding anchors. The sponge which I am abont to describe from the preseut collection agrees with these British Ophlitignomgiee (but not with the foreign ones) of Bowerbank in their fibre and spicnlation, except that the fibre is cored by a cylindrical spicule which is wanting in O. seriuta and prapilla. I am inclined to believe that we have here a natural genus, differing from Clathrike mainly in the ahsence of anchorato spicules. I do not see how these species can be placed mider Desmacodes, when they have chimating spicules, but no skeleton acerates (except tricurvates) and no bihamates.

73. Ophlitispongia australiensis. (Plate XL1I. figs. c, c.)

Habit of Cluthric fromdifere: : spiculation of C. coralloiles and allied species. Massive ; structure cellular, i. e. interior and surface broken up into angular cells by walls of tongh denser spongesubstance, projecting at surtace in low ridges and slight points: between them are extended thin membranous expansions. Texture in dry stato firm, tough, subelastic ; colour pale dirty brown.

Main skeieton-meshes rounded, narrow : primary fibres stout, amber-yellow, vord with about one third their thickness of spienles, proceding straight to surface. diameter about 1 to 14 millim.: secondary filres abondaut, irregular in direction, amber-yellow,
diameter about－07 millim．；one or two axial series of spicnles； both sets of fibres echinated spursely with the echinating spicule． Dermal skeleton formed by undulating，very palo yellow horny fibres containing two or three series of spicules，about 053 millim． broad，and of loose tracts of spicules．Sareode pale amber－yellow， transparent．

Spicules：－（1）Skeleton erlindrieal，smooth，straight，tapering slightly from middle towards well－rounded ends ；size uhout $\because ⿰ 冫 欠 口 ⿱$ －0042 millim．（2）Echiuating acerate，smooth，straight，tapering decidedly from middle towards the base，which is thus thinner than the middle of the shaft，hut is well rounded，and tapering from middle to sharp poiut at apex ；size about •is by vog\％．（3）Tri－ curvate acerate，smooth，curses slight，ends finely pointed；size about 042 by 4021 ；in sarcode．

Hab．Port Molle．Qucensland， 12 fms ．：bottom rock and coral．
In general appearance this sponge resembles Cluthein fromblifera， but has the intersals between the trabeeule of the clathrous struc－ ture more or less filled with membranous expansions．The spicula－ tion is not quite so simple as that of the British species，but has，in addition to their echinating acerate and tricurvate，a cylindrical skeleton form．I know of no other near allies．A small but well－ preserved dry specimen represents this species．

7．Clathria aculeata．

（Plate NL．fig．I；Plate NLII．fig．k．）

Erect，with single，slender stem，dividing into branches at some distance from baso；branches given off in various plunes and at acute angles，occasionally connected by bars of sponge－substance： secondary branches occur，formed in the same manner as the pri－ mary brancbes．Stem cylindrical， $4-\bar{j}$ millim．in diameter in pre－ sent specimens：surface even，with the exception of a few prominent but blunt aculcations shortly below the commencement of tho branches；branches well corered by long，more or less pointed aculeations， 2 to 5 millim．high．Texture of stem，both in spirit and in the dry state，woody，incompressible；that of the branches elastic，but more or less incompressible mutil near the apices，which are firm but compressible．Colour，in spirit，dark amber－brown；in dry state pale brown，the branches haviug a whitish incrusted appearance．Surface of branches，in spirit，minutely uneven，that of stem glabrous．

Main skeleton composed of very strong amber－yellow horny fibre， tortuons and anastomosing，not showing distinct separation into primary and recondary fibres，but forming oval meshes；diameter of fibre at base of branches varying from 05 to $\cdot 2$ millim．，the short diameter of the meshes formed by it at the sume spot from 18 to － 8 millim．：fibre cored by a tract of slender spinulate spicules，：3 or 4 spicules broad，and echinated evercwhere abundantly by the spined acerate spicule．Dermal skeleton similar to main skeleton，
but fibre more constantly stout; thickness from $\cdot 07$ to 2 millim.; meshes narrower, viz. $\cdot 09$ to $\cdot 7$ millim. in smaller diameter, and bearing short blunt processes at intervals, echinated by thick tufts of the smooth subspinulate spicule on its upper surface. Sarcode very dark yellowish brown, granular and opaque.

Spicules:-(1) Stoutcr, smooth, subspinulate aeuate, straight, with very slight constriction marking off a short head, which is less in diameter than the middle of the shaft ; shaft tapering gradually to sharp point from about centre : size -23 by 0127 millim.: in tufts on dermal skeleton. (2) Slender, smooth, spinnlate, with slight oval head, nearly straight; tapering to sharp point from near centre; size 35 by 0085 millim.: forming axis of skeleton-fibres. (3) Subspinulate spined acuate, with small globular head, and tapering to a fine point from about centre : spines numerous, sharp, projecting at right angles to long axis of spicule, prominent on middle of spicule and sometimes on head. becoming obsolescent in the other parts ; size $\cdot 09$ by $\cdot 0079$ millim, : echinating the skeleton-fibres. (-) Tricurvate acerate of sarcode, smooth, sharppointed ; carves gentle ; size abont -063 by •0015 millim. (5) Navicular equianchorate; shaft slender, slightly curved : length about - 1127 millim.

IIul, Thursday Island, Torres Straits, 3-1 fms., bottom sand; also same localify, probably from beach.

Two specimens, agrecing closely in their characters, represent the species; beights 70 and 85 millim. (24 and 32 inches) respectively: expanse of branches 30 and 20 millim. respectively. It agrecs closely in character of spiculation with C. ulimus, Vosmaer (Dotes Roy. Mus. Netherl. ii. p. 151), of which the locality is not stated: but the stem is single and not ramified as stated by Vosmaer, who does not mention the most striking external characteristic of this species, viz. its strong aculeation by long pointed processes. I know of no other species which approaches it at all closely.

75. Clathria tuberosa. (I'lite NLII. fig. d.)

Microciona tuberosa, BoverLank, P. Z. S. 1875, p. 281.
The specimens are finer than those in the Bowerbankian collection : the largest measuros 70 millim. (2_{4}^{3} inehes) in greatest diameter, and 50 millim. (2 inches) in greatest height ; the indiridunl lobes may measure as much as 14 millim. in greatest diameter. The "skeleton columns" (Bowerbucuk) are even more strongly arenated than in the type specimen, and resemble those of a Dysiden, the projecting ends of the spined and fine smooth acuate being the only point of difference which appears at tirst sight. The proportions of the spicules differ slightly frem thuse of the Malacea specimens as piven by me (P. Z. s. 18: 1, p. 121) ${ }^{*}$, viz. :-

[^9]Torres Straits specimen.

1. Slender actuate (slightly
inflated basally) ... 25 to $31 \mathrm{by} \cdot 0042$ to 005 millim.
2. Stout long acuate (very searce)

About $\cdot 19$ by $\cdot 0095$.
3. Spined echinating aenate
-085 by $00+4$.
4. Equianchorate $01+$ to 016 long.

Hub. Prince of Wales Channel, Thursday Island, \&c., Torres Straits, $4-10$ fms. ; bottom sand \&e. ; common.

From study of the preacht series of specimens, with the light afforded by W. Marshall's important paper, " Entersnchmigen uber Dysideiden und Phoriospongien" (Zeitsch.wiss. Zool. xxxx. p. 122), 1 an now consinced that bowerhank was right in describing the arenaceous material which is so plentifully present in this sponge as the normal substratum of the skeleton-lines, and that it does not, as I formerly considered (P.Z.S. 1S>1, p. 122), consist of the tubes of an arenaceous Foramivifer. That being so, the character asstmes a fresh importance when it is seen not to stand aloue among the Siliceous Sponges. Phoriosponytu. Marshall (l.c.), is described as having a spiculation consisting of acorate and (or) spinulate and bihamate spicules in combination with a large quantity of sand, the latter, however, not aggregated into definite fibres. With regard to Clathria tuberosa, though it differs from other Clathere in this remarkable point, its spiculation is distinetly that of the genus to which I propose to refer it,

76. Clathria coppingeri.

(Plate XL. figs. F, F': Phite NLIL. figs. i, i^{\prime}.)

Erect, palmate, clathrous, growing in only one plane. A few main branches are given off from the common base or rudimentary stem, each dividing furcately once or twice at acute angles: the terminal branches are traceable to within about two thirds of the distance from the base to the periphery of the sponge. All the branches intimately united by a close reticulation, consisting of bars of sponge-substance, suboblong in transrerse section, the longest diameter being the antero-posterior one, the anterior and posterior surface of the bars either flat or coming to an angle in front or behind or on both aspects; the surface of the sponge thus presents a series of subquadrangular, polygonal, or snboral cells, having a maximum diameter of 3 to 10 millim. Main branches suboblong in transterse section, the antero-posterior diameter being longer than the lateral one: slightly marked by longitudinal furrows, the anterior and posterior faces flat or angular ; the branches (especially the larger ones) project above the level of the intermediate reticulation, owing to their superior antero-posterior thickness, which attains a maximum of 20 millim., the lateral diameter a maximam of 10 millim. Surface of intermediate reticulation, sides of main
branches, and the entire surface of smaller branches uneven and cosered with small deep vents, about : 5 millim. in diameter and 5 to 1 millim. apart. Toxture of sponge in dry state and in spirit firm, the peripheral portions and the rotienlation generally elastic, somewhat compressible and flexible, like cork ; the main stems in dry state hard, woody ; reticulation and lesser brauches rather brittle. Surface between pits composed of an incrustation, which is whitish when dry, dull mober to pinkish in spirit: colour of suhjacent tissuc pale brown is dry state, pinkish and subtransparent in spirit.

Main skeleton irregular, consisting of a close reticulation of primary and secondary fibres, which are curved, and form romuded meshes from $\cdot 18$ to $\cdot 25$ millim. wide ; primaries $\cdot 041$ to $\cdot 07$ millim., secondaries ahont (035 millim, in diameter. Dermal skeleton formed of similar, rather narrower meshes ; fibres $\cdot 053$ to $\cdot 07$ millim. in diameter.

Spieules:-(1) Smooth aenate, tapering gradually to sharp points and also to base, which is slightly narrower than middle of slaft: size \because by 015 millim. : in axis of fibres and projecting from ends of primaries. (2) Sulspinulate actuate, slightly curved, tapering gradually to sharp point ; head formed by a slight constriction just above base, whieh is mierospined ; size 34 by 015 millim.: in axis of and projeeting from ends of primary fibros. (3) Smooth, straight, slender spimulate, with oval head slightly stouter than shaft, tapering gradually to sharp point; size $\cdot 25$ by 005 millim. to $\cdot 15$ by -0063 millim. : in the sarcode, especially at the surface (probably young forms of No. 2). (4) Spined acuate, with slight constriction just alove base, spined all over with small, sharp, straight spines ; size -011 by 0063: scattered, eehinating the different fibres at right or acute angles. (5) Equianehorate, navicular, with slender shaft and slightly elongate palms with truncate proximal margins, as seen from in front : 017 millim. long : abundant in sarcode.

Hub, Albany Island, north coast of Australia, 3 to 8 fms.; bottom sand and mud.

A very fine dry specimen, 455 millim. ($18 \frac{1}{4}$ inches) by 450 millim. (18 inches) in extrome height and dinmeter respectively, together with a portion in spirit of what must have been abo a large specimen, represent this species. The remarkable exterual characters are not accompanied by any thing striking in the spiculation; indeed this is remarkable, if for any thing, for its simplicity, the equianchorate being the only flesh-spicnle present. I have great pleasure in associating with what is perhaps the finest new spouge of this collection, and the finest known species of its gems, the name of the indefatigable and successful collector who obtained it.

77. Clathria reinwardti, var. subcylindrica.

Clatlria roiuwardti, Vusm., Núcs Roy, Mrus. Netherl. ii. p. 152.
I have little donbt of the identity with Vosmaer's species of ; sponge which oceurs abundantly in Torres Straits. Tho genera external resemblance to Axinclla comabina is very striking and the
specimens recall strongly, from their habit and size, the figure of this speeces given by Eisper (Pflumzenth. ii. pl, xlv.), with which Vosmacr's specimen was at first erroneonsly identified.

The following are the leading points in the external characters:The specimens are abundautly branched, the stems and brauches aro either roughly eylindrical below (usually flattened at the ends), greatest diametor about 9milim. in the eylindrical, 12 to It millim. in the compressed parts. Anastomosis frequent, produeed by lateral udhesion of branches, sometimes forming broad expansions of sponge-substance. Surface entirely broken up loy a system of anastomosing, more or less sharp, usually jagged ridges, 2 to 3 millim. high, often drawn u_{1} into prominent detached points. Testure in dry state subelastic, firm, harsh to tonch. Maximm extent of largest specimen 180 millim. (7 inches). Skeleton : indications of horny matter in fibres slight and infrequent ; filres usually wholly composed of the smooth skeleton-spicule, about 8 spienles broad, and sparingly echinated by the spined eylindrical form. Spicules: I camnot find any spinulates, those which Vosmaer deseribes are perhaps young forms of the smooth aenate; nor do I find the smooth cylindrical which he places within brackets.
(1) The skeleton smooth acuate, has a well-rounded head and tapers gradually to a sharp point ; size 25 by 012 ' to " 28 by 0095 millim.
(2) Smooth acnate, oceasionally echinating, measures $\cdot 22$ by .0127 millim.
(3) The spined echinating cylindrical tapers to the smaller blunt end: the spines project directly ontwards from the shaft and aro about equally distributed over the whole spicules ; size $\cdot 076$ by $\cdot 0063$ millim.
(4) Equianchorate, 019 millim. long.

Colour, in dry state, grey or very pale brown.
Vosmaer's description being short and merely preliminary, 1 have thought it well to give the chief details (although I hope he will himself figure or further describe his species) to obriate any future uncertainty as to the identity of the present form.

Hab. Thursday Island, Prince of Wales Channel, Torres Straits, 3-7 fms.; cemmon.

Distribution. Moluceas (Vosmaer).
Vosmaer states that his specimen is unbranched.

Clathria reinwardti, Vosmuer, var, palmata.

It is not surprising to find Clathria exhibiting individnal variation in its external form of a character similar to that which oecurs in the nearly allied geuns Echinonema. As in that genus the same species may be either eylindrical or semipalmate, so here. In this collection occur two specimens from one locality, which, though differing greatly in form from each other, havo the same colour, a surface of similar character, and agree closely in spiculation.

The one arises from a stout, laterally compressed, short pedicle, and expands rapidly inte a fan-shaped but rather thick expansion,

Digitized by Microsoft (8)

apparently partly formed by upgrowths from short stems placed beside it, which, though now single, appears to have been originally componend also: one surface of this expansion is almost level. but honeycombed densely with openings with rounded edges, varying from 1 to + millim. in diameter; the other surface is broken up into seren more or less pronounced rertical ridges, irregular and frequently interrnpted, 3 to 10 millim. in height: this surface and its ridges are also strongly honeycombed, and hetween the openings usually project points and ridges of sponge-tissuc. It measures 130 millim. ($5 \frac{1}{3}$ inches) in breath, 120 millim. (4 inches) in height. The second specimen is strap-shaped, 24 to 30 millim. across, somewhat abruptly bent at one point, and terminated by two small lobes : like the other specimen, one surface is comparatively level and is honeycombed rather minutely (openings 3 to $\cdot 5$ millim. in diameter), while the other is rugose, from the presence of sereral demi-canals, about 2 to 4 millim. across, which run from the middle to the margin of the frond: the surface between them is minutely honeycombed and drawn up into a fow sharp points and ridges. The colour is darkish grey, varying to greenish in both specimens. The spiculation is essentially that of the above-mentionel form of C. reimererlti, but the skeletou smooth acuate is only 0063 to 0079 millim. in diameter, and the short, stouter, smooth acuate is wanting: this slight difference in spiculation appears to justify the separation of this form under a distinct varietal name. It is perhaps as nearly related to the original form as the first-mentioned specimens. The remarkable fan-shaped specimen appears (having regard to the multiple character of its base) to be made up of several "persons" which have united to form a single symmetrical frond.

Hab. Bird Island, N.E. Anstrulia, coral-recf.

78. Clathria frondifera.

(Plate XLII. fig. i; and Part II, of this Report, Plate LIII. fig. J.) Halichondria froudifera, Bowrobamk, Proc. Zool. Soc. 1875, p. 288. Amphilectus frondifer, Tosmaer, Notes Roy. Mus. Netherl. ii. p. 115.
A very common species, especially in Torres Straits. At first I was inclined to separate the specimens from Bowerbank's species on aecount of the greater development of ceratinons substance investing the lines of skeleton-spicules. In the Australian specimens this occupies from half to two thirds of the diameter of the fibres, while in the type specimen from the Straits of Malacea its place is often almost entirely taken by spicules, and extends to hulf the diameter of the fibre only in some eases. The consistency of the sponge is henco much tongher and more clastic in the Anstralian specimens. The main skeleton-spicules are much stouter in the Malacea specimens.

Dr. Bowerbank has omitted to deseribe a very fine trienrrate fleshspiente which oceurs both in his specimens and in the present ones His description is also misleading in not stating, what his own typr specimen satistactorily exlibits, and what the Australian cxamples
show to greater adrantage, that the stag's-horn-like branches anastomose and inoseulate very frecly with each other, forming a number of deep angular cells, open above and below, and more or less at the sides also, owing to the fenestrie left between the branches. The Australian specimens mostly exceed lowerbank's type in their dimensions: the largest measures 110 millim. (42 inches) by 115 millim. ($4 \frac{1}{3}$ inches) in extreme height and breadth respectively ; it is formed of three main lobes which arise from a common base and unite towards the summit of the sponge.

The measurements of the spicules are given, as Bowerbank has not figured them:-

	Smooth skeleton Acuate.	Smooth surface Aeuate.	Spined echinnting Aenate.	Equianchorate.	Triourvate.
	millim.	millim.	millim.	millim.	millim.
Gaspar-Strait spec. (Bowerbank Coll.)	$\cdots 2$ by 0127	28 by 0063	. 08 by 0095	-019 long	042 by 001
Typical specimen, thickness.	-0127-0158				
Queensland spee.	\because by 0112	28 by 0063	-07 by 0095	. 019 long	042 by 001
('Alert' Coll.), A Ditto, B....	$\because 21$ by 008	to 00078	'09 by 016	about 017	about the [same.

Hab. Thursday Island, $4-5$ fms.; Prince of Wales Channel, $5-7$ fms. ; Percy Island and Fitzroy Island, Queensland, 7-11 fms.; bottom-combinations of sand, mud, or shells.

Distribution. Straits of Malueca, Gaspar Strait (Bowerbenk).
The presence of spined echinating spicules removes the species from Amphilectus, where it had been placed by Vosmaer, who had only an imperfect description to guide him. It must be referred to Olathria as emended by him; and it is interesting to find here a variability in the development of the horny fibre in different specimens which is similar to what he has described (1.c. p. 150) in C. coralloides.

The second Queensland specimen ("B"), from Percy Island, differs decidedly from the rest in the greater slenderness of its skeleton-spicules; it is, however, a young specimen, and the differences may be due to this circumstance.

RHAPHIDOPHLUS,

Ehlers, Die Espersch. Spong. pp. 19, 81.
This genus differs from Clathria only by its spicular crust, and from Echinonema, Carter; ouly by the absence of tricurvate spicules.

79. Rhaphidophlus arborescens. (Plate XL. fig. L;

 Plate NLII. figs. n, n^{\prime}.)Sponge stipitate, much branched, bush-like: branches angular rather than cylindrieal; surface nodular, connected by frequent horizontal trabecule at right angles to the erect branches. The average diameter of the stem and its branches is $4-5$ millim. The cortical incrustation of spicules consists of a layer about 5 millim. thick, the outer part of which consists of loose fascicles of the smooth spinulate spicule, with the pointed ends placed outermost: the spicules are closely approximated to each other below the surface, between the intermarginal canals, but their distal ends diverge and spread out somewhat at the surface, and between them appear to be placed the pores ; the intermarginal canals, as stated, lie between the bases of these fascieles. The deeper part of this layer consists of Halichondrioid spienlo-fibre, about 6-8 spicules broad, with small roundish or polygonal meshes, which seem to have enclosed small canals (probably the afferent canals leading from the intermarginal cavities to the ciliated chambers). No horny matter is to be seen in this part of the skelcton, the oxtreme fragility of which forbids the idea that any such occurs here [on the contrary, tho compressibility and readiness with which the spicules and fibres must be able to move upou each other in life, owing to the manner of their aggregation, point to a probable great power of contractility and expansion in the dermal membrane, with important consequences to the pores, intermarginal cavities, and inhalent canals which it contains ; and I should anticipate that good spirit-specimens would show the strong development here of muselecells, such as has been shown by Prof. Sollas in Tetilla (Amn. \& Mag. N. H. 1882, is. p. 155)]. The fibres of the skeleton are irregular: their course is winding, and the distinction between primary and secondary fibres not clear, except at the surface; here the ends of the primary fibres, which stand out for some distance beyond the general reticulum and support the dermal crust, are absolutely concealed by the enormons abundance of points of the spined spicules which project from them.

Spicules:-(1) Slightly spinulate, smooth acuate, 34 by $\cdot 0063$; (2) Spined acuate, slightly constricted basally, 0 O by $\cdot 0044$; (3) Delicate equianchorate, palms proximally square, $\cdot 012$ millim. long.

Mab. Friday Island, Torres Straits.

The specimen, which is dry, measures 125 millim. (5 inches) in height and 60 millim. ($2 \frac{1}{3}$ inches) in maximum diameter.

Vosmaer's Clathria ulmus (Notes Roy. Mus. Netherl. ii. p. 151) resembles this species, but is stated to have a bihamate fleshspicule, and no dermal crust is described. The species differs from R. crutitius, Exper, in the well-branched habit and in minor points in
the propartions of the spicule. Ehlers (Espersch. Spong.) assigns a bihamate to that species *.

80. Rhaphidophlus procerus. (Plate XXX1N. fig. K; Plate XLIII. figs. $0-0^{\prime \prime}$.)

Erect, eylindrical, or very slightly compressed. Stem tapering to a point above, commencing with a cylindrical approximately smooth basal portion, about 15 millim. in diameter ; it gradually increases in diameter towards the middle, where the antero-posterior diameter is 7 , the lateral diameter 8 millim.; the lateral surfaces show a tendency to develop a succession of low upwardly-projecting eminences ; the anterior and posterior surfaces of this (middle) division of the sponge are covered with closely-set rounded papille, 1-2 millim. apart, 1 millim. broad by 5 to 1 millim. high; the upper fourth tapers gradually to the apex and is approximately smooth, the papille of the median part becoming gradnally obsolete here. No true branches (only two small cylindrical processes on one side close together, near the middle). Base formed by several branched roots, 3 to 5 millim . in diameter. Surface smooth between and over eminences, compact, soft and relvet-like to the touch : no rents risible to the naked eye. Texture in spirit firm, very slightly compressible, flexible, very tough ; colour pale grey.

Main skeleton consisting of a close network of amber-coloured horny or dull subopaque yellow horny sareodic fibre, the primary lines of which are abont 2 millim. apart and are placed vertically to the surface, the secondaries also about 2 millim apart, erossing the interrals between the primaries at approximately right angles : to the fibres are attached by their bases large numbers of the larger smooth spinulate spicule, whose points project outwards and upwards at acute angles to the fibre. Dermal skeleton formed of a single thickness of distinct, but overlapping, dense tufts of the smaller smooth spinulate spicule, one or more of the spined acuate spicules occupying the centre of eaoh tuft; the spicules are attached by their blunt ends, and the points radiate outwards over tho dermis. Sarcode pale ycllowish brown, somewhat granular.

Spicules:-(1) Smooth spinulate; head distinet, suboval, rather narrower than middle of shaft; shaft tapering gradually to sharp point from about middle ; size 36 by $\cdot 0127$ millim: in fibre of main skeleton. (2) As (1), but measuring $\cdot 25$ by 0079 millim.; forming tufts in dermis. (3) Spined acuate, with well-rounded, undilated base, tapering to sharp point from base; spines nsually absent from the apex and just above base, stout, sharp, those of median portion of spicule more or less recurvate towards base; size $\cdot 11$ by 0127 : in centre of dermal tufts and sparingly in main-skeleton

[^10]fibre. (4) Equianchorate; naricular, shaft almost straight, pointed at each end ; length - $016-018$ millim.

Hab. Port Darwin, 7-12 fms.; bottom sand, mud, and shells.
The abore diagnosis is based on a large specimen. A small specimen (which is perhaps the apex of a larger one), 36 millim. high, also occurs from the same place and same depth, differing from it in having no perceptible horny fibre, in being, in consequence, soft and flaceid, and in having the spined acuate confined to a central axis which contains a large quantity of sand; it is probably identical with the large specimen, its differences being partly individual, partly due to yonth; it contains the parasite Spongiophugus, Carter. This very fine species appears to be referable to Rhaphidophlus by possessing a distinct dermal crust composed mainly of smooth spinulate spicules with their points projected outwards, bnt adds to this the presence in this crust of the spined echinating spicnles, a feature in which it resembles Dirrhopalum. The crust is thin, but appears to represent the correspondingly situated structure in R. cratitius, Esper (Ehlers). Its root-like base recalls the horizontal meshwork figured by Esper, and here, as there, the erect portion appears to have no real tendency to form branches; but, besides the differences in the dermis, the skeleton and echinating spicules are both much longer than in the type and hitherto only recognized species of the genns. The height of the perfect and well-preserved spirit-specimen is 470 millim. ($18 \frac{3}{4}$ inches). The arborescent form, the strongly horny fibre, the slenderness of the skeletal and cehinating spicules, the replacement of the spinulate for the most part by the spined acuate in the main-skeleton fihre, and the thickness of the dermal crust, distinguish R. arborescens from R. procerus.

81. Rhaphidophlus, sp.

The following appears to be distinct from all known species of the genus, but more material is necessary for full description :-

A small dry specimen of subramose cylindrical growth, 45 millim. long by 12 millim. in greatest diameter, the surface proliferating into ridges and processes $2-3$ millim. high, giving it a flocculent appearance. Colour pale dusky brown. Skeleton irregularly rectangnlar in arrangement; spienles umited in the fibre by a small amount of very pale horny substance, which is only occasionally seen ontside the spicules; primary fibres about 8 to 10 , scoondary 6 to 8 spicules broad. Dermal skeleton a single layer of smooth subspinulates in tufts radiating outwards.

Spicules :-(1) Smooth acuate, tapering gradually to sharp point; size $\cdot 23$ by $\cdot 0095$ to $\cdot 0127$ millim. : in fibre. (2) Smooth subspinulate, forming dermal layer; head very slight, larger than shaft : tapering gradually to sharp point; size $\cdot 25$ by $\cdot 0095$ to $\cdot 0127$ millim, (3) Spined cylindrical, tapering gradually from well-rounded, very slightly dilated base to rounded apex, which is about one third the diameter of the base; spines prominent, sharp, distal ones
strongly recurvate ; size of spieule 07 by 0095 millim. : very abundant on the fibre. (4) Navicular oquianchorate of sareode, shaft slender, almost straight; length of spicule 018 millim.

Mab. Prince of Wales Chauncl, Torres Straits, 5-7 fms.

ACARNUS.

$$
\text { Gray, P.Z. S. } 186 \pi, \text { p. } 541 .
$$

Acarnia is used as a generic name in an earlice part (tom. cit. 1.515) of the same paper as that in which Dr. Gray described Acarmes: but it has not come into general use, otherwise the essential agrecment in form between the two words would necessitate the suppression, on that ground, of the later one. A careful comparison of the grapuel-spicule, which characterizes the genus, with the spined eylindricals of Cluthria and Echinodictymm shows that the affinity of the sponge is with these genera rather than with the "Tethyadx" of Dr. Gray, as held by him, or with the "Esperiade," as supposed by Mr. Carter (Ann. © Mag. Nat. Hist. 1871, vii. p. 274).
A. immominutus, Gray* (l. c.), besides the remarkable t-hooked grapnel-like spicule and the acnate (not cylindrical, as stated by Gray, l.c.) form which characterize the main skeleton, possesses-as I have been able to ascertain by an examination of a mounting made by Dr. Bowerbank, who was the first to figure and describe these spicules (Mon. Brit. Spong. i. figs. 73-76, 292), which Dr. Gray afterwards embodied in his description of the species-also a tricurvate (figured by Bowerbank) and an equianchorate flesh-spicule; the former about 13 by 0042 millim. in dimensions, the latter $\cdot 016$ to $\cdot 024$ millim. long; also a tibiella, measuring about $\cdot 28$ by $\cdot 0045$ (shaft) or 0063 (head) millim.

82. Acarnus ternatus. (Plate XIII. figs. b, b^{\prime}.)

From a mounting which the Museum owes to the liberality of Dr. John Millar, and from the spirit-specimell in the present collection, we learn that in this new species the acuate spiculcs are imbedded in a reticulate horny skeleton of a pale salmon-red colour, and not, as usual, yellow. The grapnel has but three hooks, and the tibiella has the shaft only 003 millim. thick. The other spicules agree with those of A. innominatus. The largest of the present specimens is about 65 by 25 millim. ($2 \frac{1}{2}$ inches by 1 inch), and forms a clathrous structure of round soft anastomosing trabeculæ which are about 3 millim. in diameter. Colour in spirit reddish brown. Several specimens occur in the present collection.

Hub. West Island and Prince of Wales Channel, Torres Straits, 7 fms.; bottom sand and coral.

Distribution. Bombay? (coll. Brit. Mus.).

[^11]
ECHINODICTYUM.

Eehinodictrum, Ridley, Journ. Limn. Soc., Zwol. xr. p. 493.
Dietyocylindrus, Carter, pars, nec Borerbank.
There ean be no doubt that Schmidt is right in identifying his (Nardo's) genus Raspailia with Dictyocylizelrus of Bowerbank, and in superseding the latter name on grounds of priority (the dates are, Nardo, 1833, Schmidt, 1862, Bowerbank, 1864). The spiculation, outward form, and skeleton-arrangement of the type species of the two genera (R. vimineltis, Schmidt, and D. hispiders, Montagn) agree ossentially. Bowerbank has placed in his genus, besides typical Raspailif, species of Axos (D. dentatus) and Axinclle (D. sctosus). Carter has placed in the genus species (D. laciniatus and mplei) of an erect branching habit, somewhat like some Raspuilie, but with a spined cylindrical instead of a spined acuate echinating spicule, as in Echinotlictymm, which is thus further approximated to Raspailia. A slight enlargement of this gems, by admitting species whioh have the setacrous acuate, will, I belicre, meet the requirements : it will theu be distinguished from Raspailice ouly by a more robust habit and by haring the fibre exclusively composed of acerate spicules :-

Ecminodictrua, diugn. cmend. Sponges erect, eup-shaped or ramose. Skeleton formed of spicules united into distinct fibres. From the fibres project at right anglos short, strongly spined, cylindrical spicules, tapering from their attached ends; long, slender, smooth acuate (single-pointed) spicules may also be inserted upon the fibre, projecting from it at acute angles. Spicules composing fibre exclusively smooth, accrate (doubly pointed). No special flesh-spicules.

Distribution. Indo-Pacific region.

Echinonemu vasiplicatum, Carter, Ann. \& Mag. Nat. Hist. 1882, ix. p. 114, S. W. Australia, and Dictyocylinatrus luciniutus and pylkei, id., must be referred to this genns.

83. Echinodictyum bilamellatum.

Spongin bilamellata, Lamarck, Ann. Mus. Hist. Nat. xx. p. 434.
Echinudictyum bilamellatum, Ridley, Journ. Lim. Suc., Zook. xr. p. 493, pl. xxviii. figs. 1-6.

A dry specimen, very elosely resembling in its external characters the one which I described (l.c.) from N.W. Australia, but not so woll preserved. It differs somewhat from prerionsly known specimens in the proportions, thongh not in the form, of its spicules, riz.: Larger acerate, about ' 35 by 018 millim.; smaller acerate, about $\cdot 17$ to $\cdot 24$ by $\cdot 0095$ millim.; spined chinating eylindrical, $\cdot 099$ to

Indian specics Ectyon sparsus, appears to me to be specilically distinet both from Dr. Gray's and the present species for two reasuns, viz. (1) the presence in it of a smaller grapnel-spicule with spined shaft; and (2) the apparent absence of the tibiella. I propose the name Aearnus carteri for the Weet-Indian form.
-11 by 0095 millim. ; and thus gives a wider range to the possible rariation in the sizes of spienles within the limits of a species.

The only locality hitherto known with certainty was N.W. Australia.

Ifab. Port Curtis, Queensland (apparently from beach).
Distribution. N.W. Australia (Rielley).
Obs. This specimen most forcibly illustrates some remarks which I published in the 'Journal of the Linnean Society' (Zool, xt. p. 149), on the possible intrusion of extraneous spicules into sponges. The dermis contains, in fascieles and seattered, largo numbers of a slender acuate form, which is wholly alien to tho sponge, but whose appearance and position are so natural that I found it difficult to establish this fact. lie-examination of the slide referred to by me (l.c. suprà, p. $4 \mathscr{5}$) as representing a specimen of this species, probably from Freemantle, S.W. Australia, has satisfied me that it is not referable to the species, but to one of those Echinodictya which possess fine acunte spicules in addition to the skeleton acerate (see ubove) ; the fine acnates were at first regarded by me as adrentitious.

E4. Echinodictyum costiferum. (Plate XLII. fig, r.)

?Sponyia costifra, Lamarek, Ann. Mus. Hist. Jat. xx. p. 432.

Normally probably turbinate, forming an open cup; wall about 3 to S millim. thick, undulating. Inner surface uneren, beset at intervals of about 5 millim, with pointed monticular eminences, about 3 millim. thigh; outer surface proliferating into subdivided ridgelike or monticular eminences, each beset with several sharp points; these eminences are about 5 to 8 millim. high. Surface between eminences on both sides cancellated and more or less cavernous in dry state. Texture in dry state rery harsh to touch, hard, brittle ; colour pale buff-yellow. Main skeleton:-spiculo-fibre compact, no horny matter apparent, but surroumded by yellow sarcode; all fibres echinated by the spined spicules ; consists of (i.) a longitudinal series of stout branching fibres, $\cdot 032$ to $\cdot 095$ millim. thick, running towards the free edge of the sponge, and outwards into its surfaceeminences, where they form the sharp points referred to above, and (ii.) an intermediate network composed of meshes rarying in shapo from subrectangular (square or oblong) to oral and round, the augles always more or less rounded off, greatest diameter from 06 to - 15 millim.; the deeper fibres bear the slender acuate spieule (Xo. 2) laid along the-surface or projecting at very acute angles from it, sparingly. Dermal skeleton as main skeleton, but spiculo No. 2 apparently absent.

Spicules:-(1) Smooth acerate, slightly bent, tapering to more or lesssharp points from about 3 to 5 diameters from ends; size 22 to $\cdot 25$ by $\cdot 0079$ to 0095 millim.: forms the skeleton-fibre. (2) Smooth acaate, with well-rounded base, tapering gradually to fine point; size 4 t by 005 millim. : on surface of deeper skeleton-fibres. (3) Spined eylindrical, tapering gradually from rounded base to the rather coarsely spined free end ; spines distributed all over spicule,
numerous, low, sharp, those of distal half recurvate towards base ; size of spicule $\cdot 1$ to $\cdot 1+$ by $\cdot 0079$ millim,

Hub. Port Molle, Queensland, from coral-reof.
loth in its external form and in the structure of its fibre this species much resembles t. bilumbllutum ; the form, however, is less definite here, and the presence of the fine acuate effectually distinguishes this species. Its turbinate form separates it from E. Pykei and luciniatum, and its rough outer and inner surface from E. vasiplicatum, although it agrees with these three in possessing the fine acuato spicule.

The dry specimen which represents it is not completely turbinate, but forms abont three fifths of an open cup, not stipitate, at any rate in its present condition. There is little doubt that when fully grown it wonld be turbinate, as E. bilcmellatum shows traces of an originally non-cup-shaped condition (and cf. varieties of Phacellia ventilabrum). The height is 50 millim. (2 inches), the extreme breadth of the cup 70 millim. (23 inches).

85. Echinodictyum glomeratum. (Plite XI. fig. A; Plate NLII, fig.p.)

Erect, stipitate; base spreading; stem short, branching frequently at aente angles and in an arborescent manner. Branches angular, more or less flattened, showing strong tendency to unite by their edges, forming a dense head, from which the rounded ends of tho branches project to a short distance; maximum diameter, of primary branches 7 to 10 millim., of terminal twigs 3 to 6 millim. Surface (in present dry state) eren, but honeycombed by the spaces betreen the superficial skeleton-fibres: these bear small inconspicuous sharp points, $\cdot 25$ to 1.0 millim, high, at intervals of about 1.5 millim. Vents? Texture in dry state harsh to touch, hard, incompressible, and almost inflexible; colour probably dull purple in natural state.

Main skeleton composed of compact spiculo-fibre; no horny matter apparent outside the spicules : spicules about 10 -to 12 -serial: arrangement non-reetangular, the meshes romded, and the primary and secondary filres not traceable as distinct fibres bevond one or two consecutive junction-nodes: meshes $\cdot 2 \mathrm{~S}$ to 5 milim. in greatest width; both primary and secondary fibres echinated at right angles by an abundance of the echinating spicule. Dermal skeleton composed of fibre similar in structure to that of skeleton, but ranging from 5 to about 20 spicules broad : meshes rounded, from '2.5 to about $\cdot 7$ millim. in width, echinated in same way as the primaries; the fibre composing the projecting rertical lines is similar in constitution to that of the main skeleton. Sarcode pale yellor, transparent or purplish brown, subopaque.

Spicules:- (1) Long setaceous accrate, sparse, echinating; smooth, tapering to sharp points: size about 2.0 by 0127 millim. (2) Skeleton acerate smooth, slightly but rather suddenly bent in the middle, tapering to sharp points from about two diameters from
ench end ; size $\cdot 19$ by $\cdot 0079$ to $\cdot 25$ by 0095 millim. (3) Echinating spined cylindrieal; base with slight globular inflation; tapering gradually to blunt distal end; spines short (the longest about • 0016 millim. long), thorn-like, sharp, shortest at apex, those of distal half more or less recurvate towards base, distributed equally over whole of spicule ; size of spicule $\cdot 095$ to $\cdot 106$ by $\cdot 01$ millim, (apex of spieule about 005 millim, thick).

Hab. Thursday Island, Torres Straits, t-5 fms.; bottom sand.
A single dry specimen, 70 millim. (21 inches) high by 60 millim. ($2 \frac{2}{7}$ inches) in greatest width. The arboreseent growth distinguishes it at once from the turbinate E. bilumellutnm, vasiplicatum, and costiferum, and the palmate, brauched E. nervasum, milhi (Lamarek), the only species hitherto recognized: in fibre-structure it closely resembles \dot{E}. bilumillutum, although the spicules are somewhat smaller. The much smaller smooth acuate and acerate distinguishes it from E. lucimiatua und pykei.

Echinodictyum glomeratum, var. subglobosum.

Two dry specimens, consisting of an obsoleseent stem, rising at once into a globular clathrous or honeycombed head, formed by rapid branching at subacute angles and free anastomosis; the branches appear to end bluntly on the surface in rough points, at about the same lerel (this, however, is perhaps partly due to abrasion on the shore). Texture rigid, harsh; colour pale brown in macerated, dark purplish in non-macerated specimen. Spicules :(1) Long setaceous acuate, with well-rounded head, tapering to sharp point; size about 2.0 by .00127 millim. : apparently echinating the bases of the primary fibres. (2) Smooth acerate of fibre, slightly curved, tapering gradually to sharp poiuts ; size $\cdot 25$ by $\cdot 0085$ millim. to $33 \mathrm{by} \cdot 01 \div \mathrm{r}$ millim. (3) Spined eehinating cylindrical, with slightly indicated head and apex almost coming to a point: spines numerous, fine, sharp, straight at middle, recurvate at distal end of spicale ; size $\cdot 106$ to $\cdot 16$ by 0085 to $\cdot 0095$ millim. Skeletou-fibres stout, compaet, almost straight, sometimes with yellow transparent margins ; secondary fibres given off at right, or more usually acute, angles from primaries.
$H a b$. Torres Straits, $5-10$ fms.; bottom sand and coral.
A well-marked rariety. The outward form and the almost pointed spined spicule distinguish this from the tspical form. One specimen measures 40 millim., the other 75 millim. (3 inches) in both greatest height and diamcter.

S6. Echinodictyum cancellatum. (Plate XL. fig. D; Plate NLII, fig. q.)

P Spongia cancellata, Lamarck, Ann. Mus. Hist. Nat. xx. p. 456.
The short description of Lamarck agrees so closely, so far as it goes, with the external character of this sponge, that in default of information as to the minute characters of the old species, I assign
the prosent form prorisionally to that spectes. with mhich it agrees mowh better than the form which 1 named E, necveswne (Journ, linn.
 WIs obsained. we have no more partivmlan knowledge than that it was obsaimed br MU. Eetun and Lesgent. As these travelters sem to bere oullecieti. amones uther places, oan the worth wast of Anstralia. this finc: engourts, it any thing, the above riem as to its ilentity with
 thlly:- Erect. Asbellste clathrous. A short min stem gives rise to a clehous retiontation lyinz in one ; tane, in which the orisina! bouches are only distin wishatle near the hase. Theticnlarion clate, regolir: moshes aral, the lingest diameter lying in dinuctian of lug aris of swage, ukurs iv ky 5 millim, in aresase dimestions: the meshes tis= deep sells oecesionaliy cheed by it epsum of sronge-sulstance. The stem. branches. and the burs which compiete the reticulatien are oblvag in transresse sectivs. with rumuded margins: hence the latery surtices are tas and the atern-posteriv: teck dne tyanied. Antere-posterivt filismeter of stem 32 mithim. Itorsi diameter 1. millim, amten-posteriar iusmeter of the bans wibich fozm the ultimate reciectistion about ly uilim.. Ateral di-
 tirm expuntions parallat to the main plase ct the monge is shisw oy Asmuxion of a few zesbes wa the sartutes of the fruta. Terminutiles of begreine eifher muted by comentinz hars us projecting
 quise cten, apgetring minarely rotiualate. Tesware tirm, that of stemp wowiy: shistante of kanches and retienlation rather brimete. Sishtly compeessobia: colons. in mavensted condition, very pale प्रती π-3लाषा.
 jecting trvat vurtere ly the tuf of echinaring svioules which termi-
 them د" surtie thout 't million; ehionted sparsely in intictiv.
 steonlary thots compo a, Bhos: $3 \Rightarrow 8$ spienles benod stout 3 mitlim, apart. echinated sbuntantr with the echinating stipule.
 meshes, the mushes cunemilly nut exceeding 53 millim. in diameter: thee compact whas 110 spicules bromd well echinused with the echinati"三 stivole. Hotay uniting mutertul ctesaienally distiz-
 sanvolet, absencs Spieules:-11 Siselewa soerate, -mowth, slighty

 base an apes: the agex abour half the diametter of the buse : spises
 asl seas spex thin elsewhere: those of the proximal hilf of ose thind of the spitule mather small, statight shatp, the pemtinder

tered orez Eurfase of thres, and agregeved into tufte st the ends of the Jrimary Zb bes.

Hab, Warriar Neef. Iurres Sirsita (appareatl) from beach)
A sincle dry specimon : estrutue buizht 410 millim. (168 incles),
 E. Litanallarm in the regularity of its ebeletor and the oompact-

 bot in thie ryoce the fromit onlt incifitaly retientur and the branches ure mowh stoater. It difters murkedily foum both in the
 in these specive.

6. Raspailis bifurcata, Irutr M工. Âz. J: Peaty XIII. Ales. 7,7,

Eretr, arboresceat: atem therr. 3-3 millime tilik trsuching dichotompusl? and frequently, is flanes wruall es right augles to

 Stom and tomehe apromimusely cylindrioal. Eurioe minutely
 distanet apart. Testure in Erifit of steml and branchet baspl, woody, that of the tip of tesminal lirembes seft sud flesitle: celatr of stem snd lower branbes jurfle. of perminal lraubles

 ssme stmount of the swaste, worexel and wital is a coovidersile amouns: of frale jurfet tesacivas miterial: the ₹untlee atrsstemase fretly by evarergedoe of stuall sndes: diapeter ranzing trom sivout
 soursiy coraned to the zoined acuste scarvered orer it. Do diatine: dermis: the surine is Getinsted at right an hles br tufts. each eomposed of owe or more long serates ; नficule profectite trom a contiosl
 tren-parear. Spictler:-1) NEeleton smuste, smorth, buse well nembed. tapering gradusily to sharp point (mite rapiblly near end): size abum 1\%2 by 0127 millim. (2) skeleton socrate stanth Alobtly curvel, wapering to sharp phintz from stogat fix diamation

 pess. (f) Epined crinuificsl, taperitg zradusily from well-rounded lase to blout diral end. thitaly tnd equatly spined: spires fine, thurp. thuse of dital part of spicule recurtuit: size 299 by =007.

Har. Prince of Wates Channel. Turres strits, i-itme, : botyom. stelle and sand.

The sperimen on which the speries is based is 58 millim. (2 inches) kigh and 24 millim. across. The species much resembles Didyly-
 seva. that fqucies is referskle to Ethiasdictyum I.

The general form, the large development of acuate spicules, and the cchination by the long acuate spicules ally the species more elosely to Ruspuilia (Dictyocylinelrus) than to Echinodictyum; the cylindrical form of tho spined spicule agrees with the latter genus: but the share taken by the acuate spicule in the formation of the fibre is conclusive as to its belonging to Raspailia.

Subgenus Syrtagelis, Schmidt.

In the description, in the Spong. Küste Algier., at p. 10, of a species from Algiers, named by him Raspaitua sypringolla, Prof. Schmidt says that it diverges remarkably from the type of Raspailia, having but one form of spicule (spinulate) and (in the case of one specimen) a well-marked vent; he does not definitely form a new genus to contain it, but suggests that if the two charaeters referred to should, with further material, prove constant, a genus should be formed for the species, and named syringelle. Fresh material has now appeared, from which 1 describe the two following species. Although the spicular character of Schmidt's species is (essentially) reproduced in them, that of the presence of a rent is not; therefore, although I consider the group for which Prof. Schmidt provisionally proposed the name Syyringella to be of subgeneric value, 1 do not feel justified in separating it gencrically from Raspailia, The group may be defined as differing from Ruspailia in the absence of the spined acuate spicule. In the following species the skeleton-spicule has usually lost the hearl, which h. syringella retains well developed. It is interesting to find this subgenerie type so widely distributed.

88. Raspailia (Syringella) australiensis.

$$
\text { (Plite XLII. figs. } m, m^{\prime} \text {.) }
$$

Erect, unbranched, consisting of a single, slonder, cylindrical colnmn, tapering very gradually from about two thirds of the height to the base on the one hand and to the rounded free extremity on the other; diameter at base and summit about half that of the thickest prortion of the stem. Surface in spirit semigelatiwous in appearance under lens, and minutely pilose and velvetlike; it is corrugated by closely set, irregularly interrupted, longitudinal ridges. The sponge is, as a whole, tough and elastic : tho corrugated superficial layer loose and fragile, its greatest thickness about 1 millim. Colour in spirit dirty white. The stem is formed by a dense flexible rod of a dull yellow colour and smooth surface. Vents not perceptible to naked cye or lens. Skeleton of axis consisting of a close network of tracts of skeleton-spicules, the tracts mostly arranged longitudinally, and conneeted by smaller tracts set at oblique angles to them (as in Axinella, Schmidt, but much elosor together) ; tracts often confluent, at most only 15 millim. apart ; no soft sulstance is apparent muiting the spicules. Skeleton of cortical soft layer consisting of fascieles of skeleton-spicules, radiating
horizontally from the axis, about ' 4 millim. apart, each about 10 to 20 spicules broad; the spienles appear to be simply imbedded in the dense, dull yellow sareode which forms the chicf part of the cortex, and they project about 4 millim., diverging somerhat, from its surface. Sareode dull yellow, subtransparent, no distinct granules visible. Spicules:-(1) Skeleton acuate, long and slender, tapering gradually to basal rounded end from about ten diameters from base, and very gradually to the sharp point (the basal portion is thus little more than half the maximum diameter of the spicule); size abont $\cdot 7$ by $\cdot 013$ millim. (2) Smaller acuate ; as (1), but size about 5 by 004 millim.

Hab. Port Darwin, 7-12 fms.; bottom sand and mud.
This fine species is represented by two good specimens in spirit, of which the largest measures 160 millim. (62 inches) in height by 4 millim. in greatest thickness. Near the base the axis is very tough, and consists almost entirely of continuous colourless or pale amber horny matter and of the imbedded spicules. As the skeletonspicules are simply acuate, not spinulate, the distinction between this species and R. syringella is seen to be well marked.

S9. Raspailia (Syringella) clathrata.

(Plate XlI. fig. F.)
Erect, branched approximately in one plane; mode of branching essentially dichotomous, at angles of about 45°, anastomosis frequent. Stem rudely cylindrical, 5 millim. in greatest diameter; branches flattened out laterally, lateral margins sharp; latoral diameter of largest branchos 5 millim., of terminal branches 1 to 1.5 millim. No vents observed. Surface, in spirit, covered with low obsolescent ridges, running into cach other. Texture of branches in spirit tough, elastic ; the terminal branches compressible, the larger ones hard, the stem almost rigid; colour pale dirty grey.

Skeleton consisting of the skeleton-spicule traversing lougitudinally: the branches and stem, about equally distributed thronghout their thickness, and of horizontal bundles of the same radiating towards the surface, about 3 or 4 bundles in the circumference, about 10-12 spicules broad. No distinct dermis. Sarcode pale yellow, subtransparent. In the base the reticulum of spiculo-fibre is backed by some horizontal (circular) horny fibres, amber-yellow, 9 millim. and upwards in thickness; the bases of the radiating tufts and the general reticulum of spicules is more or less sheathed in horny fibre (which is quite pale in this place). Spicules smooth acuate, with wellrounded heads, tapering gradually to fine points; size about ' 6 by 011 millim. in the horizontal bundles, from ' 6 by 0032 to 0 by 0005 millim. in the lengitudinal series.

Hab. Thursday Island, Torres Straits, $7-12$ fms. ; bottom sand.
The specimen which furnisbes the abore description is 105 millim. ($4 \frac{1}{5}$ inches) high and 80 millim. ($3 \frac{1}{5}$ inches) across the broadest part. It is remarkable for having several small stones and shells attached to some of the outer branches, which perhaps indicates that the
frond, though only curved somewhat to one side in the plane of expansion, was in life dccumbent, so that the terminal branches were then in contact with the sea-bottom. The species differs from R. australicnsis in the branching and anastomosing habit and the flattened knife-edged branches, and in having the longitudinally arranged spicules not confined to the axis, but extending to the cortex. From R, sypringella, Schmidt, it also differs in its growth (though Schmidt mentions that the branches of R. syringella sometimes unite) and in the absence of heads to the acuate spicules.

AXINELLIDA.

Axinellida, Carter, Ann. \&. Mag. N. II. 1875, xvi. p. 133.

This family differs from the Eetronide in the much greater importance of size of spicule as a factor of specific distinetion. The relations of the two families, howerer, require readjustment on more satisfactory bases thau at present.

90. Axinella echidnæa. (Plate XLIII, fig. a.)

P Spongin echidnæa, Lamarck, Am. Mus. Ilist, Nat. xx. p. 418.

It seems likely that this will prove to be Lamarck's species. That author refers (l. c.) to Seba (Thesaurus, iii. pl. xcis. fig. 7) iu illustration of his sponge. This figure has a strong resemblance to the present species, but does not show the same tendency to lateral junction between the branches, and has most of the latter somowhat enlarged at the tips, whereas in these specimens they usually, though not invariably, are either of about the same diameter throughout or else taper to points. The dark reddish-brown colour of these specimens and the peeuliar cchination of their surface by angular wedge- or knife-shape processes about 2 to \pm millim. high, projecting outwards and somewhat upwards, are decidedly indicated in the figure. In texture the specimens are tough, elastic, harsh to the touch in the dry state; the surfnee-processes are flexible, almost soft, in spirit. In structure it is a true Axinella, and thus docs not support Lamarck's surmise that it might be identical with Spongia muricata of Esper (Pallas, sp.), which is Tricentrium maricutuen of Ehlers. The main skeleton exhibits the usual longitudinally clongated meshes of loose spiculo-fibre, which in the stem is composed in part of a transparent and almost colourless horny uniting material, which scems to be wanting in the surface-tnfts ; distance between longitudinal lines of axis $\cdot 07$ to $\cdot 1$ millim. Surface corered with a fuscous-brown subopaque pigment, which penetrates to a slight distance below. Sareode transparent, almost colourless, very pale reddish brown. Spicules :-(1) Smooth, slightly curred acerate, tapering gradually to sharp points, or more or less blunted at one or both ends ; size 3 by $\cdot 0095$ to 44 by 0127 millim. : these
forms compose the main bulk of the skeleton. (2) Long smooth acnate, generally slightly curved, tapering gradually to a fine point; size about 1.1 by 0127 millim. : forming part of longitudinal skeleton-lines of surface-tufts.

Hab. Thursday Island and Prinee of Wales Channel, Torres Straits, $4-7 \mathrm{fms}$.

Distribution. "African coasts?" (Lamarck).
As pointed out in speaking of the characters of tho ends of the branches, this form shows considerable variability : as a rule the specimeus are chiefly branched in one plane (fan-like), but in two specimens branches project from both faces, but they then tend to form fan-shaped fronds parallel to the main frond. The largest specimen measures 160 millim. ($6 \frac{1}{2}$ inches) high by 160 millim. wide; the average maximum diameter of the distinet branches (which are oylindrieal or somewhat compressed), not that of the broadest but obviously compound branches (which occur commonly), is abont 10-12 millim. Five specimens oceurred.

91. Acanthella, 81).

Fixternally resembling Spongia carduus, Lamarek (Aun. Mus. Hist. Nat. xx. p. 381). When guided by the description alone, 1 had referred the present speeimen to this speeies with more confidence than usual; but on mounting seetions of the probable type specimen at Paris, I saw that it was a different species. The points in which the description does not quite suit this form are "pédicule eylindracé, très-dur," the stem having apparently been flattish, and, though stiff, not inflexible; and "couleur d'un blane grisâtre," whereas this (in spirit) is flesh-colour. The ridges run longitudinally up and down the sponge, and are 1 to 3 millim. high, and their free edge is beset with sharp (in spirit flexible) points at intervals of one or two millimetres. Texture tough and flexible, substance compact, surface between inequalities glabrous. It is a true Acanthella. The spiculation is as follows :-(1) Smooth acuate, slightly curved, tapering gradually to sharp point, about $\cdot 4$ to 6 millim. by 0095 millim. (2) Smooth undulating eylindrical with rounded ends, length about $\cdot 7$ millim., diameter just $\cdot 0063$ millim.

The species differs from the Adriatic forms A. acuta and obtusa, Schmidt, in the broad explanate form and in the smaller size of the spicules, the cylindrical being much shorter and thinner, the aenate much shorter than in those species. The skeleton forms a loose-fibred Awinella-like network of spienles, imbedded in a dense, trausparent, almost colourless mass of caontehouc-like consistency, containing nucleoid bodies about $\cdot 007$ to $\cdot 008$ millim. in diameter.

Hab. Prince of Wales Channel, Torres Straits, 7 fms .
A single specimen in spirit, 35 millim. ($1 \frac{2}{5}$ inch) high by 29 millim. across.

LEUCOPHLEUS.

Carter, Amn. \&. Mag. N. II. 1883, xii. p. 323,

92. Leucophlœus fenestratus. (Prate XLII. fig.s.)

Massive, suberect, terminating above in thin edges, on each side of which open wide pouch-like vent-cavities, which also open to the surface laterally by rounded apertures. Surface minutely undulating, but glabrous. Texture in spirit rather tongh, compressible, soft; colour dull greyish brown. Main skeleton composed of irregular, very loose tracts of spicules, 3 to 10 spicules broad, extending in various directions and lying at various angles; the dermis is supported by some closely set subvertical tracts of similar character lying betwcen the subcortical crypts. Dermal skeleton composed of very loose and irregular tracts or aggregated masses of spicules intercrossing so as to form au almost continuous sheet, in the intervals of which are placed the pores. Sarcode pale brown, subtrausparent. Spicule smooth straight, or almost straight acuate, tapering gradually from centre to moderately sharp point, and from centre gradually to well-rounded undilated base, which has, however, only about half the diameter of the centre of the shaft; size of spicule $\cdot 5$ to 8 by 019 to $\cdot 022$ millim.

Hab. Port Darwin, 8-12 fms.; bottom sand and mud.
The height of the single specimen is 38 millim., greatest diameter (at base) 20 millim.; it forms an irregular, elongated pyramid, with the apex flattened out and somewhat twisted. In size and shape of the spicules the species resembles Hymeniacidon crustula, Bowerbank (Mon. Brit. Spong. ii. p. 185), from the British Seas, which is, however, massive or mammillated and, owing to the inferior diameter (. 012 millim.) of the spicule, shows the slenderness of the basal end much less distinctly. It is nearly related to L. massalis, Carter (l. c.), from W. Australia, but is darker in colour, is less distinctly penicillate, and has the spicule rather larger.

Leucophlœus fenestratus, var. (Plate XLIII. fig. g.)

A dry, upright, flattened specimen, which has grown around a Hydroid bush, appears closely allied to the above species. It appears to have formed part of a long wall-liko mass, 70 millim. ($2 \frac{4}{5}$ inches) high and $15-20$ millim. thick. Like it, it is surmounted by pyramidal processes, and is traversed from the upper surface downwards by large cloacal spaces. Colour white, with a tinge of green. The spicules differ from those of the typical form in measuring -9 by 032 millim.: as, however, a small series of specimens of this species from the western part of the Indian Ocean (see Part II. of this work) includes within itself as great a rariation in this respect as is shown by these two Australian specimens, I do not assign distinct varietal names to these two, at first sight, very distinct Australian specimens.

Hab. Arafura Sea, 32-36 fms.; bottom sand, mud, and shells.

suberitid.

Suberitida, Carter, Ann. \&. Mag. N. II. 1875, xvi. p. 133.
No strikingly new form occurs in this group. It is remarkablo that from so large an Australian collection Tetlya is altogether absent, though Dr. Bowerbank long since showed that it is well established in these seas.

93. Suberites carnosus.

Hatichondria carnosa, Johnston, lirit. Spong. p. 146, pl. xiii. firs. 7 \& 8.

Two specimens undistinguishable from British specimens of this commout species. Mr. Carter has recorded its occurrence at Kerguelen Island (Phil. Trans, clxviii. p. 287). The present specimens are greenish white in spirit and irregularly lobate in shape; one appears to have been attached by the base, the others to bave been quite unattached. The spicules have a suboral head, the free end projecting slightly beyond the actual enlargement of the head, and measure $\cdot 28$ to 57 by 0063 millim. (the spicules of the Johnstonian type measure $\cdot 55$ by 0063 millim., and have a similarly formed head). The arrangement of the skeletonfascicles is also closely similar, the greater distance between them in the present specimens being probably due to the more natural conditions retained by preservation in spirit.

Hab. Port Jackson, 0-5 fms.
Distribution. British Islands (Bowerbanle).

94. Suberites epiphytum.

Alcyonium epiphytum, Lamarck, Mém. Mus. Hist. Nat. i. p. 163.
Lamarek's species, as I have ascertained from the original specimen in the Museum at the Jardin des Plantes, is a Suberites coating a fucus with a thin lamina of sponge (in which are imbedded a number of spinulate spicules whose heads rest for the most part almost directly on the supporting fucus, while their points project freely to the exterior). There is no flesh-spicule. The spinnlate skeletou-spicule is generally curved, and gradually tapers to a sharp point; the head is transversely elongated, the side at which it is attached to the shaft being flat, and the free end curved, but more gradually than the lateral parts (in fact the shape is nearly that of the head of the spicule of Cutlosponyiu, Kent, which Mr. Carter has graphically compared to a door-handle); the head is not unfrequently surmounted by a slight prominence (marking the aborted second ray, if the spinulate spicule is to be regarded as a uniaxial, biradiate spicule, with one ray aborted). In the type specimen there is some dark granular matter between the spicules. The
spirit-specimen in the present collection is in reality entirely incrusting, thongh apparently in part erect and cylindrical, owing to its growing along the stem of a Tubularian Hydroid, which is planted on the back of the erab on which the sponge-growth comnenced. In the thicker parts of the sponge the spicules form long tracts, about 6 spicules in breadth, connected by interdigitation, or by lonse, irregularly crossing spicular tracts. The sareode is sulitransparent, somewhat gramular, diffusely stained of a reddish-brown colour. The spicules in both the type and the present specimen measure about 25 millim. in length by 00083 millim. in the diameter of the shaft.

Ifab. Port Curtis, Queensland, 7 fms.
Distribution. "Probably the seas of America" (Lamarck).

HYMENIACIDON.

Borerbank, Mon. Brit. Spong. i. p. 191.

It appears to me that Bowrerbank's genus should be retained for those sponges with spiculo-fibrous skcleton without horny matter, but in which primary lines are distinguishable, breaking up at the surface and more or less within the sponge into tufts (thus forming tracts which represont the secondary fibres of Renieridæ), and in which there is but one form of spiculc. a slender skeleton acuate with or without indications of incipient spinulation. Such are the eharacters derived from II. carnncula, Bowerbank, the species which that author (l. c.) has named as the type of his genus. It differs from Nuberites in the absence of distinct spinulation of the skeleton-spicule. Schmilt refers this spouge to Amorplinut (Spong. Atl. (ieb. 1. Th), althongh he assigns in his diagnosis (op, cit. p. f0) Acerate spieules to that genns, which helongs to the family Renieride, whereas Hymmiacidon s, str, is decidedly a Suberitid, elosely allied to Suberites.

05. Hymeniacidon caruncula, Bowerbank:

A broad, horizontally extended specimen from a crab's back; it presents a for short mamille on its free surface. The form of the spicules and arrangement of the skcleton are fully in aceordance with the type specimens of this British species. The spicules measure $\cdot \frac{3}{3}$ to $\cdot 29$ by 0063 to 00 millim.; those of the type specimen from Tenby, 19 to 32 by 0063 to 00 suillim.

Hul, Port Juckson, $5-7 \mathrm{fms}$.
Distribution. British seas (Bowerbenki).

96. Hymeniacidon agminata.

(Plite NLL. fig. E; Plate XLIIL, figs. f, f^{\prime}.)

Aggregations of erect, flexuous, more or less compressed stems. S to 10 millim, in longest diameter, anastomosing : subdividing in a
cymose manner into branches. Branches in part subeylindrical, in part compressed like the stems. of same diameters as stems; they divide and subdivide and anastomose irregularly, and frequently terminate in short vermiform tips ahout 10 millim. long by 2 millim. thick. Surface of sponge even, smooth. Textmre in spirit rather tongh, but dough-like, somewhat elastic. Internal strneture subcompact, excretory canals small. Veuts small. few, osal, I millim. in greatest diamcter, with thin collapsing margins; near ends of branches. Colour in spirit pale greenish white.

Muin skeleton consisting, beneath surface, of very loose spicular tracts confusedly arranged; at the surface they are set regularly at right angles to it, and are about s to 10 spicules broad, with intervals of $\cdot 07$ to $\cdot 14$ millim. between the tracts. Dermal skeleton formed by the points of the vertical tracts just mentioned, which do not project from the surface, and ly a single thin layer of spicules seattered horizontally on the surface. Surcode very paile, transparent. Spicules smooth, subspinulate, straight or slightly curred; head merely a slight enlargement of shaft, ouly slightly larger than adjacent part; shaft tapering to sharp point from near base ; size 25 by 0063 millim.
Hibl. Port Jackson, 0-5 fms.
A single spirit-specimen, 90 millim. (3) inches) high, 55 millim. ($2 \frac{1}{\ddagger}$ inches) in diameter. This species recalls in colour and consistency Suberites curnosus, which, however, differs in its compact form and in the basal protuberance on the head of its spicnle. The habit of growth is more that of Suberites unturcticus, Carter (Amm. \& Mag. N. H. 1822, ix. p. 350); but in that species the colour is dark brown, and the spiculo much larger and provided with a large spherical head. It is near II. curuacula, only the spicules are of a rather smaller ascrage size, and the head is slightly more pronomeed; but the chief differences ure the erect branched growth as opposed to the horizontal, merely mammillated habit of II. carruculu, and the pale whitish, not brown or yellow, colour.

97. Hymeniacidon, sp.

A small incrusting specimen of a dull dark crimson colour, in spirit; the margins glabrous, the centre of the surface roughened by small conuli about 5 millim, high and $\cdot 5$ to 1 millim. apart. I'rimary skeleton-lines compact, about 10 spicules broad. Spicules smouth acnate, tupering gradually to fine points; size 16 to $\because 22$ by -0042 millim.
Hab. West Island, Torres Straits, 7 fms.

SPIRASTRELLA, Schmidt.

In accordance with the rules of zoological nomenclature, the generic designation Suberites (Nardo) should be retained for those species only which are generically identical with the type of Nardo's

> Digitized by Microsoft (®)
genus. The first species, Suberites typus, Nardo, does not appear to have been recognized by authors; the next is Alcyonium domuncula of Olivi, the IIymeniacilon subcrea of Bowerbank, the spiculation of which consists of a simple spinulate. Eren if we include in the genus the third species, Suberites ficus, Nardo (probably the Hymeniacidon ficus of Bowerbank), which possesses, in addition to the spinulate, a erlindrical flesh-spicule with a central inflation, those free compact Snberitide, with skeleton spinulate, whose flesh-spicule is a modified stellate ("spinispirula," Carter), cannotbeadmitted to the same fellowship, and Schmidt's genus Spirastrella mast receive all such. Besides Symastrella cunctutrix and vidua, Schmidt. IIymeniucidon anyulater, Wowerbank, Alcyoniem purpuroum, Lamarck, and several other species cuumerated by Mr. Carter in his valuable " List of Suberites" lately pablished (Ann. \& Mag. N. H. 1882, ix. p. 349 and following pages) must be included in the genns. To any one who has noticed the practical identity in spiculation between typical Spirustrellie and numerous species of Fior (e. g. johnstoni, Schmidt, and several described by Hancock as Cliome), it must be a matter for serious consideration whether the boring habit and that general arrangement of their tissues which is expressed by Mr. Carter by the term Lataca, which he has applied to the group in which he places Cliona and Tiou, are of sufficient importance to justify their being kept distinct from their non-boring allies, the Spictstrella. To me it seems very possible that they may some day be demonstrated to possess a free state, corresponding to Pupillina suberea, Schmidt ($=$ Rhaphyyrus griffithsii, Lowerbank), which Mr. Carter has found to be merely the free condition of Viou (Cliona) celate ; such a free state should be carefully watehed for.

98. Spirastrella vagabunda. (Pbite XLIII, figs. c, c^{\prime}.)

"Suberites, ? sp. undescribed. Trincomalee."* Carter, Ami. \& Mag. N. 11.1802 , ix. p. 352.

Massire, attached by broad base, tending to grow up into largo nodular elevations, which may bear one or more vents. General surface slightly verrucose (in spirit), more so in large dry specimens, smooth orer and between inequalities of surface. Colour (in dry state) pale to dark yellowish brown, in spinit olive greenish brown. Vents of two kinds :-(1) At summit of the large elerations of surface, one or more (sometimes 5 to 8) on each ; opening lerel with surface; suboral in uncontracted state, 2 to 10 millin. in greatest diameter, leading into wide and deep excretory canals. (2) On general surface of sponge, usually between the lesser inequalities of the surface, subcircular, with thickened margins, about 's millim. in average diameter.

[^12]Internal structure rendered cavernous by the wide canals of tho excretory system; texture of internal structures moderately tongh. Internal skeleton formed of trabecule and sheet-like expansions some larger trabecule formed of erossed skeleton-spicules strengthened by dense sarcode proceed from the interior and support the cortox ; they are from 4 to 0 millim. in diameter. A strong cortex, about 8 millim. thick, tough, formed chiefly by the skeleton-spicnles much intercrossel, and united by a somerrhat dense, brownish, subtransparent sarcode (becoming less visible when tho specimen is dried). Spicules:-(1) Skeleton spinulate, strong, slightly curred; head oblong, almost oval : shatt gradually diminishing to abont two thirds of its full diameter towards head, and tapering gradnally to sharp distal point; average maximum size 6 by - 02 millim. (2) Spinispirular, delicate, composed of about three rather sharp bends, with about 4 to S rather blunt spines, 0021 millim. long, to eaeh bend ; shaft of equal diameter in all parts ; average maximum size $\cdot 032$ by 0016 millim. (exelusive of spines).

Ifth. Thursday and West 1slands, Torres Straits, 4-7 fms.; bottom sand or coral.

Distribution. Trincomalee (Carter); Galle coast, Ceylon (coll. Mus. Brit., ex coll. Dr. Ondaatie).

The external appearance of this fine species is more characteristic and constant than is usual in the Suberitide. Mr. Carter has shortly described it, but without name. The largest specimon known to me is one brought by Dr. Ondaatje, Colonial Surgeon, from Ceylon, which measures 225 millim. by 130 millim. (9 by 5 inches), by 60 millim. ($2 \frac{1}{2}$ inches) in greatest thickness; it was obtained at or near low-water mark.

The species is nearly allied to Hymeniacidon angulata of Bowerbank (Madeira), but has a skeleton-spicule of twice the diameter of the spinulate found in that species.

The spicules show no striking rariation in size; the length of the spinulate varies from $\cdot 55$ to 63 millim. in different specimens; its breadth and the size of the flesh-spicule are almost constant.

Colour. This is produced by a number of globular or suboral cells of olive-green colour throughout, prorided with a large nucleus of a darker colour: they measure about 0095 millim. in diameter, and have a well-defined outline; they appear to be confined to the mesoderm.

99. Spirastrella congenera, (Plate XLIII, figs. d^{\prime}, d^{\prime}.)

Massive, attached by broad base, tending to rise into pyramidal or cylindrical lobes, each terminated by the vent. General surface even, smooth (in dry state). Colour (in dry state) pale fawn. Vent (in the single dry specimen) oral, 8 millim. in greatest diameter, leading deeply into the body of the sponge, the margin level with the general surface (in the single specimen a tongue-like process, 8 millim. high, stands at one side of it). Internal structure cavernous, with wide spaces; texture of internal structures moderately tough.
Digitized by Microsoft (®)

Interual skeleton formed by a coarse network of loose spiculo-fibre, the subcortical ends of the fibres rising up so as to smpport the cortex. A strong cortex composed of a zone of chiefly subhorizontal skeleton-spicules united by sareodic substance, and about -45 millim. in thickness.

Spicules:-(1) Skelcton spinulate, very large, decidedly curred, tapering gradually to a sharp point: head oval, shaft tajering slightly towards it, forming a decided but slight neek : size - by 035 millim. (2) Spinispirular, either delicate, long, composed of abont three bends, which are gradual, so that no part of the whole spicule lies much out of the straight line : size '05) to $\cdot 0.56$ by • 0016 millim.; or, rather stouter and shorter, with ouly two bends, size $\cdot 032$ by 0022 millim.; in either ease about 10 spines to a bend ; spines slender, sharp-pointed, $\cdot 0022$ to $\cdot 0032$ millim. long.

Hch. Thursday Island, Torres Straits, +-5 fms.
The, unfortunately, single and dry specimen measures 35 millim. ($1 \frac{1}{2}$ inch) high by 25 millim. (1 inch) in extreme broadth.

The species has in the dry state the colour and much of the appearance of S. vagabunder ; both forms of spionle, however, are considerably larger than in that form and the angulation of the flesh-spieule is less abrupt. It is, however, undoubtedly nearly related to it.

100. Spirastrella decumbens. (Plite XLIII. fig. c.)

Inerusting, thin (5 to 10 millim. thick). General surface level (except where affected by the inequalities of the substanco to which it is attached), glabrous. Colour in spirit grey, slightly tinged with pink. Vents not made out with certainty. Texture tough and leathery. Internal structure very compact: no large spaces seen, as a rule, in vertieal sections. Sareode dull greenish, subtransparent, coloured diffusely. Skeleton consisting of loose spicular tracts, about 6 to 10 spicules broad, ruming obliquely or at right angles to the surface, and occavionally forming slight prominences, protected by the cortex, and of loose skeleton-spicules lying in all directions between them. Cortex consisting of a layer, two or three spicules deep, of the Hesh-spienle, lying in almost colourless sarcode.

Spicules:-(1) Skeleton spinulate, slender, tapering very gradually to a sharp point, and rery gradually also to the bead, below which the shaft forms a decided and well-defined neek; bead oval, rather pointed at free end, of about the same diameter as the middle of the shaft, riz. 00095 millim, : length of spicule 35 millim. (2) Spinispirular, moderately stout to stout, consisting of two bends, about 12 spines to a bend; spines strong, tapering from broad bases to sharp points, length abont 0045 millim.; length of spicule 025 millim., thickness (excluding spines) •0032 to $\cdot 0063$ millim.

Hab. Alert Island, Torres Straits, 7 fms. (growing over a tubular Reteporte).

This speces appears to be more nearly allied in its spiculation to S. (Alcyonium) perperea, Lamarek, than to any other Indo-Pacific species, but it differs from it in wanting the magnificent crimson enlour
of that form, in its incrusting habit (pwrpureu boing massive), in the inferior diameter of the shaft of the spinulate and the superior length of the spinispirular spienle (in purpercat these dimensions are respectively $\cdot 013$ and $\cdot 016$ millim.), the latter usually consisting in perparea of only one to one and a half bends.

The single spirit-specimen measures 32 millim. ($1 \frac{1}{4}$ inch) in height by 30 millim. in longest diameter, by 10 millim. ($\frac{1}{3}$ inch) in greatest thickness.

TETRACTINELLIDA.

The family Lithistide is not represented. This is not surprising if it is remembered that the depths investigated did not exceed 40 fims. Mr. Carter's better fortune with collections from Ceylon is in part due to the greater depth at which the specimens were obtained.

CHORISTLD.

Sollas, Ann. S. Mag. N. II. 1882, ix. p. 164.
Prof. Sollas has since proposed a different arrangement of the Tetractinellida, but the division into Choristido and Lithistida appears a natural and convenient one. The species obtained, though few in number, are of remarkable interest, and all new to the Australian seas.

STELLETTA, Schmidt.

This genus, as at present constituted, is decidedly heterogencous. Some of Schmidt's and Carter's species appear referable either to Geodia, or some genus intermediate between Geodia and Stellettio (by virtue of the transitional character of their ball-stellate spicule), while S. enustrum appears distinct by virtue of its dish:s. The more typical forms appear to be divisible into subgronps which coincide roughly with their geographical distribution. Thus the Atlantic species mostly have medium-sized stellates, with numerons rather coarse, pointed rays ; the Indo-Pacific ones have few-rayed stellates, usually minute; of the latter, the Fijian and two of the Ceylon forms agree in having a small surface bacillate or acerate spicule, while one Ceylon form (S. Cethyopsis) and all the Australian ones known at present agree in having only minute delicate rayed stellates.

The Indo-Pacific species of Stellette, s. str., may be divided into two groups:-

Group 1. With bacillar or acerate flesh-spicule.

1. S. (Ecionemia) acervus, Bowerbank, P. Z. S. 1873 , p. 322, pl. xxx. figs. 1-6. Fiji Islands.
2. S. (Ecionemia) densa, id. l. c. p. 322, pl. xxx. figs. 7-14. Fiji Islands.
3. S.(Tisiphonia) nana, Carter, Ann. \& Mag. N. H. 1880, v. p. 138, pl. vii. fig. 43. Gulf of Manaar, Ceylon.

Digitized by Microsoft ${ }^{(8)}$
4. S. crassicula, id. ibid. p. 371. Basse Roeks, Ceylon.
5. S. australiensis, id. op. cit. 1883 , xi. p. 350 , pl, xiv. fig. 2. W. Australia.
6. S. bacillifera, var. robusta, id. loc. cit. p. 351, pl. xiv. fig. 3 . S. Australia,

Group 2. Without bacillar or acerate flesh-spieule.

7. S. tethyopsis, Carter, Amn. \& Mag. N. H. 1880, r. p. 137, pl. ri. figs. 39, 40. Gulf of Manaar, Ceylon.
S. S. globostellata, id, op. eit. 1853, xi. p. 353, pl. xiv. fig. 5. Galle, Ceylon.
8. S. bucca, Selenka, Zeitsch. wiss. Zool. xvii, p. 569, pl. xxxv. figs. 14, 15. Samoa Islands.
9. S. purpurer, sp. n. N. coast of Anstralia.
10. S. clavosa, sp. n. N. coast of Australia*.

In no Atlantic Stelletto which I have seen do the minute or any stellates possess capitate rays, except in a MS. species of Sehmidt's from Florida, which has minute drawn-out stcllates (i. e. incipient spinispirular spicules) with very slight heads to the slender rays: a larger stellate is, however, present in addition to these, and has not heads to its rays; the large stellate of S. intermedia, Schmidt, from Algiers, has the ends of the rays roughly tubereulated by prominent groups of tubercles. but the spicule itself seems to be homologous with the "balls " of Geodia, and not with the small stars of Stelletta, which are present as well. The Indo-Pacifie species more often have the head. In Stelletta (Ecionemia) densa, Bowk., from the Fiji Islands, the tubereulation of the rays is sometimes rather coarser at their apices than on the remaining part, and in Ecionemia acervus the rays of the delicate stellate are very fine and slightly capitate. Carter does not describe or figure any heads on the rays of the stellates of his species from this region except S. globostellata. Selenka's species has no heads.

The two species from Australia to be first described agree with each other and with Ecionemia acerves in haring small heads to the stellates, although they differ from it, and agree with Stelletta tethyopsis, in the probably more important character of the absence of a flesh acerate or bacillar spicule; the character of the apex of the ray of the stellate in the latter species has not been deseribed. The Samoa-Islands species has no surface linear spicule assigned to it by its describer, but it differs fundamentally from our species in its large, noncapitate-rayed stellate.

[^13]
101. Stelletta purpurea.

(Plate XL. fig. E; Plate NLIII. figs. j, j.)

Free, subspherical or suboval. A single eircular vent (about 2 millim. in diameter in moderate-sized specimens) often present; it leads deeply into the sponge. Surface snbpapillose, i. e. embossed with small semiglobular elevations, visible most readily under a lateral light. Colour purple in spirit, when well preserved, A distinet cortical layer with sarcode of the same consisteney as that of the central part of the sponge, about 7 millim. broad, containing the subeortical crypts, and formed (in adult specimens) by the space intervening between the heads of the superficial zone-spicules; a subcortical zone of anchors and smaller zone-spicules. Deep sarcode transparent, browuish yellow; that of surface parplish red, rather granular.

Spicules:-(1) Zone-spicule; shaft stout, tapering gradually to sharp point, $1 \cdot 4$ to $1 \cdot 6$ by 045 to 06 millim.; arms strong, tapering gradually to sharp points, projecting somewhat forward at the commencement, and then curving backwards slightly, $\cdot 27$ by 043 to 06 millim. in length and breadth respectively. (2) Anchor, long, tapering to sharp point; head almost flat above; arms turning rather abruptly baek to form an angle of about 45° with shaft, tapering to sharp points: expanse of arms at their points $\cdot 1$ millim. ; diameter of shaft about $\cdot 035$ millim, : length of shaft about 2 millim., of arms about $\cdot 07$ millim. Head usually lying below the zone of "chones." (3) Body acerate, long, slonder, tapering very gradually from contre to sharp points ; size about 1.5 to 2 by 037 millim. (4) Minute stellate of flesh; about 7 to 10 arms: no perceptible body; arms straight, very slender, viz. about 0008 millim. in diameter, apparently smooth, terminated by minute head; diameter of spicule across arms $\cdot 02$ to $\cdot 025$ millim. : distributed throughout all parts of the sarcode.

Hab. Princo of Wales Channel, Thursday Island, and West Island, Torres Straits, 4-9 fms.; bottom sand or sand and coral. Port Darwin, 7-12 fms. ; bottom sand and mud. Arafura Sea off N.W. coast of Australin. $32-36$ fms. ; sand, mud, and shells.

Specimens not abundant at any of the stations. The single specimen from West Island is remarkable for being half corered by specimens of Iotrochota parparea, Rhizochatina singaporensis, Cladochaline nuda, and a coralline.

Stelletta purpurea, var. retroflexa. (Phate XLIII, fig. k.)

This name may be applied to a specimen which has the expanse of the arms of the zone-spicule somewhat greater than in the typical form, while their diameter is less, and one or more of the arms generally has the point bent backwards abruptly, so as to form an angle of about 185° with the rest of the arm. The specimen is globular, and has a vent about 1.5 millim. in diameter. The bend
in the arm is not quite constant in its position. The rest of the characters agree with those of the typical form.

Hab. West Island, Torres Straits, 7 fms.: bottom sand.
Tariations. This sponge varics, as has been scen, in shape (oval or subspherical) and in the presence or absence of a vent. A third variation may be noted, riz. in the length, stontness, and amount of curse in the arms, and in stontness of the shaft of the zonespicule; thus in a specimen from the Arafura Sea the diameter of the shaft falls to 045 millim., that of the arms to 0.043 millim., the length of the arm remaining 25 millim., while the backward bend of the arm, though gradunl, is very decided.

The variations in this spieule, which is the only one which seems to differ much in different specimens, are as follows :-

	Diam. of shuft.	Diam. of arm.	Length of arm.	Curse of arm
	millim.	millim.	millim.	
1. Port-Darwin specimen.			25	slight, gradual.
2. Thursday Island specimen	- 05	05	27	
3. Arafura-Sea specimen.	-045	-043	$\cdot 26$	decided, gradual.
4. Var, retroflexa (West Island,Torres Straits)	-04	- 04	\%3	sharp near end.

The stellate is only 013 to $\cdot 017$ millim, in diameter in specimen No. 3.

The species differs from S. bucca, Selenka, in the small size of the stellate spicule, viz. $02-025$ millim. instead of $\cdot 2$ to $\cdot 4$ millim. in diameter; from S. tethyopsis, Carter, in having no "forks," and simple, not trifid, arms to the "zone-spicule;" and from S. globostellutu, id., in the absence of a globostellate spicule ; for distinctions from other species see table of species above. The largest specimens measure about 25 millim. (1 inch) in greatest diameter; all tho specimens are preserved in spirit.

102. Stelletta clavosa *. (Plite XLIII. figs. $i, i^{\prime \prime}$.)

Free, subglobular (very occasionally suboval). A single circular rent is almost (if not qnite) invariably present; it is situate either on a flattened or depressed area; its margin apparently forms a sphincter: diametor 2 millim. in the largest specimens received. The excretory canals unite at 1-2 millim. below surface. Colour, in well-preserved spirit-specimens, pale purplish grey to puce, in others

[^14]simply gree. A distinet cortical layer, containing the subcortical erypts, and formed in ndult specinens by the space between tho heads of the zone-spicules and those of the anchors, diameter about -7 millim.; sarcode bere of stume consisteney as in rest of sponge. Sponge-sarcode below surface rather dark yellow-brown, rather granular; that of surface (in well-preserred specimens) reddish brown, gramular.

Spicules:-(1) Zone-spicule, with long shaft tapering gradually from head to sharp point ; head composed of three bifid arms: the proximal third of each arm projects forward at an angle of about 120° to the shaft, and then bifurcates in a plane parallel to that of the surface of the sponge, so that the ultinate disisions are parallel with this surface; the ultimate divisions taper gradually to sharp points from the point of bifuccation: slaft abont 3 millim. loug by -0:35 millim. in diameter ; total length of single arm $\cdot 32$ millim., of prosimal (simple) part -1 millim.; diameter of proximal part throughout $025-032$ millim., of base of ultimate divisions about the same. (2) Anchor, with long shaft tapering gradually from head to sharp point, and head composed of three arms tapering gradually to sharp points, curved backwards to form angles of about 45° with shatt (the angles vary slightly in different specimens) ; shaft about $2 \cdot 1$ millim. by $\cdot(222$ to 024 millim. ; expanse of arms $\cdot 11$ to - 12 millim., diancter of arm at base about $\cdot 02$ millim. (3) Body accrate, long and slender, smooth, tapering gradually to sharp points from the centre; size about 3 by $\cdot 025$ millim. (4) Floshspicule, composed of about 7 to 12 straight arms, radiating from a centre which does not show any perceptible inflation : arms very slender (about $\cdot 0008$ millim. in diameter), terminated by heads of about twice their own diameter; spicule 01 to 013 millim. in diameter across the arms: distributed generally in sarcode.

Hab. Prince of Wales Channel and West Island, Torres Straits, $7-9$ fms. ; bottom sand and coral. Arafura Sca, off N.W. coast of Anstralia, $32-36$ fms. ; bottom sand, mud, and shells.

This appears to be a small species, none of the specimens exeecding 13 millim. in their longest diameter. It exhibits, as compared with S. purpurea, a remarkable constancy in its form and in the occurrence of a rent, and the spicules vary but slightly in form and dimensions (the only variations observed are incorporated with the description abore). In Torres Straits rery few specimens were obtaincd; but in the Arafura Sea a considerable number of small specimens occurred. Stellette clavosit differs from all nearly allied forms except S. tethyopsis, Carter, in the bifurcation of the arms of the zone-spicule, and from the latter species by the absence of "anchors" and of an external as distinguished from an intomul form of stellate. The arms of the zonespicule are much longer in proportion to their thickness than in Carter's species.

Parasite. In the superficial sarcode (probably just beneath the ectoderm) of one specimen occur a large number of a chain-like Alga, resembling Nostoc, usually coiled, with very distinct cells.

103. Stelletta, sp.

Some fragments of a large specimen which has grown over some coils of Vermetus, not sufliciently complete to be safely described in full. The stellates are minute, and resemble those of S. perpurct and clevose, but tho arms are somewhat stouter and are not provided with heads.

Hab. Torres Straits, $5-7 \mathrm{fms}$.

STELLETTINOPSIS.

Carter, Ann. \& Mag. N. H. 1879, iii. p. 348.
This genus resembles Tethyopsis, Stewart, in that the two typieal species have a minute bacillar flesh-spicule just such as that of the new species of Tethyopsis described below ; and if it be, as seems probable, a tetractinellid which has undergone abortion of two arms (as in Placina monolopha, Schulze) of the main spicule, it resembles Tethyopsis further in this tendency to lose the arms of its skeletonspicule (see description of Tethyopsis dissimilis, suprì). Reduction of the triradiate of the latter species by loss of a single arm would make the spiculation (apart from the skeleton-arrangement) essentially that of Stellettinopsis, if the bacillar spicule is regarded as an elongate stellate. The new species is assigned here to Stellettinopsis becanse it differs only from the typical species in the absence of the bacillar,-not a point of great importance, if the variation in Geodia as to presence and absence of one or other of the minute spicules is considered.

I dedicate this new species to Mr. H. J. Carter, to whom is due the credit of establishing this genns, and to whom I owe a great debt in his constant and ready help.

104. Stellettinopsis carteri. (Plate XLIII. figs. n, n^{\prime}.)

Pcdicellate, on a short cylindrical stalk, passing gradually into a massive, somewhat flattened upper portion, which shows semidetached lobes. Surface of upper portion dimpled and corrugated (somewhat like the Mammalian cerebrum). No visible vents. Texture in spirit soft, but clastic ; colour in spirit dirty white. Surface between the undulations even, but minutely rough. Sarcode continuous, without many cavities; soft, very pale yellow in colour. Main and dermal skeletons consisting of a confused interlacement of the skeleton acerate spicules, not aggregated into fibres or tracts.

Spicules:- (1) Skeleton acerate, tapering to sharp points from near the middle; size 1.0 by 02 millim. (2) Stellate, with rery slight body, and five to ten straight blunt arms of uniform diameter (about - 0017 millim.) throughout; microspined with fine sharp points, which are most prominent at the tips; size 05 millim. across arms.

Hub. Prince of Wales Channel, Torres Straits, 5-7 fms.; bottom saud and shells.

Of the tiro species assigned by Mr. Carter (l.c.) to the genus, S. simplex, recorded from Frcemantle, Australia, and Hayti, is the most closcly allied to the present, but differs from it in the possession of the bacillar tubereulate flesh-spicule. Mr. Carter, however, described in the same paper as that in which he founded Stellettinopsis (tom. cit. p. 314), a species which even more nearly approaches the present: this is -Lmorphiun stellifica from South Australia, which differs from the present form only in its amorphons, non-pedicellate growth and tho proportions of its spicules, which I now give, reduced to metric measurements :-

1. Acerate, 7 by $\cdot 017$ millim:
2. Stellate (stated to havo no ecntral inflation : that in S. curteri is hardly worth the name). 017 millim. in diameter.
Thus the acerate is one fourth and the stellate two thirds smaller than in our species, and hence the two species are, in my view, sufficiently distinct. Amorphine stellificu should, however, stand as Stellettinopsis stelliferct.

TETHYOPSIS.

Stewart, Quart. Journ. Jificr. Sci, n. s. x. (1870) p. 281 (nec Zittel, Abl. bayer. -1/. xiii., ii. (1879) p.9).
To this remarkablo genus I propose to assign a species which has, as deseribed recent allies, the species T. columniforce, from the Philippine Islands, on which the genus was based, and Tribraction (eme) schmidti, from the Gulf of Mexico. Like the latter, the present form exhibits a singular divergence from the more normal Tetractinellid types, in that its chief spicule has lost one of its arms. and is ouly triactinellid. The genus appars to be allied to Stelletta, the peculiar development of its large tetractinellid spicule being apparently caused by the erect growth and non-corticate character of the sponge.

105. Tethyopsis dissimilis.

(Plate NL. fig. H ; Plate XLIII. fige. $l-l^{m p y^{\prime \prime}}$.)

Sponge elongated, slender, cylindrical or suboblong, tapering to the free extremity, which is pointed; attached by a narrow base which throws out a thin horizontal expansion outside the sponge itself. Flexible : surface formed by a thin and delicate dermal membrane of a dark grey colour in spirit. Nent? Pores $04-0 \mathrm{~s}$ in diameter, crowded in the interfascicular spaces of the dermis. Skeleton formed by a number of narrow bands of aggregated spiculeshafts (spicule No.1) running longitudinally down the interior of the sponge ; the bands are united laterally (see fig. $l^{\prime \prime \prime}$) by means of the arms of the triradiate spicule, are clothed with the soft tissues, and serve to break up the space within the sponge into S or 9 clongated cavities running from the base towards the apex of the sponge, viz. (1) anterior, (2) posterior, (3 and 4) lateral, (5 and 6) antero-lateral, (7 and 8) postero-lateral, and in one ease (9) axial (see figs. l and l^{\prime} '). Subdermal skeleton formed by similar longitudinal
Digitized by Microsoft (i)
fascicles of spienle-shafts, a ray proceeding from the head of each of the latter, extending along the membrane and supporting it (see fig. $Y^{\prime \prime}$) ; in some parts stont acerate spicules (No, 2) take part in the formation of the dermal skeleton. Sareode transparent, of very pale brown colour ; rendered subopaque, when seen in the mass, by immense numbers of small clougate stellate spicules.

Spicules :-(1) Triradiate of axis and dermal skeleton, consisting of a straight shaft and two arms, one tapering to a sharp point and boldly recurvate, the other ending abortively in a rounded extremity shortly after its origin; the arms are set at right angles to the shaft and at angles of about 160° to each other, but lie in different planes. Length of shaft and long arm probably variable, and depending on the position of the spieule ; the former attains a length of 5.5 millim., the latter of 2 millim. : diameter about ' 05 millim. It is the shatt of this spicule which forms the longitudinal skeleton-bands. (2) Large acerate of dermal skeleton, slightly curved, tapering from centre to sharp points ; size about 1.8 by $\cdot(05-075$ millim. (3) Minute elongate stellate flesh-spicule, consisting of a straight or occasionally curved or sinuous cylindrical shaft, beset with numerous irregular blunt processes, about 30 to the spicule, varying in length from 001 to 002 millim., thickness about $\cdot 001$ millim. ; length of spicule abont - 0095 millim., thickness of shaft alone - 001 millim. Crowded over all parts of the soft tissues.
llab. Port Darwin, 7-12 fms., bottom sand and mud; Torres Straits, 10 fms.; bottom sund.

Of the two specimens from Port Darwin the larger is it millim. (3 inches) long in its present state, viz. without its original base and with the apex somewhat abraded: it probably did not mneh excred this length when perfect; its longest diameter (it is suboblong in transrerse section) is 8 millim., its shortest 5 millim., at the present base. The smaller specimen has the base attached, but has lost the ques: it is almost eylindrieal, and has a diameter of abont 35 millim. throughont. In the dermis of the larger specimen no acerates have been found, but in the smaller one they appear to replace the triradiates in this place; it is in this specimen that an uxial canal traverses the sponge. The specimen from Torres Struits is it fragment, forming the base of a specimen almost certainly belonging to the same species, but very imperfect. Its acerate differs from that of the typical form by having a diameter of -0何 instead of 05 millim. ; the thesh-spienle shows no divergence.

The species differs very markedly from Stewart's- (1) ontwardly; in having the surface level instead of bearing sharp points ; (2) inwardly, in the presence of an axial cavity, in having tri- instead of quadriradiato body-spicules, and in having a dermal accrate; the stellates of T. culumaiferr, further, are normal globostellates and not clongate, as here: in the general arrangement of the skeleton this specios differs by possessing a number of longitudinal lines, instead of the condensed central mass of that species.

The species is obriously nearly related to a form named Tribrachion Sollmiltiz, well deseribed and illustrated as the type of
a new genus by W. Weltner ('Beitr, zur Kenntniss d. Spongien,' Inaugural Dissertation, Freiburp-in-Brcisgau, 8so, 158气, p. 30, pl . iii, figs, 29-41, 43), from Prof. Agassiz's dredgings in 1879 off the Morro Light, Girlf of Mexico, in $250-500$ fathoms. In point of fact Weltucr's species, which differs from TT. dissimilis principally in the possession of a filly developed triradiate "anchor," occupies a position almost exactly intermediato between T '. dissimilis and Stewart's species. I gather from Weltner's paper that he has not seen Stewart's description: had ho done so he would, I feel sure, hare at any rate mentioned the elose affinity of his species to that of Stewart, from which it differs chicily by the clongate form of the flcsh-stellate and by the suppression of the third lateral arm of the skeletou-spienle, a suppression already foreshadowed in Stewart's species by the great relaction of two out of the three lateral arms in some of these spicules (see fig. 7.5, l. e.). 1 do not think that Tribrachium can bo upheld as distinct from Te thyopsis; the gradation of forms between T. columaijict and T. dissimilis, by which (1) the quadriradiate spienle of T. coltmaifera is reduced to a triradiate in Tribrachimm, and to (() a biradinte with aborted third ray and (b) an acerate in T. dissimilis, together with the gencral agreement between the minute spicules, the skeletal structure, and the general form of the sponge, appear to mark these three sjecies out as belonging to a natural though highly plastic circle of forms comparable to the Tutractinellid genns Placina, Schulze, of which the species (P. monolophia, ditophe, and trilophia, Schulze) each include bi-, tri-, and quadritadiate forms of the fundamental quadriradiate type ; they are comparable also to many genera of the Calcarea, where the fundamental (probably triradiate) type exhibits great modifications, even within the limits of a single species.

Besides possessing three complete arms aud the large skeletonspienle, Tribrachiom schmidti is distinguished from Tithym,sis dissinnitis by :-(2) the exterior being unmarked by horizontal ridges ; (3) the inferior length of the lateral arm of the triradiate spicule; (4) the apparent absence of the long acerate spicule : (5) the more generally clongate form of the flesh-spicule and the superior number of its lateral whorls of tubereles.

Weltner's comparison of the form of the minute flesh-spicules with the similarly dendritic skeleton-spicules of the Rhizomorine Lithistids is invalidated by the fact that the two classes of spienles are not homologous with each other, the flesh-spieules of Tribrechium being represented in the Lithistid series only by the minute bihamates and other flesh-spicules of Corallistes \&ce.

A striking analogy with the arrangement of the skeleton of the Lyssakine Hexactinellida is afforded by the manner in which the arms and shafts of the large skeleton-spicules are employed in Tethyppsis (inel. T'ribrachinum) to form coherent rectangular meshes.

Weltuer's diseovery is of great interest, apart from the peculiarities of the type described, in the fact that his species, though living in the West Indies, is elearly intermediate between two types found near the confines of the Indo-Anstralian region.

106. Geodia globostellifera. (Plite XLIII. fig. b.)

Carter, Ann. \&. Mag. N. II. 1880, ri. p. 134, pl. vi. fig. 38.

I lave been able conclusircly to determine the true relations of the globostcllate spicule to the sponge, which Mr. Carter appears not to have felt quite safe in regarding as really belonging to it. As, however, I find it to occur not only in the cortex of different parts of the same sponge and in different specimens, but sometimes also in the sarcode beneath the crust of balls, it must be regarded as truly a production of, and thus proper to, the sponge itself. I find, what Mr. Carter does not describe, a small acerate spicule which forms small tufts on the surface, generally accompanied by the globostellate, and probably related specially to the orifices of the canal-system. Like Mr. Carter, I have been unable to find any " anchors."

My measurements of the spicules do not quite correspond with those given by Mr. Carter; but as these do not quite agree with his figures, I do not attach much importance to the discrepancy. In his description the giobostellate has the same diameter (vi\%. $\frac{11}{1600}$ ineh) assigned to it as to the shafts of the zone-spicule and body acerate, whereas in the plate, where it is figured (at fig. f) as on the same scale ("seale D," magnified 32 diameters) as those spicules, it appears as only about one third of their diameter.

The following are the chief spicular measurements from the present specimens:-

1. 'Zone-spicule (the arms of which are simple, as in Mr. Carter's figure, not trifid): diameter of shaft $\cdot 07$ millim., of arm at base about 048 millim. : expanse of any two arms together about 58 millim.
2. Body acerate, $3 \cdot 0$ millim. long by 038 thick.
3. Fork (the only one seen): diameter of arms and shaft .016 millim. : length of arm 1 millim.
4. Geodia-ball, long diameter 09 millim.

5 . Globostellate, diameter 025 millim.
6. "External" stellate (forming, with the globostellate, the outer pellicle, but, like it, also occurring sparingly in the subeortieal sarcode), $\cdot 0063$ millim. in diameter. Its arms are numerous and appear to end bluntly.
7. "InternaI" stellate (the arms are few in number and are usually curved), 038 millim. in diameter.
8. Surface accrate ; abont 16 millim. long by 005 millim. in diameter.

The largest specimen is about 80 millim. ($3 \frac{1}{6}$ inches) in its greatest diameter; and the two specimens (which are preserved in spirit) are tinged with erimson in places, as if this was their colour during life.

Hab. Port Darwin, north coast of Australia, near tide-marks; bottom samd and rock.

Distribution. Gulf of Manaar, Ceylon (Carter).
The great interest of this species bas induced me to devote some
space to its description. The complexity of its spiculation and the curious occurrence of the globostcllate and of the surface accrato all combine to render it remarkable. Possibly it may have in the future to be separated from Giodicis, str. It is noteworthy that, while one of the specimens (the larger) exhibits nothing like a vent, the other has a circular opening leading obliquely and decply into the sponge, lined with a soff wall, and about + millim. in diameter; its margin is slightly raised at one point. It is possible that it is merely an opening formed by growth over some cylindrical foreign body which has since disappeared: if a rent, its absence in the other specimen is remarkable. Mr. Carter does not mention any rents in his spceimens.

107. Placospongia carinata.

Geodia carinata, Borerbank, P. Z. S. 1874, p. 298, pl. xlvi. figs. 1-5.
This sjecies differs from P. melubesioides, Gray, the typical species of the genns, in having a spimispirular and a globostellnte fleshspicule, the latter with furcate rays. Taking this difference into consideration, it is impossible any longer to regard the two species as identical. Some fine specimens were most fortunately obtained in spirit.

Hab. Prince of Wales Chamnel, Torres Straits, 7 fms. : bottom sand.
Distribution. Dr. Bowerbank's specimen is said to have been obtained in the "South Sea."

CALCAREA.

As with the collections made by the 'Alert' on the Patagonian consts, so with thase from the north and north-east of Australia, a very small number of Calcisponges have to he recorded, and no species new to science. Perhaps this is in part to be connected with the fact that but few Alg:e (which so commonly afford a resting-place to these Sponges) occurred among the collections sent to the British Museum. But Hackel says ('Kalkschwämme,'i. p. 426) of Calcarea, "Auf sandigem oder schlammigem Grunde wachscn uur sehr wenige Arten;" hence, as the abundant details given by Dr. Coppinger of the nature of the bottom on the coasts more particularly investigated by the 'Alert' show that it is chiefly composed of sand or mud or loose shells, this group of Sponges was likely to be found to be but poorly represented on the actnal const-line of this district; the coral-recf might be expected to produce more.

Judging from the collections in the British Museum, from Häckel's Tables of Distribution ($o p$. cit. i. pp. +30-432), and from Dr. Poléjaeff's Report, the south coast of Australia appears to be considerably more productive, fifteen or sixteen species being known from this region. I know of only two species from the western coast of the continent: but that district has been but imperfectly insestigated hitherto, From the east coast Häckel records but six species, Poléjaeff adds eight, and the present collection two. None of the species now to
Digitized by Microsoft (®)
be mentioned appear to have occurred in the Australian collections of the 'Challenger,' the Report ou which mafortunately only appeared while this Report was passing through the press.
108. Leucetta primigenia, Hïclel, var. microrrhaphis, id.

Kalhschncümme, ii. p. 118, pl. xxi.
A small bean-shaped specimen, of the Lipostomelle form.
Hab. Alert Island, Torres Straits, 7 fms .
Distribetion (the species). Mediterrancan, Atlantic, Cape of Good Hope, Red Sca, Indian Ocean, South Australia, Fiji Islands, Chili (Hückel); Kerguelen and Heard Islands (lolöjecff').
109. Leucaltis bathybia, Ilüclecl, var. australiensis, nov. (Plate NLIII, fig. m.)
Leucaltis bathybia, Häckel, Kalkschaümme, ii. p. 156, pl. xxviii. fig. 2.
A small, low, massire specimen, with a small lateral unarmed rent and very reduced cloacal cavity. The quadriradiates are sagittal, those of the outer surface very large: diameter of rays about -04 millim., the facial angle nearly 180°, the apical ray in the same plane as the laterals: the deep quadrivadiates have a somewhat smaller facial angle and more slender rays, and the apical ray often projects well forward; rays almost straight. The triradiates form a thin layer on the inner wall, where their rays measure only about 01 millim. in diameter; they have a facial angle of nbout 160°; in the deep parts they are subregular, sparsely seattered amongst the quadriradiates, and the rays measure about 02 (sometimes 025) millim. in diameter; rays approximately straight. Colour (in spirit) white.

This form differs from rars. perimina and arabica of Häckel (l.c.) in the massive shape of the sponge, and in the larger size, as compared with the quadriradiates, of the deep triradiates. In the comparative straightness of the rays it agrees with var. aralica and rar. mascarcnica, mihi (see this Report, Western Indian Ocean distriet); but differs from the latter in the smaller diameter of the rays of the large ynadriradiates, in the apparent smoothness of the cloacal surface, and the massive form.

Hub. Port Jackson.
Distribution of species Red Sea (Hückel).

110. Leuconia saccharata, Häcliel.

Leucandra sacclarata, Hëclel, Kalkschucïmme, ii. p. 228, pl. xxxiii. fig. 3, pl. xxxxiii. tigs. 7-14.
A fine specimen, 60 millim. across, of the Amphoriscus type, and fragments. One cloacal fistula measures upwards of 30 millim. in length.

Ihal. Port Jackson, 0-5 fms.
Distribution. Bass Straits (Mück, l).

PART II.

COLLECTIONS FROM THE WESTERN INDIAN OCEAN

BIRDS.

BY

R. BOWDLER SHARPE.

From the Amirante Group.

1. Foudia madagascariensis (L.).

Hartl. Vög. Madag. p. 212.
a. δ° ad. Me des Roches, Amirante group, March 1882. Iris dark; bill horn-colour: legs and feet reddish brown.
Identical with Madagascar specimens.

2. Crithagra chrysopyga, Swains.

Hartl. t.e. p. 418.
a. ठ. Me des Roches, Amirante group, March 1882. Iris dark; bill horn-colour; legs and feet brown.

Doubtless introduced. It is a common African species.

3. Francolinus ponticerianus (G'm.).

Hartl. ८.c. p. 282.
a. f. Eagle Island, Amirante group, March 17, 1882. Iris dark; bill horn-colour, black at tip; legs and feet red.
Also introduced.
Digitized by Microsoff $®^{2{ }^{2} 2}$

SPONGIIDA.

BY
STUART O. RIDLEY.

Tire eollections of Sponges made during the latter part of the 'Alert's ' royage, although not so important from the number of species or the interest attaching to the new forms as those made in Australian waters, constitute nevertheless, considering the extent to which these waters have been the subject of previous insestigations (see Introduction to Melanesian Report, p. 371) and the somewhat less favourable cireumstances under which Dr. Coppinger carried on his collecting, an invaluable contribution to our knowledge of the Spongiida of the Indian Oceau. On the latter point Dr. Coppinger, in a letter dated Sheerness, Sept. 11, 1852, says:-" The latter part of the 'Alert's' commission has been devoted to a hurricd survey of the Amirante Islands and of two other small groups. . . . The time at our disposal has been so short that we have had comparatively fer opportunities of doing anything in the way of dredging. What little has been done in the localities has beon accomplished from the ship itself, by laying out a dredge from the stern at every anchorage and giving it the benefit of the swing of the ship. At Seychelles, where we stopped to take in coals \&c., we dredged several times from the boats: but at all the other stations our dredgingoperations have been limited to the swing of the ship about her anchor. I mention this to aceount for the seantiness of the collection of dredged specimens from a region whose fauna is undoubtedly so rich. I have, however, had plenty of occupation for my spare time in exploring the beaches and reefs at times of low water, and have therefore been able to accumulate a good number of marine specimens from between tide-marks." In spite of difficulties, Dr. Coppinger sent 5 (i species belonging to this group, ineluding 21 species not previously distinguished by naturalists. Many of the species are represented by fine series from various localities : and fortunately the genus Carterispongice, hitherto so imperfectly known, comes under this category, furnishing a most important contribution to the material availnble for the distinction of its species, and for the study of the interesting question of polymorphism of Sponges, so well illustrated by this genus.

Distribution.-This is perhaps the most important aspect under which this Collection is to be regarded. I have arranged the localities for convenience under five heads, riz.:-1. Mozambique 1sland (as
representing the African coast) ; 2. Gilorioso Islands (as tho most southern investigated member of the ontlying groups of islands; 3. Providence Island and Reef, still further north; 4. Amirante Islands, a furthor northward step in the direction of (5) the Seychelles.

The physical relations of theso different localities and their coasts are ably described in Dr. Coppinger's 'Cruise of tho Alert'; I have added to my descriptions of the species notes as to localities and nature of bottom, taken from his own notes accompanying the specimens.

Depth.-It will be seen that the depths investigated did not execed 24 fims.

Locality.- About half the gatherings are from a bottom composed either of sand, sani and coral, or broken coral : in but two cases (in the Amirante Island;) is mad reeorded ; the remaining localitics are given either " beach," reef, or " between tide-marks." I know of no provious descriptions of Spouges from Mozambique or any part of the Eastern coast of Africa nearer than Zanzibar, whenee A. Hyatt* derived many of the Ceratose species referred to in hispaper"Rerision of the NorthAmerican Porifere" \&c. Prof. E. P. Wright has introduced us to the sponges of the Seychelle Islands in a paper t on Alemo seychellensis, collceted with many other species by himself many years since. The Glorioso and Amirante Islands and Providence Reef and Island are entirely new ground in this respect. Practically the only acquaintance we have hitherto had with the Sponge-fauna of this Western part of the Indian Ocean is derived from papers by Mr.Carter describing a few Silicea from Mauritius (esprecially in Aun. \& Mag. Nat. Hist. 1879, iii. 1. 284, five species), and one by Schuffior ('Jenaische Zeitschrift,' xi. p. 403, pls. xxiv.-xxvi.) deseribing (6 new Calcarea from Möbins's collections at Mauritins. Thus it may justly be claimed that in magnitude and interest the present collection far excels any collection hitherto described from these waters.

Looking generally at the distribution of the fifty-six species here described (see Table of Distribution, p. 586), and comparing it with that of the species obtained at or near the eastern confines of the same Ocean (this Report, Part I. p. 372), we find a similar resemblance to the Atlantic fauna (including the Mediterranean) in both areas : excluding doubtful eases we have here 7 out of 55 species as against 12 out of 106 species decidedly identical with Atlantic forms. We have the same number (3) of species recorded also from Ceylon. Some species (Iotrochota purpurea, Clathria frondifera) range to the Straits of Malacea, and hence, as we have seen above (p .371), to Australia; two extend across into mid-Pacific (Curterispongia otahitica, Stclletta acervus). The almost cosmopolitan Australian species Lencetta primizenia and Tedenia diyitata are found here also.

Passing to the more direct relations of the Australian and Western

[^15]Indian Ocean shallotr-water fannas, wo find 16 out of the 56 speeies obtained in the latter region to be identical with Australian species, a proportion to the whole of $2: 7$, or 28 per. cent. It is still more remarkable to find that of these, three (riz. Carterispongia otahitica, Lotrochota purpurea, Clathria frondifera) occur abundantly in both places. Had Dr. Coppinger's researches enabled me to add more species to the list, I have little doubt that still greater proofs would have been forthcoming of a former communication between these two widely remote districts. As might almost have been expected, 14 of these identical species occur in tropical waters in Australia also (chietly from Torres Straits or N. Queensland, but one third of the number from Port Darwin).

Of the mutual relations of the different localities in the district at present under notice I have little to say, as the investigation of them must be admitted not to be sufficient for a satisfactory comparison. In spite of its much more westerly longitude and of its separation from the other localitics by much open sea and in part by that great body of land, the island of Madagascar, we find no decided differences between the fauna of Mozambique and that of the rest of the district ; perhaps the Mozambique current partly accounts for this. On the other hand, we find that 7 out of the 13 species recorded from the Seychelles were not found in the other localities: probably this is partly due to the fact that here alone was dredging regularly carried out. The Amirante Islands have the greatest number of species (26).

Tuxonomy.-Of the strictly taxonomical aspects of this part of the collection little has to be said which has not been already said in the Melanesian portion of this lieport. I therefore refer those interested in the sulject to that part of the Report for most questions relating to the general zoology of the Group and to the bearing of these collections on classification and morphology. The full descriptions of new species and genera which are represented also in the Melanesian collection will be found in the Report on that collection; they are not noticed at length in this place. This collection from the Western Indian Ocean is remarkable for the large proportion (31 per cent. of the whole) which the Ceratose sponges bear to the remaining groups: this is no doubt largely due to the number of " beach specimens" included in the collection, representing, as such specimens naturally would, most chiefly this less perishable order. This proportion probably more closely resembles that which would be obtained in the South-west of Australia than that found by the 'Alert' in the Eastern and Northern parts of that eontinent (which was about 18 per cent.); but the species are smaller than the generality of those which contribute so largely to the shore gatherings at Freemantle, West Australia.

No species of the order Ceratosa call for special notice here.
Of the Lionactinellid Silicat none of the Families are strongly represented, the Renicridx, with 7 species, being the most abundant, and yet maintaining ouly about the same proportion (15 per cent.) to the remainder of tho Sponges as in the Melanesian collection.

Among Eetyonide, Bechinoneme, ubundant in Sonth and South-west Australia, but apparently wauting in the North and East, appears hero. Of the Tetrectinellitu we have a fine new Geodine form (Eiylns cylintriagerns). belonging, however, to a type fonnd already in Australian and in European scas. Culatica are relatively rather abundant, at any rate in individuals, and tho new species Leucortis anyuinea is of somewhat untsually large growth.

What strikes us in a survey of the species, both of this and the Mclanesian collection, is, notwithstauding the large proportion of new specific types, the comparative seareity of forms showing marked distinctive characters of generic importanco which nre not also found in the more familiar Atluntic fanna. It is tron that Certerisponyia, Phyllospouyia, Iunthella, Toxochuline, I'somminpomma, Echinodictyum, and Rhuphutophlus have not yet been recorded from elsewhere than the Indo-l'acitie area, and are probably most of them peculiar to it, but several of these are not distantly related to Atlantic forms; and within this wide Indo-Pacific region (of which, it must be admitted, the Eastern part is very imperfectly known) the number of distriets exhibiting at all peculiar shallowwater sponge-faunas is smnll. Certainly the Western part of the Indian Occan is not one of these, and may be considered in this respeet, as well as geographically, as transitional between Australia, South-west Asia, and the Mediterranean.
Distribution of Sponges olitaincd in the Western Indian Ocean.

$\begin{aligned} & \frac{⿳ 亠 二 口 丿 亍 ~}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { Bi } \end{aligned}$					
						¢
	\％					
	＊				－	＊
						！
：	－			＊	＊	＊
			¢	＊		＊
！	－		¢	＊	：	
：	＊			＊		！
！	＊		＊	＊＊	＊	＊＊
＊	＊＊					
！＊						＊
				 ต่ ล่ ง่		

Digitized by Microsoft ${ }^{\circledR}$
Table (continued).

	Western Indan Ockan.					Australa.							Otuer Locatities.
								关 $\frac{5}{5}$ $\frac{2}{5}$ $\frac{2}{2}$ $\frac{2}{6}$			$\begin{aligned} & \frac{\dot{E}}{\frac{5}{x}} \\ & \stackrel{y}{x} \\ & \hline \end{aligned}$		
Fanily DESMACIDINIDE. 29. Rhizochalina pellucida, n. sp. 30. Desmacidon rimosa, u. sp. 31. Iotrochota purpurea, Lowerbank 32. -baculifera, n, sp. 33. Esperia gelatinosa, n. sp.	*		*	*	\ldots	$\ldots .$.	*	*		*			Straits of Malacea.
Family ECTYONIDE. 34. Clathrin frondifera, Bowerbank: 3.5. - decumbens, n. 8p. 36. - meandrina, n, sp. 37. Acarnus termatus, n. sp. 38. Echinonema, sp. 39. - gracilis, n. sp. \qquad \qquad			*	*	*	*	\#				.	$\left\{\begin{array}{c} \text { Siraits of Malacea; } \\ \text { Gaspar Straits. } \end{array}\right.$ Bombay?
Family ANINELLID兩. 40. Axinella spiculifera, Lamarck 41. -proliferans, 11, sp. 42. Lencophkens protens, 13. sp) 43. - fricetratus, n. sp. Var. \qquad			*	*					4	*		*	

CERATOSA.

This Order is well represented, viz. by 17 species (or 31 per cent.), as the trepical position of the localities would lead one to expect. Carterispongria is the dominant type, and probably more abundant here in species, and not less so in individuals, than in any other part of the world: the two aberrant Hippospongice described are also wonderfully abundant. A Mediterrancan type, Oligoceras, is for the first time recorded from the Indo-Pacific arca.

SPONGIID.E.

1. Cacospongia cavernosa.

Schmidt, Spong. Adr. Meer. p. 28; F. E. Schulze, Zeitsch. wiss. Zool. xxxii. p. © 58, pls. xxxiv. fig. 11, pl xxxv. fig. 17, pl. xxxvii, figs. 7, 18.

In spite of the remarkable geographical distribution which is involved by identifying the present specimens with a Mediterranean species, the identity seems to me fairly certain. The eharacters agree well with those given by Schmidt and with Schulze's figures. The conuli are $2-4$ millim. high and about 5 millim. apart, in spirit: the colour in spirit is dark grey; the primary fibres measure $18-24$ millim. in diameter. Tents numerous, 2-3 millim. in diameter, grouped at summits of the lobes formed by the sponge. liepresented here by semi-repent masses growing between and over stones or roeks, and sending up eylindrical lobes 18-25 millim. in diameter, which tend to divide above and to attach foreign bodies to themselves. The skeleton shows an irregularly rectangular arrangenient of the fibres similar to that figured by Schulze.

Hab. Seychelles Islands, 4-12 fms.
Distribution. Adriatic (Schmidt and Schulze); Algiers (Schmidt).

> 2. Hippospongia intestinalis, var. (PLate LIII. fig. D.)
> spongia intestinalis, Lamarck, Amm. Mus. Ihist. Nat. xx. p. 434 . Spongelia velata, Ityatt, Mem. Bost. Soc. ii. p. 534 , pl. xvi. fig. 8 .

The tortuous perforated tubes are sometimes single, but sometimes form confused reticulate masses (see fig. D, Plate LIII.), which, when the soft tissues are dried on them, have a very different appearance, and as such have been described under the above separate name by Hyatt, whose figure well represents this state ; their diameter varies from abont 5 to 20 millim. The surface is covered in fresh specimens by a delicate diteliform network, as stated by Hyatt, and as found in our specimens; the sarcode in spirit is opaque pale brownish yellow. The species must be nearly related to Hircinia clathrate, Carter; but that species would seem to assume a decidedly rertical growth, whareas this has the appearance of being subrepent. Mr . Carter's description of that form speaks of sand-cored fibre as only occurring here and there, especially near the surface, wherens in II. intestinalis long straight primary fibres cored with foreign
bodies are constantly present, traversing the main mass of the skeleton; these fibres are, however, much less abundant than in the original specimen of Lamarek, and the wall of the sponge is thinner. Abundant.

Hat. Providence and Corf Islands, Mascarenes, and Amirante group ; beach to 24 fims.

Distribution. "Mediterrancan" (Lamarck); Zanzibar (IIyatt).

3. Hippospongia sinuosa.

Spongia sinuosa, Pallas, Elench. Zooph. p. 394 ; Lamarch, Amm. Mus. Mist. Nat. xx. p. 371.
P'Spougia fenestrata, Lemarch, tom. cit. p. 374.
Spongia lapilescens, subspecies mauritiana, Myatt, Mem. Bost. Soc. ii. p. 528 .

Lamarek's and Pallas's S. sinuosa seem, by their descriptions, to be referable to a llippospongia of which 1 describe twe forms below. S. finestrata, Lamarck, is probably a more sessile and incrusting form of the same species. The question of identity is beset with great difficulties, owing to the want of authentic specimens of the different species for reference. A specimen long contained in the National collection, and labelled S. meandriformis or meandriniformis, differs from the form described below as var. mawritiana mainly in its somewhat more slender fibre ($016-0.55$ millim. in thickness) ; but its history is unknown.

With regard to Pallas's description, I would remark (1) that the dry skeleton of our specimens is not tender ("tenera"), but hard and almost incompressible; (2) it attains a vertical thickness of 35 millim.; (3) the carities mcander and anastomese, and are not merely "oblongæ vel cotyloidce"; (4) the colour is a fine amberyellow ; (5) in var, mauritiand the fibres are only approximately parallel and perpendicular, except at the very surface.

The term " surface nivellée" used by Lamarck in his description of S. fenestrata well expresses the appearance which the sponge has of having been parct smooth, as in the species H. derasa (see Part I., p. 382, of this Report).

It is easy to distinguish among the specimens two varieties, of which one apparently corresponds to the more typieal form of Hyatt's subspecies, and may therefore stand under that name, viz.

Hippospongia sinuosa, var. mauritiana.

The general form of the sponge is that of a low, horizontally extended mass, apparently originally attached by one or more small points ; it is about 35 millim. high, and throws out short subeylindrical, terminally-rounded lebes $25-35$ millim. in diameter. Colour in macerated state bright amber-yellow. Diameter of the meandering canals of the skeleton $2 \cdot 5$ to 5 millim.

The skcleton consists of a strong horizontal system of long secondary fibres lying parallel to the surface, and of short stout, primary
fibres, meeting the surface at rarious angles, and projecting slightly above it, and of a system of crossing fibres connecting the two and forming approximately rectangular meshes, their direction being roughly vertical to one or other of the above systems. The mesh is very variable in diameter, riz. from ' 07 to $\cdot 24$ millim., the former ehiefly at the surface. The diameter of the main fibre is $025-07$ millim., not including the ditclous network of fibres of small diameter which often surrounds the bases of the large primary fibres. Colour of fibre pale amber-ycllow; no foreign bodics imbedded in any part of the skeleton; the fibre is homogencous in appearance, with the occasional exeeption of a faint granular axial line. Size of sponge, $80-95$ millim. ($3-3 \frac{2}{3}$ inches) in greatest diameter.

Hab. African Island, Amirante group (gathered on beach).
Distribution. "Indian Occan ?" (Pullas); Indian Ocean (Lamarck); Mauritins (Ilyatt).

Hippospongia sinuosa, Pallas, var. decidua, Hyatt.
The other variety of the species is very distinct in its external appearance, but on examination this is found to be due merely to modifications of the same structural arrangements as those of var. mauriticua. The surface is entirely broken up into small isolated tufts, or short meandrine ridges, flattened externally, about 1-2 millim. in diameter (the ridges of manritiana being 3 or 4 millim. across), rising from a considerable depth, viz. 7-15 millim., and commencing below by very narrow bases, and not expanding until close to the surface. By the juxtaposition of these tall walls and tufts, a number of freely intercommunicating, very narrow (2 to $2 \cdot 5$ millim. wide) and deep chamels are formed, very different in appearance from the subeylindrical and semi-tubular canals which represent them in rar. mancitiona. The outward form of the sponge is essentially similar to that of the other variety, but the specimens are much larger; the largest, an example of incrusting growth about 30 millim, in average rertical thickness, measures 275 millim. (11 inches) in greatest diameter; some smaller speeimens attain about twice the thickness. As in var. mauritiana, the tubular character of the channels of the skeleton is mneh more strongly marked on the lower surface, where (as observed by Hyatt) connecting lamine of horny fibre frequently bridge over the spaces between the summits of the tufts and ridges. The colour of well-preserved skeletons is a rather pale amber-sellow ; those which have suffered much washing on the beach are almost white.

The general arrangement of the skelcton is similar to that of the other varicty; but the following important differences are to be noted:-(1) It is the primary and not the secondary fibres which are the most distinet clements of the deep skelcton; they form continuous, almost straight lines, $-4-5$ millim. apart, and are placed vertically to the surface. The primary fibres of the outer surface form a decided pile of short projecting points, being much more numerous than in var. mauritiona. (2) Owing to the
regularity and straightness of the primuries, the secondaries more constantly form right angles with them, and the meshes are more commonly rectangalar. (3) The primary fibres are more or less constantly sand-cored ; tho core occupies about half the thickness of the fibre.

In the characters of the purely horny fibre and the size of the meshes decidua agrees with mantitiana; the diameter of the fibre varies from $\cdot 025$ to $\cdot 063$ millim, in tho specimen examined (i.e. about the same range as in mauritiona).

Hab. African Island, Amirante gromp, from beach.
Distribation. Mauritius, Havama (Hyutt).
It is possible that the forms which I have called varieties should rank as distinet species; but until the arrangement of the soft parts is known I prefer to keep them under one specific heading. Younger specimens of var. decidua have shallower channels, and one has broader tufts and ridges than the rest, thus approaching var. mauritiana. The distinctness of the two forms, found at precisely the same spot, shows that the differences between them cannot be due to locality.

4. Phyllospongia papyracea.

Spongia papyracea, Esper, 1flunzenth. Fortsetz. ii. p. 3s, pl. 1xv., pl. liv. A. figs, 1 \& 2.
Phyllospongia papyracea, Ehlers, Espersch. Spong. p. 22 (? Ifyatt, Mem. Bost. Soc. ii. p. 543, pl, xvii. tig. 31).
A dry specimen, 195 millim. (73 inches) high by 155 millim. ($6 \frac{1}{2} \mathrm{in}$.) in greatest lateral extent. It is proliferous, a single base giving rise to the main frond, which is irregnlarly flabelliform, and to a few smaller strip-like fronds, some of which unite with cach other by their edges at a short distance above the base ; main frond also proliferating by giving off at or near its margin, and in one instance from the face, a few small secondary frouds similar in eharacter to the smaller fronds which arise from the base. Vents few, near margin on both front and back of large fronds, diameter 1 millim. Primary fibres $035-053$ millim. in diameter ; sceondary fibres about 035 millim. thick; both deroid of foreign bodies. Some minute intermediate fibres or dense strands of sarcode are also present. Meshes of main skeleton about $\cdot 15$ millim. wide, of dermal skeleton • $18-28$ millim. A fer scattered foreign bodies in the dermal fibres. In other respects it agrees with Esper's tigure, and his and Ehlers's descriptions. The latter writer says of the fibres of the Esperian specimeus that they are " homogeneons," which may fairly be taken to imply that, as in this speeimen, they contain no extraneous matter. Hyatt, however, assigns to this species specimens (from the Cape of Good Hope) which, from his description, I understand to contain a large amount of foreign material in the primary fibres.

Hab. Mozambique.
Distribution. Tranquebar (Esper).

5. Phyllospongia madagascarensis.

Carteriospongia madagasearensis, Hyatt, Mem. Bost. Soc. ii. p. 542.
Extremely variable in external form, viz. from single flexible cylindrical stems about 2 millim. in diameter to palmate fronds arising from similar stems, forming large compound growths; the cylindrieal form also oceurs compound; the same colony may show transitions from the eylindrical to the palmate type. A spirit-specimen of the cylindrical form has a pale brownish-yellow colour, and its surface is seen under the lens to be very minutely hispid with the projecting ends of the primary fibres. The primary fibres are mostly somewhat, though slightly, sand-cored near the surface (much less than in C. pennatula) ; they measure about $0 \pm$ millim. in diameter, the secondaries somewhat less; fibres very pale yellow in spiritspecimens, colourless in dry skeletons. Surface-texture much finer than in C. pennatula; surfaco never broken up into the ridges and grooves which distinguish macerated specimens of that species. Yents slightly projecting, and sparsely distributed up and down the cylindrical axes : abundant, not projecting, on ono side of the palmate fronds, diameter about 7 millim . Consistence in all cases very soft and flexible in the macerated state. Owing to the unbroken character of the surface, this species is best placed under Plyllospongia. 1 am indebted to Dr. Poléjneff for pointing out the importanes of this eharacter in Phyllospongia.

Hal. Amirante Islands, beach and 17 fms.
Distribution. Mudagascar (Hyutt).
Phyllospongia madagascarensis, var. supraoculata, nov. (Plate LIII. figs. M, M'.)
Some specimens of firm texture, not readily compressible, with very smooth dense surface: form simple palmate, much and deeply divided or multicaulate : sometimes partly cylindrical. Vents very small, viz. about $\div \frac{4}{}$ millim. in diameter, on one side of the frond and also on its free margin. Meshes of skeleton very elose (i. e. primaries only -1 millim. apart at surface) : sand-cores of primary fibres extending a rery short distance below the surface. Colour, in dry state (well preserved specimens), cream to pure white.

Several small specimens, the greatest height and lateral expansion being about 70 millim. ($-\frac{3}{T}$ inches).

Hab. Providence Island, Mascarene group: African Island, Amirante group, beach.

CARTERISPONGIA.

> Carteriosp shgia, Myatt, Mem. Bost. Soc, ii. p. 540 Mauricea, Carter, Ann. \&. Mag. N. II. 1877, xx. p. 174.

Curionsly enough, these two generie terms were published within four months of each other (Carteriosponyia, May, Mauricea, September, 18.7) As howerer, tho former, besides having this slight Digfizewerer thoformer besides
priority, is accompanied by a diagnosis, while the characters of the latter are merely hinted at, I believe the right courso is to adopt tho former.

6. Carterispongia otahitica.

Spongia otahitica, Esper, 1glunzenth. Fortsetz. i. p. 200, pl. Ixi. fiys. 7, 8.
A flabelliform and two cup-shaped, internally proliferating syecimens. The former exhibits signs of incipient formation of a cup, and thus shows Esper to have been right in uniting the two outwardly different forms under one head. Two simple cup-shaped specimens and an irregularly grown proliferating flabelliform one also occur.

Hab. Glorioso Islands, beach and between tide-marks; Amirante Islands, beach : Seychelle Islands, 7 fms.

Distribution. See Part I. of this Report, p. 386.

7. Carterispongia mantelli.

Halispongia mantelli, Bocerbank, P. Z. S. 1874, p. 303, pl. xlvii. figs. 3, 4.
A small but deep regularly eup-shaped specimen, gross height 45 millim., that of cup 35 millim., diameter of cup at margin 32 millim. The outside is marked by faint longitudinal ridges ; on the inner surface the vents, about 5 millim. in diameter, are arranged in approximately concentric serics round the cup, at intervals of $3-4$ millim. Bowerbank's description of the vents is unsatisfactory.
The skeleton contains much less sand than Bowerbank's specimen, but agrees with it in the gencral characters of the skeleton, the differences being to some extent due to age. As stated in the Report on the Anstralian collections, this species agrees essentially with the characters of Carterispongia. The colour (in spirit) is greyish brown outside, dirty white inside.

İel. Mozambique, betwcen tide-marks.
Distribution. "Sonth Seas" (Bowerbank).

8. Carterispongia pennatula.

Spongia pennatula, Lamarck, Anu. Mus. Ilist. Nat. xx. p. 440.
Carteriospongia radiata, Hyatt (typical form and var. complexa), Mem. Bost. Soc, ii. pp. 541, 542.
Mauricea Lacinulosa, Carter, Amn. § Mag. N. H. 1877, xx. p. 174.
This species varies in outward form from contort flabellate, with single thick stem, to compound, multicaulate, anastomosing, with thin stems, the terminal fronds narrower or broader flabelliform. In much-washed specimens the surface has an eroded appearance, from the exposure of the ramifications of the canal-system, and such specimens are usually of a pale brownish-yellow colour; when the sarcode is preserved, the surface of dry specimens is white, and Digitized by Microsoft 2 Z 2
appears as if covered by a dense fine incrustation ; the rents are small, -5 to 1 millim. across, placed on both sides of the fronds. The primary fibres are strongly sand-cored for some distance below the surface, but little or no sand occurs in the centre of the frond. Var. compleax of Hyatt seems to be founded on fresh specimens, whereas his typienl form scems to have suffered from abrasion.

Hal. Glorioso Islands, beach.
Distribution. Australian seas (Lamarck); Mauritius (Carter); Zanzibar (Hyatt).

Obs. I have had the advantage of being able to examine original specimens of Carter and Lamarek while making my identification.

HIRCINIID.E.

9. Hircinia fusca.

Cavter, Amu. \&- May. N. H. 1880, vi. p. 36.

Branched eylindrical solid stems, 8 millim. in mean diameter, becoming somewhat dilated at the ends; conuli of skeleton only about 1 millim. high. Central core of foreign bodies in primary and secondary fibres not large, and sometimes absent here and there; fibres also coated in places with foreign bodics; diameter of primaries about ' 18 millim., of secondaries 1 millim. Mr. Carter's description is extremely short, but seems to be sufficient for the purpose of the present identification. A skeleton occurs in the present collection.

Hab. Bondeuse Island, Amirante group, 10 fms.
Distribution. Ceylon (Carter).

10. Hircinia byssoides.

Spongia byssoides, Lamarck, Amn. Mus. Ilist. Nat. xx. p. 375.
Some small horizontally-spreading sessile specimens, about 4 millim. in thickness and $30-40$ millim. in greatest diameter. Texture in spirit, with sarcode attached, harsh, firm. Primary fibres cored at intervals with small core of foreign bodies, about $0-7$ to $\cdot 1$ millim. wide : all fibres strongly laminate, of light to dark amber-yellow colour. Diameter of primary fibres $\cdot 1$ to $\because 4$ millim., of secondaries $\cdot 1$ to $\cdot 14$ millim. There is also an intermediate system of narrom uneored fibres, 035 to $\cdot 05$ millim. wide. Colour (in spirit) black. Conuli about 1 millim. high, 2 millim. apart.

This species agrees fairly well with Lamarek's species, of which I have examined a specimen, but the fibre is deeidedly stouter. The form is rather that of his var. 3 , which is described in the words "massis pianulatis"; the original specimen of this in the Paris Muscum is firm and harsh to the touch, like the present specimen.

Hab. Glorioso Islands, Seyehelle Islands, 7-12 fms.
Distribution. Southern Sens or Australia (Lamaselk).
Digitized by Microsoft (B)

11. Hircinia, sp.

The same species as the unnamed Fircinia mentioned in Part I. of this Report. p. 387.

A flatteued specimen. The secondary fibres are somewhat stoutor and darker in colour than in the Australian specimen, and the primaries contain less sand.

Mab. Soychelle Islands, +12 fms .
Distribution. See Part I. of this Report, p. 387.

DYSIDELD.

Dysidea has a remarkably wide range in latitude, its localitics including (among others) Leeland and England in tho North Atlantic, the West Indies in the tropical Atlantic, the Cape and South Australia in the Southern Ocean, the Western Indian Ocean and the North of Australin in the tropieal parts of the Indo-Pacifie area. While, on the other hand, it is abundant in individucts in temperate waters (as is the case on the British coasts), it appears to be more prolific in species in subtropical and tropical waters (Mediterranean and Indian Ocean). Two species oceur in the district at present under notice, and four others were obtained by the 'Alert' off the Australian coast. The other genera appear to be much more limited in range: Psammopemma, Marshall, was but once obtained by the 'Alert' (viz. is Torres Straits). Psammoctemu and Psammascus, id., have not been recognized in any of the 'Alert' collections.

12. Dysidea conica.

Bowerbank, P. Z. S. 1873, p. 26, pl. vi. fig. 1.
To this species, so fully described by Bowerbank, I assign a fragmentary Dysideid closely resembling the top of the specimen figured by him, also some skeletons. Although the mesoderm contains abundant forcign bodies, the species does not fall into either of the genera Psammascus and Psammoclema, which Marshall has formed for Dysideidæ exhibiting this character, as it has neither the tubular form of the one nor the smooth surface of the other, but agrees with Dysidea in its well-developed conuli. The dermis is dark to the naked eye, but is transparent under the mieroscope. It is infested by a Spongiophaga (Carter), of large size, the head measuring about -012 and the filament about $\cdot 009$ millim. in diameter.

Hab. Glorioso Islands, 7-10 fms.
Distribution. N.W. Ceylon, 8 fms. (Boverhank).

13. Dysidea gumminea. (Plate LIII, fig. C.)

? Dysidea kirki, pars, Carter, Am. S. Mag. N. II. 1881, vii. p. 374, nee Borcerbank:
A species bearing a, close extornal resemblance to D. conica, Digitized by Microsoft (®)

Bowerbank, bat differing in its very dense and opaque dermis, and the strictly Dysidean distribution of its foreign bodies, viz. only in the skeleton-fibres. The primary fibres are either single or multiple in the same conulus, and range from about 07 to $\cdot 36$ millim. in diameter. The sponge forms low, longitudinally-extended masses, about 50 millim. (2 inches) in greatest leugth, 12 millim. in greatest rertical thiekness, throwing out rounded lobes which are 15 millim. in greatest diameter, Vents round, few, placed near ends of lobes, It 2.5 millim. in diameter. Toxture in spirit rather elastic, compressible. Conuli sharp-pointed, usually connected by radiating ridges with each other; height 75 to 1 millim., disfance apart 1-2 millim. Dermal membrane very dark grey, glabrous. Primary fibres, as such, apparently existing only in the conuli, and not extending bencath them into the mass of the sponge ; sccondary fibres also very slightly developed, except in the ridges connecting the conuli, where they form a dense network of horizontal fibres, extending to a depth of abont 1 millim. below the surfuce. Skeletoufibres 05 to 18 millim. thick; generally compact in structure, exhibiting no horny substance to riew.

Hab. Mozambique, betwoen tide-marks (on back of crab); Providence Tsland, Mascarene group, 19 fms , (on rock).

Carter's species D. kirlci, from Mauritius, South Australia, and the Cape of Good Hope, above cited, may possibly include this; but as from his description and specimens it is evident that he groups more than one species together, and as the present form is decidedly distinct from Borrerbank's D. Kivki (from the far smaller diameter of the largest skeleton-fibres), it is not necessary to pursue the question further. The very tough and opaque dermal layer and the remarkable development of the secondary or horizontal fibre-systom, which assists in prodncing it, distinguish this Dysideet from all intelligibly described species. Spamyclia elegans, Nardo, as described by F. E. Schulze, appears to approach it in the fasciculated arrangement of the primary fibres, the proportions of the conuli, and the general shape, but differs in its pale colour and in having the secoudary fibres more or less free from sand.

OLIGOCERAS.

Schulze, Zeitsch. wiss. Zool. xxxiii. p. 34.
This genus, introduced (and rightly, as it seems to me) by Marshall into this family, is based on a species from the Adriatic, romarkable for a habit of attaching to itself foreign bodies of some size. Prof. Schulze has expressed to me verbally a doubt as to whether the genus will prove to have heen rightly established. If, howerer. this is due to the supposition that Oligoceras is a young stage of a horny sponge, I think it may be set aside * by a consi-

[^16]deration of the large size of a specimen from Mauritius (probably from deep water) in the National collection: this measuros 170 by 100 millim. in greatest length and breadth; the primary fibres projeet strongly from the paper-like dermis, and the conuli are 5-10 millim. apart; the fibre shows just the branching arrangement described in O. collectrix. The species now to be described agrees remarkably in general characters with the same species, and is also sufficiently large to be called adult.

14. Oligoceras conulosum.

Incrusting, strongly flattened from ahove downwards, forming a leathery crust, but occasionally throwing ont flattened, pointed, frco lobes from lateral margin : strongly hirsute abose with the very prominent, slender, and pointed conuli, 1-2 millim, high, 2-1 millim. apart at tips: terminated by the single or (more rarely) multiple ends of primary fibres, which stand out about 1 millim. beyond the dermis. Surface between ends of connli forming a series of slightly coneave spaces (in spirit), smooth, glabrous, of leathery appearance. Colour in spirit dull putty-colour to pale groy; consistence (when occupied by Spongiopla(ga) flexible, tough. Main skoleton-primary fibre oceasionally branched at apex, about 17 to -27 millim. in diameter; axis composed of closely packed foreign bodies, oceupying from $\frac{7}{8}$ to T_{0}^{9} of the entire diameter: secondary fibres apparently absent. Dermal skeleton composed of irregularly arranged fibres, chiefly straight and parallel to each other, varying in composition from an almost entirely horny to an almost entirely sandy state; dinmeter about $\cdot 14$ to $\cdot 35$ millim., meshes about 35 millim. wide; a small quantity of free foreign bodies is to be found interspersed in the intervals between the fibres. Tissues between fibres of main skeleton also containing a considerable proportion (about one fourth) of froc, small, foreign bodies. Horny matter of fibre normally pale amber-yellow, transparent. Parenchyma very pale brown, transparent.

Hab. Glorioso Islands, $7-10 \mathrm{fms}$.; bottom, sand and coral.
A single speeimen in spirit, 60 millim. in extreme diameter at base, 8 millim. in greatest thickness of the same; the lateral lobe (which seems to have been decumbent) is 30 millim. high, 14 by 4 millim, in basal diameter. Tissues infested by a Spongiophaga (Carter)-head oval or subpytiform, long diameter 095 to -013 millim., short diameter 006 to -0095 millim.; filament, diameter $\cdot 00+$ to $\cdot 005$ millim.-which has partly dostroyed the horny matter of the fibre, and forms sheets in the mesoderm.

The apparent total absence of secondary fibres is perhaps due to youth or the ravages of the parasite : the arrangement of the skeleton is that ascribed by F. E. Schulze to Oligocerus collectrix, Schulze, from

[^17]the Adriatic. The conuli are mere prominent and distant than in that species, and the proportion of horny matter in the fibre is considerably greater.

APLISINID...

Althongh Pallas and Lamarek cite Ianthella flebelliformis as from the Indian Occan, I am not aware that the genus has been hitherto shown to occur on the western side of that occan.

15. Aplysina fusca.

Carter, Anr. \&. Mag. N. H. 1880, vi. p. 36.

A spirit-specimen, agreeing in its more slender fibre (maximum diameter about 7 millim.), especially near the surface, and in its smaller interconular spaces with the Ceylon specimen rather than with that from S.W. Anstralia, subsequently assigned to the same species by Carter (Ann. © Mag. N. H. 1851, viii. p. 107), which I have seen. In this spirit-specimen the cells which are so numerously congregated in the surface-membrane are not colourless, as in the dry specimen from Australia, but are very granular and of brownish colour: they measure 008 millim. in average diameter, whereas thase of the Australian specimen measnre about 013 millim. Having regard to these diffcrences, it seems to me not umlikely that the latter specimen is specifically distinet. If the expression "hollew" of Mr. Carter's original deseription denetes fistulese, the present specimen differs from the Ceylon form in being solid (with the exception of the usual spaces between the fibres).

Hab. Seychelle Tslands, 12 fms.
Distribution. Ceylon, S.W. Australia? (Carter).

16. Aplysina pallasi.

? Spongia membranosa, pars, Pallas, Elench. Zooph. p. 398.
Columnar masses, generally less than an inch in diametor at their broadest part, and tending to bifureate early and at acute angles into secondary lobes of a diameter inferior to that of the main body of the sponge: the ends of the comnli are only about 5 millim, apart, except near the ends of the lobes, where they approach each other more closely ; a single or bifurcate purple-black fibre projects about 1 millim. from the end of almost every conulus, replacing the blunt compound fibrillated mass which is characteristic of this part in A. membranose (see Carter, also Part I. of this Report). Vents oval, 2-1 millim. in diameter, few, at sides of terminal lobes. Consistence clastic, very compressible.

The skeleton-fibre is much branched and anastomeses frequently, and ranges in diameter from ahout 9 millim. in main fibres to as little as $\cdot 1$ millim. in some subdermal twigs; those which terminate the conuli are abont 3 millim. in average diameter ; the main direction is upwards and outwards; the fibre is firm. compact, tough ; Digitized by Microsoft (B)
its wall abont $\cdot 05$ millim, thick, of a fine transparent purple colour, and is composed of a transparent matrix containing closely packod subglobular transparent cells . 008 to 013 millim, in diameter, provided with small opaque refringent nuclei : the lamine composing the wall of the fibre are readily separated. The dermal membrane is not, as in A. membranosa, traversed by raised thickenings which radiate from the tips of the conuli, but is externally homogeneons and subtransparent: it is pale purple in colour and quite thin: under the microscope it is subtransparent, gramular and speckled in parts with the less transparent and darker parple nuelei or condensed pigment-masses, about $\cdot 005$ millim. in diameter, which occupy the centres of large cells.

Hab. Marie Lonise Island, Amirante gronp, 16 and 17 fms.; Providence Island, Mascarene group, 19 fims.

The species appears to be most noarly related to A. carnosa, Schmidt (Spong. Adr. Mecr. p. 26, pl. iii. tig. 3), from the Adriatic, and A, cauliformis. Cartor (Aun. \& Mag. N. H. 1882, ix. p. 270), from the West Indies; but differs from the former in its far more loosely reticulate skeleton, and from the latter in not haring the surface nearly even. It is perhaps identical with the clonyated specimens described by Pallas (l.c.) under Spongia membranosa. It differs superficially from the typical form of that species in the closer approximation of the conuli, the more slender habit of the sponge, the smoothness of the dermal membrane, in its minute structure, and in the simple, not compound, character of the skeleton-fibre.

The larger specimens are slightly compressed laterally, and both measure about 60 millim. ($2 \frac{1}{3}$ inches) in height; four spirit-specimens form the series.

17. Ianthella flabelliformis.

Spongia flabelliformis, Pallas, Elench. Zooph. p. 380.
A macerated fragment agreeing in outward form, so far as it goes, and in the proportions and character of its fibre with the above species. The places in the fibres originally oceupied by the purple cells are chiefly represented by vacant spaces, giving a honeycombed appearance to the skelcton-fibre in some parts.

Hal. Providence Recf, Mascarene Islands, 24 fms.
Distribution. See Part I., p. 392, of this Report.

SILICEA.

MONAOTINELLIDA.

The great abundance of Coratosa has for its comploment a corresponding comparative searcity of Monactinellid Silicea; this deficiency is largely accounted for by the few Ectyonidæ collected here as compared with the Northern Australian waters.

Digitized by Milicrosoft:

GUADINID.E.

Gumminere, Schmidt, Spong. Kiust. Alq. p. 1.
Gumtuinida, Curter, Aun. s.Mag. N.'H. 1881, viii. p. 218,
I retain this group provisionally at the commencement of the Silicea, but believo it will ultimately have to be placed near the Tetractinollida.

18. Chondrilla mixta.

PChondrilla mixta, Schulse, Zeitsch. wiss. Zool. xxix. p. 110.
Prof. Schulze's description of his species is scarcely sufficient for me to determine its relations to the present specimen, as he does not mention the size and exact form of the spicules. It agrees with the present form in having two kinds of spicules, stellates and globostellates, in having a fibrous outer layer about 1 millim. thick, and in the distribution of the spicules in the substance. On the other hand the sections of this (very young) specimen exhibit but scanty traces of the system of subcortical canals which appears to be so well dereloped in the Red-Soa species, and the colour (in spirit) is pale brown or buff rather than "pale grey, speekled with brown." The stellate spicules have rather coarse rays which often bifurcate, as in C. anstraliensis, Carter: they measure 025 millim. in diameter, the globostellates 032 millim. Having regard to the nearness of the two localities, and to the points of positive agrcement between the present specimen and Schulze's species, I am disposed to consider them to be identical. The present specimen differs from C. anstraliensis in the relatively longer and more slender arms of the stellate (radiostellute of Carter), the greater abundance of the spicules in the subcortical tissues. and the larger size of both spicules (in 0 . custraliensis the globostellate measures 025 , the stellate about -02 millim.).

A very small specimen, about 5 millim. across, on a Nullipore which has been partly overgrown by a repent Chatina.

Hab. Marie Louise Island, Amirante group, 16-17 fms.
Distribution. Red Sea (Schulee)?

CHALINID.

The percentage of species of Chalinide in this collection is small for the Tropics, viz. less than S per cent., that of the Chalinidæ in the Australian collections being 15 per cent. This inferiority in numbers is due in part to the absence of the tubular forms, which are represented by Tuba, Siphonochalinc, and Tubulodigitus near Australia, and chiefly by Tubat in the West Indies. As, however, Siphonochaline oceurs both at the Cape (Ehtere) and the Red Sea (British-Musemm collection), it probably will be ultimately found also in the intervening district. If the wide-monthed genus Tuba is really absent here, the circumstance is of considerable importance, as it scems to be represented abundantly in the tropical parts of both sides of the American continent and in the Malay archiDigitized by Microsoft(E)
pelago, but it has not jet, so far as I am awaro, bcen recognized on cither coast of Africa.

19. Chalina elongata.

? Spongia elongata, Lamarck, Lum. Mus. Mist. Nat. xx. p. 451.
? Spongia lanuginosa, Esper; Planzenth. ii. p. 243 , pl. xxis.
An erect Chaliza, with short common stem and somewhat tortuous branches, few, tapering to sharp points, meven in diameter and shape, ranging from 2 (at the tips) to 8 millim. in thickness, eylindrical or compressed, simple, or bearing a short incipient or stunted branchlet hore and there. Length of branches 20-55 millim. Common stem 25 millim. long, compressed, greatest diameter 11 millim. Vents? (perhaps 'f to 1 millim. in diameter, few). Mode of branching dichotomous, branches given off at angles of abont 50°. Surface rendered minutely pilose by the projecting ends of the primary fibres. Consistence in spirit very soft, compressible, elastic (like that of the finest Turkey sponge); colour very pale brown (almost white). Main skeleton rectangular in arrangement; primary fibres $\cdot 35-7$ millim. apart, $\cdot 035 \cdot \cdot 043$ millim. iu diameter, containing 3-5 serics of spicules, with a narrow horny margin visible; secondaries 024 millim. thick, with 1 (rarely 2) series of spicules, the fibres at intervals of $\cdot 1 \mathrm{~S}$ to 35 millim. Dermal skelcton as main skeleton, but primary fibres ouly about -14 to $\cdot 25$ millim. apart. Skeleton-fibre pale yellow. Sarcode transparont, almost colourless. Spicule smooth, acerate, straight, tajering from one or two diameters from ends to moderatcly sharp points : size $\cdot 13$ by 0057 millim.

Hab. Darros Island, Amirante group, 22 fms.; bottom, broken coral.

Two specimens, one 80 millim. ($3 \frac{1}{5}$ inches) high, the other quite low, their bases growing among some branching Polyzoa. The species agrees with Lamarek's description of his S. clonguta so far as it goes, but it is too short to be decisive ; he gives "Mers Australes" as its locality. Esper's figure ((.c. .) strongly resembles it in colour and in the shape of the branches, but his specimen was from Brittany. Possibly some of the specimens from other localities, which he mentions as belonging to his species, may be identical with the present.

20. Chalina, sp.

A small specimen of a tender repent species, the horny matter of the fibres being small in quantity and very pale and transparent. Colour in spirit a fine nut-brown : consistency soft and very yielding. Surface even, rendered minutely pilose by the ends of the primary fibres. Branches rather tortuous, subcylindrical, compressed here and there; greatest diameter (where not affected by accidents of growth) 2-6 millim.; stem similar, diameter abont 2.5 millim. Vonts orbicular, 5 to 1.5 millim, in diameter, arranged in a series on ono side of sponge, at intervals of about 5 millim. Main
skeleton-primary fibres vertical to surfaco, abont a spicule's length apart, containing 3 to 5 series of spicules: secondaries at various angles to primaries, spicules 1 - or 2 -serial. Sarcode rich brown, subtransparent. Spicules acerate, slightly eurved, tapering to sharp points from about 3 diameters from onds; size • 17 by • 0085 millim. It branches once at an angle of about 35 , its total length is 50 millim. (2 inches), and it has involved a mass of Polytrema, Nullipore, de., in its course; the Nullipore bears the specimen which I hare provisionally assigned to Chondrilla mixta, Schulze.

In the character of the skeleton and the size of the spieules this species resembles the British specios Isodictya simulans, Bowerbank, and Chalinu montagui, Johnston; but it has not the firm texture of the former, nor the tubular form of the latter, and I have not found any more nearly allied species. In spite of its repent growth I have assigned it to Chalina rather than to Claclockaline, the proportions of the spicnles and the character of the fibre agreeing with those of typical Chaliue (Chalimethe of Sohmidt), and being in my viow far superior as diagnostic characters to those taken only from the external habit.

Hol. Marie Louise Island, Amirante group, 16-17 fms.

ACERVOCHALINA, gen. n.

See Part I., p. 398, of this Report.

21. Acervochalina finitima, var.

Chalina finitima, Schmidt, Spong. Atl. Geb. p. 33.
As on the North-Australian margin of the Indian Ocean, so also in its North-western angle this otherwise West-Indian* speeies seems at home. Two specimens (the one 25 millim., the other 40 millim. in extreme diameter) show the cssential characters of the species ; the vents, however, unliko those of the Anstralian specimens, are placed on the margins rather than the upper surface of the sponge, and the spicules are slightly thicker than in both the Australian and W.-Indian forms, viz. 003 millim. as against •0018 in the one and 0025 in the other.

Hab. Seychelle Islands, 4-12 fms.
Distribution. See Part I, p. 399, of this Report.

RENIERIDA.

Besides the probably almost cosmopolitan speeies Tcedania dizitata, I find that seseral of the representatives of this generalized Family type have quite a European facies, and I have identified two of them (Reniera idelistincte and rosed) with British species: but two members of the same genus, now deseribed for the first time. possess external characters of a definiteness and singularity unusual

[^18]in their genus and family. Λ fifth species, assigned also to Renicru, has affinities which find expression clsewhere, so far as my knowledge extonds, only in Indo-Pacific waters.

22. Reniera indistincta, var.

Isodictya indistincta, Bowerbank, Mon. Lrit. Spong. ii. p. 290, 太ke.
A specimen almost identical in form and size with that described above from the Australian collections (from Torres Straits) under this title: it has, however, a superficial rich umber-brown coloration, produced by a sarcode darker than that of the same parts in the Australian specimen, the external colour of which is grey. The dermal skeleton-fibres are also constantly, and not merely occasionally, biserially spiculate, and the spicules measure $\cdot 19$ by 008 millim., instoad of 16 by $\cdot 0063$ millim. The occurrence of this form on the western side of the Indian Occau, together with the dark coloration (resembling that of the British specimen), are confirmatory of its identity with a British species.

Hab. Darros Island, Amirante gronp, 22 fms.
Distribution. See Part I., p. 407, of this Report.

23. Reniera rosea.

Isodietya rosea, Boverbank, Mon. Brit. Spong. ii. p. 282, iii. pl. xlix. figs. 12-14.
Some small, sublobate, apparently subscssile, soft pale brown specimens. Skeleton-fibre formed of uniscrially (rarely biscrially) arranged spicules; the rectangular arrangement is rather obscure. Spicules curred, acerate, tapering to fine points from about 4 diameters from ends ; size 16 by $\cdot 006$ millim. Vents about 1.5 millim. in diameter, placed at extremities of lobes. The agreement with the British specimens is comparatively close ; the spicule in the type specimen, which I have examined, is slightly shorter; as depicted by Bowerbank, the spicule is made too stout.
Hab. Marie Louise Island, Amirante group, 16 and 17 fms .
Distribution. Tenby, Sark (Bowerbank); Kerguelen Istand (Carter).

24. Reniera camerata*. (Plate LIII. figs. H, H'; Plate LIV. fig. n.)

Sponge generally subcylindrical or subconical, perforated above by large irregular openings; formed of thin compact lamella 1-2 millim. thick, thinning off into knife-like edges, and much folded and anastomosing with each other within the sponge, so as to form a labyrinthine system of passages, $3-5$ millim. in diameter, chicfly more or less vertical in their direction. Outer surface of sponge smooth, gently undulating; inner surface of passages very minutely pitted by the openings of the excretory canals.

Consistency of sponge-wall, in spirit, very floxible and compres-

[^19]DigItized Dy milcrosott (18)
sible, readily torn. Colour pale brown; general appearance that of soft leather. Main skeleton composed of multispicular secondary tracts of loosely aggregated spicules, 8- to 15 -serial, placed parallel to the surface at intervals of $\cdot 2$ to $\cdot 3$ millim., and of primary lines represonted by groups of 4 to 10 spicules crossing the intervals of the sccondaries, ladder-like, at intervals of about $\cdot 3$ millim., the spicules composing these grouts being so loosely associated as often hardly to be in contact: they turn to one side at the points at which they come into contact with the secondarics, thus rounding off the angles of the otherwise rectangular spaces of the meshwork. Dermal skelcton formed by the outward projection of slender primary tufts of spicules, 2 to t spicules broad. Sarcode pale brownish yollow, subtransparent. Spicules smooth acerate, slightly curved, tapering to sharp points from 2 or 3 diameters from ends; size $\cdot 18$ by $\cdot 007$ millim.

Hab. Seychelle Islands, 2 fms. ; Marie Louise Island, Amirante group, 16-17 fms.; bottom coral.

This species, by its pol yspicular fibre and compact structure, differs from most species of Reniera. Indeed the former character would appear to ally it to Schmidtic ; but it is remarkable that, probably in connexion with the thinness of the wall and consequent need of resistance to lateral pressure, it is the secondary, and not tho primary, fibres which are the stoutest; possibly it is to the exigencies entailed by the peculiar external form that the whole of the internal peculiarities are due. The largest of the specimens, which aresomewhat fragmentary, measures 30 millim, high by 18 millim. in extreme breadth.

25. Reniera cribriformis. (Plate LIII. fig. G; Plate LIV, fig.o.)

Some fragments in spirit of a hollow cushion-shaped sponge seem worthy of a description, as it has characters by which it may be recoguized. The wall is 5 to 3 millim, thick, compact, folded back at the margin so as to enclose a space below the surface. Surface very even and glabrons, perforated at intervals of 1-5 millim. by circular vents, $\cdot 5$ to 2.5 millim. in diameter. Consistence elastic, rather firm ; colour pale dull brown. Primary fibres of main skeleton about $\cdot 18$ millim. apart, vertical to surface, spicules $2-3$-serial; secondary fibre represented by separate spicules, traversing at rarious angles the spaces between the primarics. Dermal skeleton a close meshwork of irregularly disposed single spienles, not united to form fibres. Sarcode transparent, almost colourless. Spicule smooth, subcylindrical acerate, very slightly curved, tapering from near centre to points of various degrees of bluntness ; size $\cdot 2$ by $\cdot 007$ millim.

Heb. Seychelle Islands, 12 fms. ; bottom coral.
This species seems to approach R. testudinatriu, Lamarek (see Australian leport), in the tendeney of its spientes to assume the cylindrical form.

Carter's "Reniera, dark brown" from the Gulf of Manaar (Ann. \& Mag. N. H. 1880, vi. p. 18), differs decidedly from this in its
colour, and its cylindrical spicule is curred and apparently stouter than that of this species.

26. Reniera, sens. lat., allicd to crateriformis, Carter.
 (Plate LIV. fig. i.)

Some small dark-brown fragments of a specics belonging to the group Crassa (Renieridx), Carter, to which the preceding species is related, and which is probably connected with Schmillia. The spicules are smooth, slightly curred, subeylindrical, tapering somewhat to the well-rounded ends ; size 48 by 028 millim. Arrangement of skeleton as in Schmidtic, viz. massive fibre forming rounded moshes (except near the surface). Species of this character are especially abundant in the Malay Archipelago, whence R. crateriformis is obtained. Not knowing the external form of the sponge, I content myself with indicating the occurrence of this well-marked group in this region.

Hab. Providence Island, Mascarene group, 19 fms .

27. Pellina, sp.

I have little doubt of the identity with the species from Anstralia, described at p. 413 (No. 48) of Part I. of this Report, of an erect, laterally compressed, suboblong specimen in spirit in this collection, 45 millim, high, 30 millim. in greatest diameter, 14 millim. in greatest thickness. It is squarely truncate above and diminishes slightly in diameter towards the broken lower end ; the surface is rather uneven, but the dermal membrane is smooth, thin, and transparent. Vents chiefly at the margin ; round or suborbicular, deep, diametor 1-5 millim. Spienles 33 to $\cdot 35$ by 010 millim. Other characters essentially as in Anstralian specimen, from which it differs chiefly in wanting the short lobes.

Hab. Darros Island, Amirante group, $2 \cdot 2$ fms.

28. Tedania digitata, Schmidt.

For synonyms and distribution see this Report, Part 1. p. 417.
A fine specimen from Mozambique, very different in external characters from those described by me from Australia and Hindostan. In this ease the vents are strongly developed, and the mass consists of fuar superiorly distinct, more or less bullate tubes, with thin, smooth margins, 3-9 millim. in diameter at their mouths, arising out of a very irregularly shaped, massive, suberect base, the surface of most of which is broken up into closely-set pits and grooves, about 1.5 millim. in diameter, which are the external openings of the excretory canals of this solid part of the sponge. The colour is pale, rather reddish, brown. The acuate measures 19 by 0095 millim., the tibiella $19 \mathrm{by} \cdot 005$ millim. While the outward form is rather that of Mediterranean specimens, the proportions of the spicules agree more closely with examples from Kurrachee and Queensland than with Mediterranean or Port-Darwin specimens.

The spicules of arsmall incrusting fragment fromy the Amirante

Islands give the following measurements : acnato $\cdot 2$ to $\cdot 25$ by $\cdot 007$ millim, ; tibiella $\cdot 2$ to $\cdot 25$ by $\cdot 004$ millim.

Hab. Mozambique; Marie Louise Island, Amirante group; tidemarks to 17 fms.

DESMACIDINIDA.

The occurrence of a true Desmacidon in the Indian Ocean is perhaps for the first time indicated by the new species described below. The two species assigned to the genus by Ehlers ('Die Esporschen Spongien') appear to belong respectively to Amphilectus and Clathria. The wide range possessed by species of the new genus Iotrochota is shown also by the occurrence of our two new Australian species, one of them being abundant in both localities.

RHIZOCHALINA.

The scareity of this genus, so common in the tropical waters of Australia, and well represented also in the south of that continent, is probably due to the absence of mud from the localities investigated; slightly deeper dredging, clear of the reefs, might be expected to reveal more of this interesting genns, which had not hitherto been noted from any localities nearer than Ceylon (Carter, Ann. \& Mag. N. H. 1880, vi. p. 37, under the name of Desmacidon jeffreysi).

29. Rhizochalina pellucida. (Plite LIV. fig.j.)

Elongate, tapering gradually from base of sponge to summit of fistula. Fistula single, straight. Surface even, glabrous. Consistence in spirit soft, brittle ; colour very pale brown ; appearance semitransparent. Body of sponge oval, compressed; includes forcign bodies.

Main skeleton a somewhat confused mass of moderately closely felted and irregularly crossing spicules, traversed at intervals by tracts of compact spiculo-fibre, \& 8 spicules broad, running parallel to the surface. Dermal skcleton consisting of long, straight, compact spiculo-fibres, $4-20$ spicules broad, branching at acute angles, and thus spreading over the surface; the intervals occupied by a loose open reticulation of single spicules or of fascicles two or three spicules broad, crossing at various angles. Sarcode pale yellowish brown, subtransparent. Spienle acerate, slightly curved, tapering gradnally to sharp points from about middle of spienlo ; size $\because 6$ by $\cdot 01$ millim.

Ilab. Providence Island, Mascarene group, 19 fms.; bottom coral.
A singlo specimon, 87 millim. ($3 \frac{1}{2}$ iuches) long, 12 millim. in greatest basal diameter ; greatest diameter of present end of fistula 3 millim.

In its subtransparency, and in the great thinness of the dermal layer of the skeleton, as well as in its having been apparently sessilo by a bulbous base, this differs from all described species of tho genus. Digitized by Microsoft (B)

30. Desmacidon rimosa *. (Plate LIII. fig. F; Plate LIV. figs. $m-m^{\prime \prime}$.)

Erect, stipitate ; stem and branches solid, more or less anteroposteriorly compressed, except the extreme apices of the latter, which are eylindrical and terminally rounded, tinger-like. Branching very irregular, not confined to one plane, the first division approximatoly dichotomous; the resulting (secondary) axes are either flattened strongly ($2-4$ times as broad as they are long), with but short subcylindrical marginal brauchlets, or snbeylindrical, giving off several subeylindrical (tertiary) branches; the largest of these branches may attain a length of 35 millim. ; diameter of tips of branches, just before termination, +-5 millim. Surface of stem and, to a less extent, of branches scored by winding furrows, $1-3$ millim. deep, $1-3$ millim. wide, generally directed transversely when on the flat surface of the branch, more lougitudinally when they have reached its margin ; they either vauish by becoming gradually shallower distally, or end abruptly in an oscular opening. Vents 5 to 15 millim. in diameter, circular, deep, numerons, seattered along the above-mentioned grooves. Surface pilose, like coarse velret, owing to projection of primary skeleton-fibres to a height of $\cdot 25$ to 1 millim., at distances of 25 to 1 millim, apart. Texture in spirit firm, tough, subelastic, the surface slightly harsh to the tonch; colour in spirit normally brown, inclining to grey, and to rufous where skrinkage or abrasion of sarcode has more or less exposed the skeleton.

Main skeleton-primary fibres vertical to surface, about 07 millim. thick, $\cdot 28-35$ millim. apart; the secondaries vertical to the primaries, about 05 millim. thick, $\cdot 28-35$ millim. apart: fibres cored by spienle no. 2 , with a few of no. 1 near the centre of the sponge; the horny fibre is almost wholly obscured by spienles; near the surface a distinct clear pale brown transparent margin of about a quarter the thickness of the fibre is usually left. Dermal skeleton made up of triaugular to polygonal meshes ($\because 28-8$ millim. wide) of spiculo-fibre, '035-09 millim. thick, strengthened by much pale brown transparent horny substance, which is seen outside the spicules in the narrower fibres : the contained spicules are chiefly no. 1; the stouter fibres contain also, superficially, no. 2. Sarcode transparent, pale yellowish brown.

Spicules of skeleton:-(1) Acuate, smooth, slightly curved, tapering gradually, more rapidly towards apex, to moderately sharp point, and diminishing slightly in diameter towards the rounded base; length about $: 35$ millim.; diameter, base $\cdot 019$, middle of shaft $\cdot 022$ millim. (most abundant in the fibre near surface, oceasionally freo in sarcode). (2) Acuate, approximately straight, tapering gradually from near head to sharp point; the base occasionally provided with a small number of minute spines; size $\cdot 23-33$ by $\cdot 005-01$ millim. (sometimes loose in sarcode, especially in dermis).

[^20]Sarcode-spicules:-(3) Tricurvate acerate, smooth, tapering gradually to fine points; median curve rather sharp, forming angle of about 150°; from this point arms almost straight, until just before tips, which tum up slightly : size $\cdot 19-\cdot 22$ by 000 millim. (4) Equianchorate, navicular, shaft slender, smooth, curre gradual and slight; palms narrow, viz about 08 long by $\cdot 0055$ millim. broad, tapering to sharp points at apex, square below ; tubercle slight, rather elongate, length - 022 millim.

Hab. Mozambique, between tide-marks.

Two specimens and a fragment are in the collcetion. The largest measures 110 millim, ($4 \frac{1}{2}$ inches) in greatest height, 85 millim. ($3 \frac{1}{2}$ inches) in greatest lateral expansion : common stem 55 millim. long, 20 by 10 millim. in diameter at middle of its course, rather tortuons, deeply scored on one side by a main median longitudinal depression. The secoud specimen has its branches more cylindrical than those of the larger specimen: but it has grown abnormally, some of the branches being twisted back, and anastomosis occurs near the base of the specimen. The description of Sponyia pulmata, Lamarck (Ann. Mus, Hist. Nat. xx. p. 453), var. B, recalls this sponge. The typical form of the species, which I have seen at Paris, resembles it more closely than does the specimen on which this var. β was probably founded ; however, microscopic examination shows S. palmata to be a Chutinu. While the present species resembles Desmacidon fraticosa, Mont., in texture and in the structure of the skeleton, it is jet quite distinct on account of its solid branches, its accrate skeleton- and its tricurvate (not bihamate) flesh-spicules. D. arciferum. Schmidt (Algiers), appears to approach it the most nearly of described species, but an acerate spicule is mentioned in addition to the tricurvate. D. frondosum (Ehlers), Esper, from "East Indies," resembles this sponge in geveral appearance, but has echinating spicules, some of which are strongly spined, and no tricurvate is mentioned; hence it seems to be a Clathria.

31. Iotrochota purpurea.

Halichondria purpurea, Bocerbank, P. Z. S. 1875, p. 293.

See Part 1., p. 434, of this Report.

Fine specimens, chiefly of the usual cylindrical form, and with the same coarsely roughened surface as in the dustralian specimens. Like those specimens, too, they show a tendency to become flattened, and to vary in colour from dark purple to dark green. The spiculation is essentinlly the same as in the Australian specimens. The maximum height is also just the same, viz. 150 millim. (6 inches).

Hab. Etoile Island, Amirante group, 13 fms .
Distribution. See Part I, p. 434.

32. Iotrochota baculifera.

See Part L., p. 435, of this Report.
Some small specimens, in spirit and in the dry state. In the Digitized by Microsoft (B)
finely hispid surface and the low irregularly lobate form, together with the spicular characters, they agreo closely with the Australian specimen, but the average diameter of the lobes is somewhat less (about 10 millim.).

Hab. Providence Reef, Mascarone Islands, 24 fms.
Distribution. Port Darwin.

33. Esperia gelatinosa. (Plate LIV, figs. $f-f^{\prime \prime \prime \prime}$.)

Low incrusting masses, frequently involving foreign bodies, occasionally rising into sleuder lobes. Surface in spirit undulating, glabrous. Consistence tough, elastic, firm. Colour pale greenish grey or pinkish brown ; gencral appearance gelatinous, somi-transparent.

Main skeleton rather confused in the inerusting specimens; the vertical lines near the surface being short, broad, loose, and elosely approximated; in thicker specimens the ordinary Esperian distinct spiculo-fibres appear at sume distance below the surface; primaries crossed by more or less numerous detached skelctonspienles. Dermal skeleton composed of confusedly intercrossing spicules not arranged into spiculo-fibrons reticnlation. Sarcode very pale yellow, transparent.

Spicules:-(1) Skeleton subspinnlate; head oval, slightly but distinctly demarcated from shaft, about two thirds the maximum diameter of the latter; shaft tapering rather abruptly to sharp point ; size of spienle 5 by 016 millim. (2) Large inequianchorate ; large end moderately broad, about half the total length of the spicule, tubercle long, lower angles of outer palms slightly rounded; small end subtriangular, rather small, pointod below, tubercle small, tongue-shaped, a small reverted margin extending as far as the tuberelo in the middle ; size of spicule 06 by 0032 millim. (3) Simall inequianchorate, large end about three fifths the total length of the spicule; shaft and arms well but gradually curved, tubercle short ; lesser end very small, not prolonged below into a point; length of spicule 019 millim. (4) Bihamate, contort, slender, well enrved, sharp-pointed; size 057 by $\cdot 002$ millim. (5) Trichites in oblong compact bundles about $\cdot 02$ millim. long and $\cdot 0063$ to $\cdot 0075$ millim. in diameter ; spicules approximately straight. Extromely abundant.

Hab. Providence Reef and Providence Island, Mascarene group, 19-24 fms. : bottom, sand or dead coral.

The longest lobes are $20-30$ millim. long and $3-6$ millim. in diameter. In habit, spiculation, and arrangement of skeleton it much resembles E. lavis, Carter (Ann. \& Mag. N. H. 1882, ix. p. 291, ol. xi. fig. 16), from Venezuela, and E.pelucila, mihi (Part I., p, 437, f this Report); but the small inequianchorate here has not the erminal point described by Carter, and the trichites are much amaller ($\cdot 02$ millim, instead of $\cdot 067$ millim. long); from E.pellucith t differs in the small, short, quadrangular trichite-bundles, in the maller size of the anchorates, \&c. The species is quite abundant, hough no large specimens were found.

ECTYONIDA.

Two of the six species obtained, viz. Clathria frondifera and Acornus ternatus, must now be regarded as characteristic of the equatorial parts of the Indian Ocean. As this ocean appears to be the main foens of Clathriu, it is not surprising to find this most prolific gems further represented here by two new species.

CLATHRIA.

The three species found in this district contrast, by their decmubent or incrusting habit, with the fine arborescent species which prevail in Australia.

34. Clathria frondifera, Bowerbank. (Plate LIII, fig. J.)

See Part 1., p. 448, of this Report.

This species seems to be almost as abundant in this region as in the North-Australian scas. The specimens agree well, both as to outward form and size and in their fibre-characters, with those described by me (Part I. p. 448) from those seas. The only divergent points which they present are found in the spiculation, riz. the slightly greater diameter attained by the smooth deep-skeleton acuate in some of the specimens, and the wide range of dimensions exhibited by this spienle: it ranges from $\cdot 16$ to $\cdot 25$ millim. in leugth and from '008 to 0127 millim. in thickness; the latter thickuess is not reached by the Australian specimens, but is exhibited by one from Gaspar strait, and exceeded (00158 millim.) by the type specinen, from the Straits of Malacea.

Hab. Providence Reef and Island, Mascarene group: Amirante Islands: Seychelle Islands : $12-24 \mathrm{fms}$.

35. Clathria decumbens. (Plate LIII, fig. K ; Plate LIV.

 figs. g, g^{\prime}.)Sponge massive, sessile ; forming low, spreading masses, either (u) of submonticular form, i.e. highest in the middle and terminatiug laterally in a few short angular ends, or (b) commencing as a horizontal Hattened cylinder, sessile by its lower side, terminated at each end by rounded (sometimes free) extremitics, and sometimes sending off lateral lobes of similar character. Surface (in mmmaccrated condition) slightly mndulating, cither (in b) glabrons, formed by a parchment-like brown membrane which conceals the honeycombed main mass of the sponge, or (in a) mueh grooved, haring ia wormeaten appearauce, the surfaco between the grooves slightly and minutely pilose with the ends of the skeleton-fibres, the bottom of the groores themselves smooth, membranous. Vents moderately abundant (7 or 8 in small specimen), seattered on all parts, round, suborbicular, or oval; opening level with surface; provided with thin membranons margins; diameter $1-1$ millim.

Main mass of gpopge composed of ceubeylindrical trabecule, 5 to

2 millin. thiek, which form the houndaries of cavities 1-2 millim. wide, extending parallel to the surface ; the intervals between the trabceule are more or less tympanized by thin transparent mombranous expansions. Consistency in spirit-(() of monticular speeimen soft and elastic, like Turkey sponge; (b) of subeylindrical specimens tough, parchment-like. Colour- (a) almost white, (b) dull patty- to reddish brown.

Main skeleton-primary fibres approximately vertical to surface, $\cdot 05$ to $\cdot 07$ millim, thick, $\cdot 18$ to $: 35$ millim, apart; secondaries approximately vertical to surface, but often curved: sizo, as primaries : about 18 to $\cdot 25$ millim. apart. Dermal membrane in (a) based on fibre 035 to $\cdot 1$ millim. thick, forming oral meshes -1 to $\cdot 18$ millim. in diameter; in (b) fibre 035 to $\cdot 088$ millim. thick, meshes 14 to 3 millim. wide, oval or oblong. Fibre brown of varions shades, axially cored by one to four series of spicule no. 1, echinated abundantly by the spined acuate spicules.

Spicules :-(1) Skeleton acuate, straight, tapering gradually from near centre to sharp point on the one hand and to rounded base on the other; base about two thirds the diameter of contre, and carrying a few rery small spines; size of spicule, $\cdot 15$ to $\cdot 175$ by $\cdot 0055$ millim. (2) Spined acuate, straight, tapering gradually from base to sharp point, base rather rugose: spines sharp, small to modernte-sized, those of proximal two thirds vertical to shaft, rather scanty, thoso of apical third numerous, recurvate ; size of spicule 075 by $\cdot 0063$ to $\cdot 09$ by $\cdot 008$ millim. (3) Equianchorate, navicular, shaft almost straight, slender; palms as seen from front truncate below, subpyramidal, elongate (each more than one third the total length of the spicule) ; tubercle rather elongate : size of spicule, $\cdot 021$ to $\cdot 032$ millim. (t) Same as (3), but shaft more curved, and size of spicule only .011 millim.

Hab. Boudense and Etoile Islands, Amirante group, 10-13 fms.; bottom, sand or coral.

The two externally very different forms which I have indicated in the description by (a) and (b) agreo so closely in their microscopic characters that I do not feel justified in separating them, even varietally; the absence of a tough cortex from (a) is perhaps due to some local circumstance.

The greatest vertical thickness of the largest specimen is 23 millim., the length 60 millim., the diameter of the lateral lobes 17 millim. The brown specimens have a strong external resomblance to small specimens of the Hipposponyice with meandrine canals, and especially to H. derasa, mihi (see Part I., p. 382, of this Report); also to fresh specimens of Chalinopsis clathrorles, Schmidt; and to a specimen, now in the National collection, of an apparently MS. species alliod to Clathria, named "Sponyia multifora, Dufr.," but which is quite distinct from C. decumbens, owing to the strongly spined skeleton-spicules. The very slender skeleton acuate with its slightly spined head is an unusual feature in a Clathria, and few Clathrias are without either a bihamate or tricurvate flesh-spicule. The sessile massive habit distinguishes it from ald other true

Clathrias, except perhaps C. elegans, Vosmaer (habit mknown), and C. (Dietyocylinders) anchorata, Carter. The latter is only known from small shapeless musses, and has the skeleton-spicule stout, smonth, and strongly enrved; otherwise the spicular complement is essentially the same. In the present species the two kinds of anchorates appear to be distinet, the smaller form being very abundaut, the larger, though evidently normally present, much less common; the occurrence of a larger and smaller anchorate in some Esperir, is pointed out by Carter (Ann. \& Mag. N. H. 1882, is. Pp. 298, 294), is an analogons circumstance.

36. Clathria mæandrina. (Plitr LIII, fig. I; Plate LIV. figs. $h-h^{\prime \prime}$.)

Sponge only known as an incrusting, widely-spreading mass, consisting of a thin basal lamina not exceeding 1 millim. in thickness, from whicharise vertically, at intervals of 1 to 3 millim., parallel-walled ridges, or triangular masses, about $\cdot 5$ to 1.5 millim, in diameter and $2+$ millim. in height, usually mited laterally to form a scries of meandrine ridges, gencrally 2-3 millim, apart, at the surfuce of the sponge. Surface of basal lamina very uneven under lens, honeycombed with round openings 25 to 75 millim. in diameter; the trabecula between the openings is hirsute with projecting spicules: surface of vertical ridges uneven, densely hirsute with projecting spieules and skelcton-fibres, towards the base it has a honeycombed appearance similar to that of the basal lamina. Consistence in spirit slightly resistent, but soft, compressible, elastic. Colour in spirit buff-ycllow.

Main skeleton-arrangement subrectangular: fibre dense, pale amber-yellow, echinated sparscly below surface of sponge by spicule no. 2 , set at right angles to fibre. Primary fibres approximately vertical to surface, terminatiug on it in short horny points densely clothed with spienle no. 1, which are directed outwards, parallel to the axis of the fibre: diameter of fibre about $\cdot 05$ to $\cdot 1$ millim.; cored with proper spicules, usually biserially arranged, to a variable distance, not exceeding 7 millim., below surface ; distanco of fibres apart about $\cdot 17$ to $\cdot 35$ millim. Secondary fibres uncored, $\cdot 035-\cdot 07$ millim. thick, placed at intervals of about $\cdot 17$ millim., approsimately rertical to primaries. Dermal skeleton composed of a rather close rect-angularly-meshed reticulation; fibres about $\cdot 0+\cdot 07$ millim, thick, apparcutly covered in parts by a thicik incrustation of foreign bodies. Sarcode transparent, very pale yellow-brown.

Spicules:-(1) Acuate, or with slightly constricted base, either smooth or with the base minutely spined, moderately curved, tapering gradually from base to sharp point ; size $\cdot 023$ by $\cdot 011$ to 013 millim. (echinating the apices of primary fibres). (2) Spined acuate, straight: a head slightly indicated by a subterminal neck, spines minute to moderate-sized, placed at right augles to long axis : size of spicule $-0-5$ by 0063 millim. (echinating fibres of main skeleton). (3) Subspinulate or acuate, smooth, almost straight, tapering gradually from

DIgitizea by mictosoit
near centre to sharp points ; size 32 by 0063 millim. (in axis of outer extremities of primary fibres, and loose in the meshes of the skeleton). (+) Tricurvate acerate, smooth : the curves bold; tapering to sharp points ; size $\cdot 076$ to $\cdot 12$ by $\cdot 0032$ millim. (in sarcode). (5) Equianchorato, shuttle-shaped, shaft sleuder, slightly and gradually curved, palms cach about one third the total length of tho spicule ; length $\cdot 0.5$ millim.

Hab. Mario Lonise Island, Amirantogroup, 17 fms . : bottom coral.
Tho specimen on which this species is based coats continnously for a distance of 100 millim . (4 inehes) most of the circumference of a stem (probably algal) 3 millim. in thiekness. The surfaco of Sporigia velpine, Lamarek, in the Museum at the Jardin des Plantes, Paris, decidedly recalls this sponge; but that species is tall, stipitato, and arboreseent, with a supecficial spicular incrustation, and hence is rather referable to Rhaphivilophlus than Clethritt: it scems to want the tricurvate acorate spicule of the present species.

One remarkable point about the species is the uuusually great proportion of horny matter to spicnles in the fibres. This is also shown in Tenacia chathrate, Schmidt, of the IV. Iudies, which, besides its elathrous habit, differs from this species mainly in the very coarse horny fibre, the considerably superior dimensions of the smooth acuates, and the rather clumsy form of the spined cchinating spicules.

37. Acarnus ternatus.

See Part I., p. 453, of this Report.
A young specimen. The tricurvates are somewhat shorter, thicker, and more strongly curved than in the Australian specimens.

Hab. He des Nenfs, Amirante Islands, 15 fms.

ECHINONEMA, Carter.

This genus was nominally established in 1875 (Ann. \& Mag. N. H. 1875, xvi. p. 185), in Mr. Carter's "Notes Introductory to the Study and Classification of the Spongida," by the insertion of the words "Echinonema typicum, C., MS.," under the Group Phriformia, Family Ectyonida, of the Order Echinonemata; but its characters were not made known uutil 1881 (op. cit. 1881, vii. pp. 37S-380), when Mr. Carter somemhat briefly deseribed two species under this name, viz. E. typicum and E. anchoratum, without, bowever, giving any definition of the genus. I have been able to examine a considerable number of the specimens thus identified by Mr. Carter, and find them to be nearly allicd to Rhaphidophilus of Ehlers (Espersch. Spong. pp. 19,31) and to Clathria, Schmidt, having the same general character of spienlation and arrangement of the skeleton as these genera, but differing from Clathria in having a non-fibrous and purely spicular cortical layer, composed of acuates or spinulates with their points direeted outwards, and while agreeing with Rhaphidophlus in this point, differing from it in the possession (not Digitized by Microsoft(©)
mertioned by Cartor, $l l . c c$.) of a fine tricurvate acerate flesh-spicule in addition to an equianchorate. A third species, E. vasiplicata, assigned by Cartor (op, cit. 1882, x. p. 114) to the genus belougs, as I have stated in my report on the Australian collections (Part I. p. 454), not to this genus, but to Echinodictyum, mihi. The genus was not met with by the 'Alert' on the north and east of Australia, although it is common on the south and south-west (Carter) ; it is a little strange therefore to find the following two species in the western part of the Indian Ocean.

33. Echinonema, sp.

A small, irregularly-grown specimen in spirit, consisting of an extended coating baso and threc low lobes, more or less flattened, two of them uniting with each other. Surface corragated by low mæandering ridges, giving an irregularly dimpled aspect to the surface ; dermal membrane upon the ridges glabrous. Vents small, seattered, oral or circular, 'f to 1.0 millim. in diameter, generally placed on margins or in depressions rather than in the middle of surfaces. Consistence in spirit firm, very tough, elastic ; colour dull umber-brown.

Main skeleton approximately rectangular in arrangement, the primary fibres being set vertically to the surface, and the secondaries parallel to it, but with their ends curred round to meet the primaries ; fibre very strong, pale to dark amber-ycllow in colour: the primary fibres nbout 14 millim, thick, and cored for one to two thirds of their thickness by subspinulate spicules ; secondary fibre $\cdot 07$ to $\cdot 14$ millim. thick, either devoid of spienles or cored by at most two series. Dermal skeleton formed by a set of radiating tufts of subspinulate spicules, the bases of the tufts being placed about $\cdot 25$ millim, apart, and the ends of the spicules of the different tufts intercrossing. Sarcode pale yellowish brown, subtran-parent. Spicules :-(1) Skeletal and dermal subspinulate; head slight, oral, provided with a few very fine terminal spines; head of about the same diameter as middle of shaft : tapering gradually to sharp point ; size -26 by $\cdot 008$ millim. (2) Echinating spined subspinulate; the head and distal two thirds well spined : spines strong, sharp, projecting at right angles to surface; size of spicule $\cdot 1$ by $\cdot 0085$ millim. (3) Tricurvate acerate of sarcode, median curre rather sharp ; size 04 by 001 millim. (4) Equianchorate, naricular, shaft slightly eurred : length of spicule -012 millim.

Hal. Etoile Island, Amirante group, 13 fms. ; attached to dead coral.

This species is evidently nearly related to E. typicum and E. anchorutum of Carter, from its resemblance in external form and in spiculation. The structure of the dermal "crust " is essentially the same as that described by me in the nearly allied genus Thetheifophlus (see R. arborescens and R. procerns, Part I. pp. 150-1, of this leport).

39. Echinonema gracilis. (Plate LIV. figs. $1, l^{\prime}$.)

Erect, rery slender, branehing dichotomonsly and seldom ; branches given off at angles of from about 50° to 50°, eylindrical or irregular, sometimes somewhat flattened, diamoter 2 to 5 millim. Surface smooth. Vents not apparent. Consistence in spirit soft, clastic, very compressible, rather tough : colour very dark purplish brown.

Main skeleton subrectangular in arrangoment ; primary fibres - 05 to 07 millim. in diameter, pale yellow, almost filled with the skeletonspicule : secondaries 035 to 05 millim. in diameter, containing one or two series of spicules. Dermal skeleton consisting of radiating tufts of subspinulate spienles, the bases of the tufts about $\because 5$ millim. apart, the points of adjacent tufts crossing each othor. Sarcode of interior dark yellow, gramular : that of dermis transyarent, sery pale purple. Spicules:-(1) Subspinulate of skelcton and dermis, straight. shaft smooth, head provided with a few terminal rery finc spines: head oval, of about same diameter as middle of shaft, neek slight: spicule tapering gradually to sharp point; size 34 by 012 millim. (2) Acuate, minutely spined on base, straight, tapering gradually to sharp point; size $\cdot 25$ by ' 011 millim. (in centre of primary fibre). (3) Echinating spined subspinulate, tapering to sharp point from two or threc diameters from end, well spined over hend and distal two thirds : the spines sharp and strong, those on shaft recurvate towards head : size of spicule -0 22 by 013 millim. (4) Tricurvate acerate of sarcode, smooth, middle curve bold; size $\cdot 057$ by 001 millim. (5) Equianchorate, navicular, shaft slightly curved; length of spicule . 02 millim.

Huh. Providence Reef, Mascarene Islands, 24 fms. ; bottom, sand and dead coral.

Several small and more or less imperfect specimens in spirit; the largest measures 75 millim. (3 inches) in length. In the slender proportions of the sponge (which gives it the appearance of a Ruspailie) and in the weak development of the horny fibre this specics stands quite apart from the Australian species as well as from the foregoing form.

AXINELLID.E.

Of the four species to be enumerated, one is found also on the sonthern and one on the west northern coasts of Australia. The very variable character of the surface of Leucophlous proteus is a somewhat unusual manifestation of the polymorphism of Sponges.

40. Axinella spiculifera. (Plate LIV. fig. b.)

Spongia spieulifera, Lamarck, Ann. Mus. Hist. Nat. xx. p. 449.
A specimen in spirit, agrecing well with the fragment in the Museum which represents Lamarek's species. It consists of two
approximately eylindrical stems, 50 by 13 and 80 by 20 millim. respectively in greatest height and thickness, arising close together from a common rocky base. The lower end of the larger one is almost smooth for a distance of about 8 millim.; the remainder, as well as the whole of the smaller stem, is beset with small, slender, wedge-shaped or pyramidal eminences, sometimes forked, $2-3$ millim. high, about 2 millim. in diameter at their bases and 2-4 millim. apart at their summits ; the general surfaee betweon these processes is honeycombed with circular openings, $\cdot 5$ to 1.0 millim. in diameter and $\cdot 25$ to 1.0 millim. apart. Consistence rigid, slightly compressible, tough. Colour very pale buff.

Skeleton typieally Axinella-like; fibre 3 or 4 spieules broad; spicules united by dense, very pale yellow horny fibre; axial meshes close, $\cdot 18$ to $\cdot 3$ millim. across, the reticulation extending to exterior of sponge. Sareode pale yellow, subtransparent. Spicules smooth aeuate, curved more or less boldly at from one third to one half of the distance from the base; base well rounded; spicules tapering to sharp points from about their middle ; size 35 by $\cdot 019$ millim. In Lamarek's specimen the surface-tnfts are smaller and only $1-2$ millim. apart, the sponge is more flattened than here, and the spicules are slightly smaller, viz. 31 by 018 millim.

Hab. Darros Island, Amirante group, 22 fms.
Distribution. King Island, Anstralia (Lamarck).

41. Axinella proliferans. (Plate LIII. figs. E, E^{\prime}; Plate LIV. fig. c.)

Ereet, with short flattened stem, expanding into flabellate fronds, which towards their ends proliferate into secondary flabellate frondlets which assume a course parallel to that of the main frond; as the latter is frequently plicate at its free margin, the aspect on looking down at a large specimen from above is that of a number of irregular funnel-shaped cells, bounded by lamellar walls, roughened by very numerous slashed ascending ridges. Surface of frond beset, at intervals of about 4 millim., with sharp ridges $3-4$ millim. high (5 or 6 millim. near upper margin) ; the ridges notchod at intorvals of about 3 millim. by nscending teeth, 1-3 millim. high, or altogether replaced by longitudinal series of flattened, notched teeth.

Vents in spirit-specimen formed by circular openings, 1-2 millim. wide, leading obliquely downwards, scattered between the bases of the laciniate surface-tufts and ridges of tho sponges, chiefly near the free margins of the latter. Texture in dry state tough, subclastic: of stem and midribs firm, woody, of margins of fronds and ridges flexible; in spirit, all parts relatively more pliable. Colour in dry state pale yellow-brown to rufous-brown, in spirit pale salmoneolour.

Cortical skeloton appearing on margins of surface-tufts and in some places on free of frond as tufts composed of a fers of spictle no. 1, connected by their basos; in main stem consisting of confused linear Digitized oy microsort (B)
spicular columns radiating horizontally from the axial skeleton, but much disguised by crossing spicules, somotimes united into secondary fibres. Axial skeleten-the longitudinal lines strong, but in basal parts of sponge confused by close aggregation ; the axis of the llabellate parts is composed, on the contraty, of a dense mass of horizontally arranged spicules, from which the short dermal tufts project so as to appear on the surface of the sponge. Bases of spicules of radiating lines and much of the cutire axial spicular cohmmes enveloped in a tough transparent substance, amber-yellow in dry, salmon-colour in spirit-specimens.

Spicules:-(1) Actate, smooth, eurved slightly but rather abruptly at from one third to one half the distance from the base: tapering gradually from about middle, more rapidly from about three fourths of length, to sharp points, and sometimes slightly towards base; base rather squarely rounded; size 55 by 032 to 045 millim. (forms chief part of the axial and radial columns and the secondary fibres). (2) Acuate, smooth, straight or slightly ourved, tapering gradually to fine points from about one fourth of the length from the apex; base well rounded : size 5 to 1.8 by 015 to $\cdot 02$ millim. (sparingly, in company with no. 1, in most parts ; especially, attached to bases of radiating columns, and projecting outwards in a direction parallel to them).

Hab. Providence Island, Mascarene group, 18 and 19 fms. ; bottom coral.

Two small specimens in spirit, one large dried dredged specimen, and two medium-sized beach-worn specimens represent the species; the largest measures 120 millim. (5 inches) in both greatest height and lateral extent ; the stem is 20 millim. in greatest lateral by S millim. in greatest antero-posterior diameter. The species has much of the external appenrance of Spongice curvluus, Lamarck, of the Paris Museum, the spiculation of which, however, refers it to another genus. It differs from all the species deseribed by Schmidt from European and W.-Indian seas in the absence of an acerate spicule; in the great stoutness of the main acerate it approaches A. mastophora of that author, from Florida. In general habit it resembles Acanthella rather than Axinella, but wants the long undulating cylindrical spicule hitherto found in species of that genus; it appears doubtful whether the existence of such species as this should not induce us to unite the two genera. I have been unable to identify it with any described species; the large stont acerate appears to be the most distinctive characteristic.

LEUCOPHLEUS.

Carter, Ann. \& Mag. N. H. 1883, xii. p. 323.
In its affinities this genus appears to be Axinellid ; it is distinguished from Axinella, s. str., by its loose yielding toxture, the skeleton-fibres being loosely united, but containing a dense keratose
or sarcodic material, and a single form of spicule, viz. smooth acuate of considerable length, and by the prosence of a regnlar dermal skeloton composed of spicules luid horizontally. I do not know any other specics except the original one, L. mussalis, Carter, and the two described below.

42. Leucophlœus proteus. (Plate LIII. fig. B; Plate LIV. fig. l.)

Massive, suberect; irregularly columuar near baso, showing a tendeney to terminate above in several short and thin membranous or prismatic lobes, which by anastomosis inter se enclose cellular spaces, within which the chief excretory cauals open. Surface very variable in character in different specimens; either rough or oven and glabrous near the base, towards apex longitudinally ridged and grooved, leading up into the membranons expansions just described, and hispid with elosely set, upwardly-directed sharp points, 1-2 millim. high, tending to conlesce into ridges, and terminated by single projecting spicules. Vents opening either upwards at the bottom of the spaces enclosed between the terminal lohes, or laterally between the larger lateral ridges, $1-3$ millim. in diameter. Consistence in spirit-that of solid hasal part firm, rather elastic, that of upper laciniate parts compressible, clastic : colour, surface reddish purple, interior dull pale brown. Main skeleton formed of very loose spicular tracts, 5 -10 spicules broad, passing outwards from the centre of the sponge, at distances of about $\cdot 28$ to $\cdot 6$ millim. from each other, branching at acute angles, but maintaining a direction subparallel to each other, and not crossing. No visible horny uniting substance ; spicules connected by a yellowish sarcode, rather darker than the interstitial sareode. The terminal spicules of the fibres cithor penetrate or support the dermal membranc. Dermal skeloton consisting of irregular tracts of spicules laid obliquely or vertically along the ends of the main-skeleton fibres. Sarcode subtransparent, yellowish brown in contre, bright reddish purple at surface. Spicules smooth acuate, bluntly rounded at baso and tapering gradually to sharp points from about the middle ; size about 2.5 by 032 millim.

Hab. Providence Reef, Mascarene group, 24 fms.; bottom, sand and dead coral.

Of the two spirit-specimens from which this description is drawn np , the largest has the variable surface charaeters above deseribed, and must have been 50 millim. (2 inches) high by 25 millim. broad when perfect: its basal portion is very irregularly formed, being enrved to one side and ending in a cup-shaped depression, by which it was perhaps attached to a shell or other foreign body: the smaller cpecimen has lost its base. The specific name, proteus, is intended to commemorate the variability of the outward form.

The general habit is that of L. massalis and fonestratus; but the spienles differ from those of the former in being about fire times as
long, from those of the latter in the greator relative stoutness of the basal end and in their superior length (about twiec that of fenestratus).

43. Leucophlœus fenestratus, var. (Plate Lili. fig. A.)

See Part I., p. 464, of this Report.

A spirit-specimen and some fragments, combining the external characters (viz. ereet, laminate, with the upper portion echinated by fine upwardly direeted proeesses, and with smooth, thick basal portion) of Leucophleus proteus, mihi, with a spieulation of the eharacter of L. finestratus. The outward form of these tiro speeies is, however, essentially the same, and the differences observed in this point are mainly individual. The present specimen, linking the Australian to the more western form, has decided a donbt which I had as to the rightful position of the former species in the genns. The specimen is young, measuring 50 millim. (2 inches) in height by (inchuding a fragment which appears to belong to it) 35 millim. in greatest diameter (that of the base). It cousists of a massive basal portion, enelosing a large quantity of calcareous matter (Nullipore, \&e.), and of a slender flattened expansion, 20 millim. high, 10 millim. broad, 4 millim. thiek, arising from it: the base is glabrous, the surface being formed by a thin, transparent membrane, loosely attached. Main skeleton consisting of compact spiculo-fibres about 10 spieules broad, and of broad expansions containing a large number of spicules loosely aggregated. There is no sign of horny uniting substance. Spieules tapering gradually from near the centre, or about midway between the centre and base, to a smaller rounded basal extremity, which is about one half the maximum diameter of the spicule : spicule tapering rapidly to moderately sharp point from two or three diameters from apex; size of spicule 8 to 1.1 millim. by $\cdot 02$ to 032 millim. (a considerable range for only two or three specimens). The spieule has thus practically the same form as in both the Australian rarieties, and in its range of dimensions conneets the two. The colour, which is purple, as in L. proteus, but pale, is possibly derived from some purple sponges which had been kept in the same vessel.

Hab. Providence Reef, Mascarene group, 24 fims.

SUBERITIDA.

The few species received illustrate well the wide affinities of Sponges from this district. Tethya, s, str., which was not found on the northern and eastern coasts of Australia, but which is recorded by Bowerbank from the west coast, appears here also, in the shape of a species described by Bowerhank from Freemantle. Of the two new species of Spirusivella, S. trausitoria appears to throw fresh light on the homologies of the spinispirular spicule. The Vioa is identical with a Mediterranean species.

44. Suberites, sp.

A dull red-brown, smooth, incrusting film, about $\cdot 5$ millim, thick ; the closely-set spinulate spicules measure about 8 by 02 millim. : the head is distinct, suboval, approaching a globular form, and of about the same diameter as the shaft. No other spicule. The species is perhaps nearly allied to S. antarcticus, Carter.

Hab. Seychelle Islands, 12 fms .

45. Vioa schmidti.

> Vioa johnstoni, rar., Schmidt, Spowg. Att. Geb. p. 5.
> Vioa schmidti, Ridley, P. Z. S. 1881 , p. 180.
> Vioa Schmidtii, Carter, Amm. \& May. N. II. 1882, ix. p. 354.

The specimen agrecs with Schmidt's species from the Bocche di Cattaro (Adriatie), which Mr. Carter and myself have agreed in considering distiuct from the original I. jolustoni from Sebenico. As the species has never been fully described, I give a description of the present specimen.

Main cavitics formed by sponge botryoidal, wide. Colour of sponge bright pink to crimson. Vent- and pore-areas ' 5 to 1.5 millim. in diameter. Sarcode pale pink, for the most part very diffusely coloured, transparent. Spicules:-(1) Spinulate, smooth, straight or slightly curved, tapering gradually to sharp point; head large, oval, longitudinally elongate, distinguished from shaft by distinct neek, the diameter of which is 006 millim. ; length of spicule $\cdot 28$ millim., diameter of shaft 008 millim., of head (transverse) $\cdot 0095$ millim. (2) Spinispirular, stout, with +6 sharp bends; spines sharp, arranged in regular uniserial spirals, 5 or 6 to a bend, length the same as thickness of the shaft ; size of spicule $\cdot 05$ by $\cdot 006$ millim. (excluding spines). (3) Spinispirular, slender, with about 8-10 gradunl bends, 5 or 6 to a bend ; size of spicule $\cdot 075$ by $\cdot 002$ to $\cdot 00+2$ millim. (exeluding spines). Spicule no. 1 is generally loosely seattered: no. 3 sometimes aggregated in dense masses.

Hab. Eagle Island, Amirante group, 10 fmis. (in base of lobate Madrepora).

Distribution. Adriatic (Schmidt).
The stout spinispirular appears to be normally coufined to that side of the sponge which is in contact with the matrix, the slender one to occupy the internal sarcode; but they also occur mixed. Although the two kinds of spinispirular spicule approach each other somewhat nearly in the dinmeters of their adult forms, yet the longer spines and the constantly inferior length and inferior number of bends, and the superior sharpness of the bends, in the stouter form sufficiently distinguish it from the sleuder form. A further argument against the possibility of the two forms being merely stages of growth of one spicule is derived from the fact that the more slender form (which, from the amalogy of siliceous sponge-spicules gonerally, would on this hypothesis be the young form of the other) is actually

Digitized by Microsoft (B)

longer and has more bends than the stout form, which could thus only have been derived from it by fission or retrogressive absorption, methods unknown, so far as I am aware, in the normal development of siliceous sponge-spicules.

46. Spirastrella transitoria. (Plite LIV. figs. q, q^{\prime}.)

Sessile, inerusting. Surface broken up by slight intercrossing ridges into very shallow angular areas 1 to 2 millim. wide; surface between and over ridges subglabrons. Consistence in spirit tough, elastic; colour pale pinkish brown.

Main skeleton chiefly composed of dense faseicles of the skeletonspieule, with the points radiating outwards, set at rarions angles to the surface, riz. from right angles to a horizontal position; the points of the bundles frequently project slightly beyond the surface. Sarcode dense ; that of surface subtransparent, dark greenish yellow ; of subjacent tissues rery pale yellow, transparent.

Spicnles:-(1) Skeleton spinulate, struight or nearly so ; head spherieal, neek distinct; head and centre of shaft of about the same diameter, vi\%. . 016 millim.; shaft tapering to sharp point from about 7 diameters from apex : length of spicule about 9 millim. (2) Spinispirular, extremely concentrated, composed of only one entire bend : spines numerous, elosely aggregated, strong and sharp; shaft about - 004 millim. thick; spines $\cdot 00+$ millim. long; length of spicule, including spines, 016 millim.

Hab. Darros 1sland, Amirante group, 22 fms. ; bottom broken coral.

This species is represented by a specimen of about 1 square inch in superficial extent, covering and following the inequalities of a small mass of shells and Polyzoa; the thickness varies from about $\cdot 5$ to 2 millim. It appears to be most nearly related to the form, termed by Mr. Carter (Ann. \& Mag. N. H. 1882, ix. p. 352) "Spirastrelle cenctatrix, variety." from Mauritius ; but this form is stated to be white, to have a spinispirular with two bends, of a length of abont 036 millim. It differs from S. cunctatixi, Schmidt, in the shorter spinispirular, and the globular, not oval, head of the spimulate. In S. transitoria we have the spinispirular almost in the form of the stellate, with which Schmidt (Spong. Atl. Geb. p. 5) and Carter (op. cit. 1879, iii. p. 355) consider it to be homologots.

47. Spirastrella punctulata. (Plate LIV. figs. μ, p^{\prime}.)

> "Suberites? sp. undescribed, Mawitius," Carter, Avu. \& Mag. N. II. 1882, ix. p. 352 .

Elongated, subconical. Vents single or few, terminal, oval, about 2 millim. in greatest diameter. Surface obscurely nodose, and covered besides on the upper parts of the sponge with a minnte, but close and regular pitting, giving the appearance of shagreen; pits and intermediate elevations low, each about 3 millim. in diameter :

> Digitized by Microsoft(B)
lower part of sponge glabrous. Consistence is spirit very tough, elastic ; colour dull olivaceous brown.

Main skeleton rather loose, formed of broad tracts of loosely aggregated spicules, horizontally or obliquely arruged with regard to the surface, and of intercrossing spicules loosely seattered between them; that of the cortex, whieh forms a denser layer, consists of more compact bundles, 10 to 15 spieules broad, placed vertically with regard to the surface, from which their points project; the bundles are from $\cdot I$ to $\cdot 1+$ millim. apart. Sarcode subtransparent, bright greenish hrown, crowded with globular cells about -011 millim. broad, with large nucleus and one or more opaque granules.

Spicules :-(1) Skeleton spinulate, smooth, straight or slightly curved; head oval, longitudinally elongate, slightly flattened at free end, of about same diameter as middle of shaft, tapering gradually from centre of shaft to sharp apex ; size of spicule 4 by 013 millim, (2) Spinispirular, short, slender, consisting of about four bends, about 6 spines to a bend; spines sharp, about 002 millim. long; size of spicule 02 by 002 millim. (exclusive of spines).

Hab. Mozambique, between tide-marks.
Distribution. Mauritius (Carter).
The greatest height of the single spirit-specimen representing this species is 65 millim. ($2 \frac{1}{2}$ inches), the greatest diameter 25 millim.; its form is that of a much drawn-out, truncato cone, compressed so that the long diameter is about twice that of the small one ; there is a nodular process, 5 millim. high, on one side near the extremity; the base includes a large amount of coarse foreign bodies. The characters agree well with those given by Mr. Carter (1. c.) for a fragment from Mauritius. It is nearly related to Hymeniccidon angulata of Bowerbank (Madeira), and valabunda and decumbens, mihi (Australia, this Report, Part I. pp. 468,470): but it is distinguished readily from all by its very short spinispirular spicule.

48. Tethya cliftoni.

Tethea cliftoni, Bowerbank, P. Z. S. 1873, p. 16, pl. iii. figs. 14-18.
A single speeimen, cream-white, covered with low papillæ about 1.5 millim. in diameter. The species, unless the separation of the large stellates into two distinct dermal zones proves to be constant and distinctive, can hardly be kept distinct from T. ingalli (Freemantle, Australia) and T. robusta (Australia), both of Bowerbank, the chief difference being in the diameter of the acuate, which in T. cliftoni is about 025 millim., in T. ingalli 035 millim., and in T. robusta $\cdot 0+\overline{5}$ millim. Again, all three species are scarcely more than rarietally distinet from T. lyncurium of Europe, differing from it mainly in the greater distinetness of the heads of the small stellates.

Hah. Seychelle Islauds, 12 fms.
Distribution. S.W. Australia (Bowerbank).

TETRACTLNELLIDA.

As usual with shallow dredgings like those of he 'Alert,' the family Choristide is alone represented. Tho proportion of species to the rest of the collection is about the same as in the Australian collection; but we miss the genera Cicodia and Plucospongia, which might have been expected to oceur here. The remarkable group with discoid dermal plates which stands between Gcodia and Stalletta is represented by a now species.

CHORISTID.

49. Tetilla dactyloidea.

Tethỳn dactyloidea, Carter, Ann. S. Mag. N. II. 1869, iii. p. 15, figs. 1-む; 1872, ix. p. 82, pl. 10. figs. 1-0.
A somewhat imperfect specimen, having, however, probably had somewhat the form of Thence wallichi, Wright, when perfect-i.e. not produced upwards into the long cylinder figured by Mr. Carter; but depressed and agariciform. Its diameter is mich greater than that of Carter's specimen, viz. 40 millim. ($1 \frac{1}{2}$ inch); its present hoight is 25 millim. (1 inch). The spicules agree closely with Mr. Carter's descriptions and figures, with the oxepption that the forked anchor does not exhibit a constant inequality in the length of the arms.

Heth. Glorioso Islands, low water.
Distribution. S.E. coast of Arabia (Carler).

ERYLUS, Gray.

Stelletta, pars, Schmidt, Spong. Adr. Meer., Spong. Kïst. Aly., Spong. Atl. Geb.; Curter, Aun. \& May. N. H. 1850, v. p. 135.
Erylus and Triate, Grey, P. Z. S. 1867, p. 519.
Discifera, of subsection Pycnodermata of group Stellettinn, Couter, Ами. s. Mag. N. H. 188*, xi. p. 318.
I have already indicated (Part I. pp, 471,472) that the specics called by Schmidt Stellette, but provided with disks composed of modified trichites, should be definitcly separated from that genus. I adopt for this distinct group the generic term which Dr. Gray assigned to S. mamillaris, Schmidt, It may be characterized as:Comprising Choristid Tetractincllida with the sufface cosered by a layer of detached discoid trichite globates, and having besides a zonespicule and small stellates with slender and fow rays. Form lobate. Vents single or multiple.

It differs from Geodia in the discoid form of the trichite masses and their independence of each other (in Geodia they are united by ligaments). It includes the doscribed species Stellettu ouastrum, S. mamillaris, and S. discophora, Schmidt, and S. cuastrum, Cartor. Stelletta yeodina and S. intermedia, Schmidt, should be referred to Geodiu.

50. Erylus cylindrigerus*.

(Plate LIII. fig. M ; Plate LIV. figs. $e-e^{\prime \prime \prime \prime \prime \prime}$.)

Massive, suberect; terminating above in a lobate prolongation. Surface smooth, slightly uneven. Vents one (or more?) near apex of sponge, about 2 millim. in diameter, opening flush with surface, leading obliquely and deeply downwards into sponge. Texture in spirit tough, firm, but somewhat flexible; colour in spirit dark brown, almost black. Skeloton composed of bundles of spicule no. 1, 6-8 spicules broad, radiating from centro to just below surface, 17 to 3 millim. apart near surface. Surface covered with a layer abont $\cdot 1$ millim. thick of the discoid spicule no. 2 , arranged horizontally: Sareode subtransparent, very pale brown, almost colourless.

Spicules:-(1) Zone-spicules subeylindrical, smootb, straight or very slightly and gradually curred, tapering from within about six diameters of ends to rounded terminations of about one third the diameter of the middle of the shaft ; size about 7 by 032 millim. (2) Discoid, of subdiamond-shaped outline, viz. that of a rhombus with the angles rounded off; length 21 to $\cdot 28$ millim., breadth $\cdot 1$ to $\cdot 14$ millim., thickness about $\cdot 0+\frac{\text { millim. ; covered with minute }}{}$ low punctiform spines, about 012 millim. apart (spines, as seen mider a high power from above, stellate in outline; they are multifid terminally). (3) Acerate, smooth, slightly and gradually curved, tapering to sharp points from centre; size 06 by -0032 millim. (scattered abundantly throughout sarcode). (t) Stellate, with about 10-12 straight rays 003 millim. thick at base, tapering to sharp points, springing from a slight central body $\cdot 01$ to 013 millim. in diameter; expanse of spienle about $\cdot 05$ millim. (5) Stellate like the preceding, but arms abont 16 in number and expanse about $\cdot 02$ millim.

Hab. Providence Reef, Mascarene group, 24 fms ; bottom, sand and dead coral.

A single specimen with a somewhat spreading base, which encloses calcarcous fragments, rising intoa subeylindrical, terminally rounded, finger-like column, 30 millim. high and 12 millim. in mean diameter, slightly overgrown by a delicate Sertularian Hydroid; extreme diameter of base 40 millim.

The species is most closely allied to Stelletta euastrum, Schmidt, from Algiers, and to forms so named by Carter (Amm. \& Mag. N. H. 1880, v. pp. 135, 136) from Ceslon and Australia, which perhaps represent another species. Instead of the trifid zone-spicule with bifureate arms found in Sehmidt's species, it has simply a subcylindrical spicule, usually blunt at both ends, and wants the long slender acerate; the ferr-armed stellate has its arms more numerous (10-12 instead of 2-4, which is the range represented by Schmidt's
preparation, although he says that the range is great); and I do not find in Schmidt's species the small multiradiato stollate which oceurs here; the granulations on the surface of the disk are much coarser in this species. In having lost the trifid hend of the zone-spiculo it exhibits the same tendency as that which seems to have led in Ancorina auptus, Sehmidt, to the loss of all tetraradiate characters,

Early stages of the acerate spicule (no. 3) exhibit the central inflation found in the young acerates of some Reniere and Spongillide.

51. Stelletta acervus.

Ecionemia acervus, Bowerbank, P. Z. S. 1873, p. 322.
There appears to be only one form of minute stellate; those stellates in which the arms are small, relatively to the body. seem to be the young form of the longer-armed adult : the arms are very slightly capitate, as shown by Dr. Bowerbank's preparations and still more plainly in the present specimen, and vary in number from about 5 to about 12. The small acerates are seantily present in the cortox. Dr. Bowerbank considered his specimen to have been originally fixed, but the actual base was absent; the present specimen is decidedly free, and has an oral shape.

Hab. Etoile Island, Amirante group, 13 fms.
Distribution. Fiji Islands (Bowerbank).

52. Stelletta purpurea, var. parvistella, nor.

Sce Part I., p, 473, of this Report.
A small oval specimen $7 \frac{1}{2}$ millim. long, destitute of a vent, and of a purple colour, undoubtedly represents this species in a somerwhat modified form. Thus the stellates do not exceed $\cdot 0095$ millim. across the arms, and usnally measure about $\cdot 007$ millim., and the arms aro generally more numerous than in the Australian specimens. The skeleton-spicules are also somewhat smaller, riz.:-diameter of shaft of zone-spicule 032 millim., of anchor about $\cdot 023$ millim., of accrate about 0.25 millim.; the arm of the zone-spienle curves boldly backwards, but does not make an angle in its course like that of var. retroflexa, mihi. The small size of the skcieton-spieules is perhaps partly due to the youth of the specimen. The variety approaches tho form obtained in the Arafura Sca the most closely.

Hab. Providenco Reef, Mascarene group, 24 fms.

CALCAREA.

No Calcarea from this district are recorded in Häckel's 'Kalkschwämme' (1872); but Schuffiner (Jenaisch. Zeitsch. xi.) in 1878 described several species from Mauritius, where they were collected by Prof. Möbius.

LECCONIDA.

Two rery widely distributed known species, a second species added to a hitherto monotypic genus (Leucortis), and a known Mascarene species, all belonging to the Leuconide, represent in this collection the Calcarea of the Western part of the Indian Occan.

53. Lencetta primigenia, var. megalirrhaphis.

Lencetto primigenia, var. megaraphis, Hückel, Kallischuämme, ii. p. 118.

Tro subglobular specimens 9 and 18 millim, in diameter, respectively, of the Dyssyous-form. Colour in spirit pale brown. Haickel states that this variety is rare, but does not give localities. In the specimen which I examined, the small triradiates are chiefly confined to a thin cortical layer.

Hel. Seychelle Islands, 12 fms .
Distribution of species. Almost cosmopolitan.

> 54. Leucaltis bathybia, Hüclec, var. mascarenica, nor. (Plute LIV. figs. a, a^{\prime}.)

Kalkschaü̈mne, ii. p. 156, pl. xxriii. fig. 2,
Some specimens of the Amphoriscus-form, composed of branching and anastomosing tubes, cylindrical or somerrhat compressed, $2 \cdot 5$ to 3.5 millim. in diameter; lumen 1.5 to 2.5 millim. wide, wall about $\cdot 5$ millim. thick. Colour dull umber-brown to cream-colour. The large quadriradiates are vory large, viz. rays about 07 millim. thick, and rather short, with a long apical ray projecting into the cloacal cavity, and frequently a basal in the same plane but opposite to the apical ; the small triradiates and quadriradiates are rery small. viz, rays about 007 millim, thick, and most commonly have the forms figured in figs. $2 c, 2$ of Häckel's plate (7.c.), viz, with very large facial angle. The larger triradiates are usually regular, and their rays are about $0+$ millim. in diameter. The slight thickness of the body-wnll, the proportions of the spieules, and the general form of the specimens (which is simply cylindrical in Häekel's specimens) distinguish this form from varr. perimina nud aratica, Haickel : but in the straight or but slightly curred spicular rays it approaches most closely the latter variety.

Hab. Darros Island, Amirante group; Seychelle Islands, 4-12 fms.
Distributtion of species. Red Sca (Häckel); Port Jackson (Part I., 1. 482 , of this ileport).

Digitized by Microsoft (®)

55. Leucortis anguinea *. (Plath LIII, fig. I; Plate LIV. figs. d, d^{\prime}.)

Erect, branched; stem and branches eylindrical, tubular. (Vent opening probably at end of tube and nearly as wide as tube.) Branches given off at angle of ahont $1+0^{\circ}$ with each other. Wall $\cdot 25$ to $\cdot 35$ millim, thick; lumen of tube $\cdot 8$ to $1 \cdot 2$ millim. in diameter. Outer and inner surfaces eron, smooth. Consistence in spirit elastic, compressible (colour probably white or groy naturally, at present pale purple, probably derived from other sponges). Skeleton mainly composed of triradiate spiculos : those (1) of outer surface sagittal, with large facial angle, viz. 150° to 170°, the distal three fouths of the lateral rays being, in the latter case, bout back so as to be nearly in a line with each other; basal ray about -28 millim. Iong, laterals 16 to $\cdot 22$, diametor of rays at base $\cdot 013$ to $\cdot 019$ millim. Surface triradiates oceasionally provided with a short stout apical ray. (2) Triradiates of inner and central part of wall cither sagittal, with facial angle of about 140°, the rays as in the surfacespieules, or subregular, the angles being about 120° each and the lateral rays slightly unequal: in both cases the lengths and diameters of the rays as in the surface-spicules. Rays of triradiates, except in the case abore mentioned, almost straight, tapering from base to point. (3) Linear spicules of general body-wall, stont, fusiform, acerate, slightly curred, tapering equally to similarly sharp points at both ends ; size 65 by 032 millim.; seattered singly at right angles to surface, points not projecting except at peristome slightly. (4) Fine acerate? of peristome, length probably about $\cdot 22$ millim., thickness.0032 millim.; closely aggregated at outer surface, at right angles to surface (the inuer end is sharp, the outer end has not been observed). Canals leading from cloacal cavity small; chambers of canal-system small, inconspicuous. Spicules of centre of wall densely aggregated.

Hab. Proridence Reef, Mascarene group, 24 fms. ; bottom, sand and dead coral.

A single specimen, imperfect at both extremities, represents the species. It is 25 millim. in height, and consists of a short common stem and of two branches, little inferior to the stem in diameter, one of them even inereasing in diameter towards its termination.

From the occurrence of the fine linear spicules in some of the first sections which were mado it is inferred that they were from a peristome, which was probably almost as wide as the tube and had a slight fringo. The occurrence of a fow quadriradiates has beon observed also in the only species assigned by Hiekel to the genus, riz. L. pulvinar, Hiackel; and thus, if Haiekel's terms were employed, this specimen would be distingnishable as a "connecting variety" under tho name Lexcandra anquineus. This species is markedly distinct from L. pulviner in its slonder form, in the relatively small size of the acerate spicules of the body-wall, and in

[^21]the presence in the peristome of fine accrates; the triradiates havo their arms straighter than those figured by Häckel for his species, but their forms and dimensions are about the same in the two species.

56. Leuconia echinata.

Leucandra echinata, Schuffner, Jenaisch. Zeitschr. xi. p. 411, pl. xxiv. fig. 4.
A compressed purse-shaped specimen, with the mouth-opening lost. The outer termination of the acerate is slightly enlarged just before the point, forming a hastate apex, not noticed by Schuffier, who only says that the spienle is "unequally pointed at the two ends." The specimen measures 20 millim. in greatest diameter, whereas Schuffner's did not exceed 10 millim.

Mab. Darros Island, Amirante group, 22 fms.
Distribution. Mauritius (Schuffier).

ALPHABETICAL INDEX.

naptus (Ancorina), 627 . abbreviata (Nursia), 185, 253.
nbnormis (Coralliophiln), 497.
abnormis (Fusus), 497.
abruptispicula (Cladochalinn), 373.
abyssi (Chondrocladia), 433.
abyssi (Halichondria), 433.
abyssicola (Cludorrhiza), 433.

Acabaria, 361.
Acanthella, 375, 463.
Acanthochites, $8: 8$.
Aenuthochitom, 8%.
Acanthogorgin, 336.
ncautholepis (Eupagurus), 267.
Acanthopleura, 81.
acanthostephes (Murex), 43, 44.
Acarnus, 375, 453, 588.
Acasta, 322.
Acervochalina, 373, 308, $587,604$.
acervus (Ecionemia), 471, 627.
acervus (Stelletta), 471, 583, 589, 627.
Achæus, 188, 516, 520, 570.

Achelia, 323.
Achelous, 2030,518,538, 573.

Actiea, 209, 517, 528, 571 .
Letreodes, 517,530,571.
Actinocucumis, 148.
Actinometra, 166 .
Actumnus, $225,517,533$, 572.
aculenta (Clathria), 375, 43.
aculeata (Galathea), 278.
aculeata (Spougia), 399.
acnleatus(Chlorinoides), 182, 193.
nculeatus (Octopus), 35.
actuleatus (Paramithrax), 182,198
aculciformis (Conus), 36, 37.
acuta (Acanthella), 463.
acuta (Anthenea), 175.
acuts(Littorina), 60.
acutangulus (Couns), 487.
acutidens (Panopens), 215.
acutinodulusum (Cerithimi), 501.
tentinodulosum (Rhinoclavis), 001.
ndamsi (scintilla), 106.
adelaidensis (Chiton), 79.
adeorie (Antedon), 155, 1515.
adeonx (Comatuln), 156.
adncte (Thalamita), 183, $230,540$.
adspersus (Cratopus), 576.
adustus (Chicorens), 491.
adustus (Murex), 491.
※ga, 303.
※gialitis, 27.
aquilibra (Caprella), 188, 320.
Esacus, 26 .
wethiopica (Phasianella), $50 t$.
athiopicus (Grapsus), 54 c.
athiopicus (Pachygrapsus), 545.
afline (Goniosoma), 233, 2 2if.
affinis (Achæns), 181, 188.
affinis (Ccenobita), 555.
affinis (Fucrate), 243.
aflinis (Myra), 184, 250.
affinis (Tormatella), 86.
africaua (Littorina), 60.
agminata (Hymeniacidon), 375, 466.

Akern, 87.
alba (Gygis), 485.
niba (Tellina), 100.
alba (Renicra), to8.
alberti (Scintilla), 107.
albescons (Haliehondria), 370.
albicilla (Nerita), 503.
albina (Cytherea), 95.
albitineta (Melitotes), $350,2556,357$.
albiraricosa (Ranclla), 56.
nlbiventer (Zosterops), 17.
abiventris (Monarcha), 15.
albiventris (Piezorhynehus), 15.
albiventris (Zosterops), 18.
albocaudata (Columbella), 495.
albomaculata (Cypridina), 188, 321.
albonotata (Actinometra), 165.
nlboseutellatus (Cratopus), 57(\%.
albovaricosum (Cerithium), 501.
albula (Terebra), 491.
Aleyonarin, 327, 578.
Alcyonium, 322 .
aldabranus (Turtur), 484.
Alectrion, 59 .
alexnudri (Salmacis), 118, $119,171,172,177$.
Alexella, 324.
algidn (Nassa), 48.
aliformis (Pellina), 374, 412.

Alpheus, 281, 510, 561, 575.
alternans (Actinometra), $155,169$.
alveolatn (Purpura), 50.
amaryllis (Balanus), $188,321$.
ambigun (Reniera), 417, 418.
ambigua (Scintilla), 106.
amboiuensis (Holothurin), $509,510$.
nmirantium (Cerithium), 501.
nmirantium(Columbella), 494.
amirantime (Coralliophila), 497.
amirantium (Gibbala), $50+$.
amirantium (Trochus), 504.

Ammothen, 332.
Amorphina, 374, 416.
Ampliilectus, 374,427 .
Amphipoda, 311.
Aruphitrite, $2 \cdot 9$.
amphitrite (Alpheus), 284.

Amussium, 116.
amygdaln (Cronia), 51.
amyglala (Purpuri), 51.
annbathrum (Conus), 489.
antestheta (Sterna), 28, 485.
annglyptus (Etisodes), $183,218$.
analoga (Ptilotis), 19.
anceps (Colochirus), 147 .
anceps (Desmacidon), 429.

Anchistit, 292, 293.
anchorata (Axos), 433, 43π.
anehorata (Olathria), 614.
anchorata (Dietyocylindras), 614.
andreossii (Cymo), 517, $530,57 \%$.
angasi (Ovula), 59.
angasi (Orulum), 59.
augasi (Pleurobranchus), 88.
angasi (Radins), 59.
angasi (Volva), 69.
allguina (Sihquaria), 68.
anguinea (Leucortis),585, 609. 629 .
anguineus (Leneandra), (122).
angulata (IIymeniaci(lon), 46, $469,624$.
angrilutus (Oncimopus), 15\%.
nngulatus (Phos), 50.
tagulifera (Lucina), 10\%.
angulifera (Mactra), 101. angulifera (Mactrinula), 101.
angulosus (Echinus), 121, 172.
angulosus (Tripucustes), 121, $172,509,510$.
angusta (Calappa), 051.
angustus (Intirus), 52.
Anisopoda, 811.
annulifera (Phyllacanthins), $118,172$.
annulipes (Eurippellia), 517, 539, 572.
annulipes (Gelasimus), 518, 541, 578.
annulipes (Petrolisthes), $185,270,515,558,54$.
annulipes (Riippellia), 533.
nmmiosa (Ophiolepis), 138, 17.
annulus (Cyprea), 59.
anomatr (Maretia), 176.
anounla (Thalassina), $186,28 \%$.
Алошига, 259.
Anons, 27.
antarctica (Teredo), 93,
antaretica (Nylotrya), 03.
antarcticus (Suberites), 467.

Antedon, 15 Ff .
autemalis (Cilicea), 187, 310.
antemnnlis (Nxsa), 310.
Anthenea, 1:7.
Antigoma, 93.
Antipathes, 337.
antipotlum (Eittorina), 60.
nitiquus (Chiton), 79.
apicatus (Hemiaster), 171.

Aplysin, 89 .
Aplisinn, 373, 391, 587, 600.
appruximuns(Cymothoa), 500.
aqueductus (Reniera), 3in, $374,400$.
arabiea (Cirolana), 303.
arabien (Cyprea), 59.
arabica (Leucaltis), 482.
arachis (Bulla), 86.
arachis (Cylicbna), 86.
arachmoides (Egerin), 182, 101, 152.
arafnrensis (Daplmella), 40.
arafurensis (Pleurotoma), 40.
aranca (Myrex), 46.
aranea (Oncinopus), 182, 190.
arabeoss (Trpes), 97.
arboreseens (Boriclla), 92.
arboresecns (Myxilli), $374,430$.
arborescens (Rhaphidophlus), $375,450,451$.
arborescens (Spongia), 405.
urbuseuln (Psamomogorgia), 345.
Агеа, 109, 508.
Areania, 253, 518, 548, 57.

Archaster, 133.
arciferum (Desmacidon), 429, 610.
arctica (Suximaya), 93. arcuata (Carcinoplax), $5 H$.
arcuata (Ceratoplas), $181,2+3,245$.
urcularin (Xnssa), 406.
arenatur (Conus), 107.
arenicolum (Cardium), 102,
areolata (1ctrea), 183, 200.
areolatus (Chlorodius), 582.
areolatus (Chlorodopsis), $217,517,532,572$
argenticeps (Philemon), 20,
armata (Banareia), 210 .
armatus (Ohlorinoides), 182, 193.
armatus (Neptunus), 188, 229.
urmatus (Paramithrax). 182, 193.
armigera (Cladochalina), $371,373,393,394,397$, 308.
armigern (Tudicta), 30 , 54.
armigern (Turbinella), 68
armillatns (Alpheus), 201.
Artamus, 21 .
Artemis, 96.
articulatn (Antedon), $155,160$.
articulata (Comatula), 160.
articalatum (Cerithium), 502.
articulatus (Conus), 489. articulatus (Turbo), 70. articulosa (Leucothoë), 312.
articulosus (Cancer), 312. articulosus (Gammarus), 312.
aruensis (Ptilotis), 19. asbestoides (Chiton), 83.
asellus (Cypraz), 500.
nsinticus (Petrolisthes), $269,519,557,559$, 574.
asinina (Inliotis), 77.
asparagus (Spongia), 405.
aspera (Euryale), 146, 171, 174.
nspera (Eurynome), 523, 524.
aspera (Leveandra), 434.
aspera (Mactra), 101.
aspera (Schizophrys), $182,15 \%$.
aspericaudnta (Cerceis), $187,306$.
asperimanus (Parami(ippa), $517,525,571$.
nsperrimus (Pceten), 116.
nssimilis (Megapodinis), 26.

Asterias, 123.
Asterinn, 131.
Asteroidea, 123.
Astrogonium, 129.
astrologorum (Tosia), 175.

Astropecten, 132.
astuta (Dorippe), 259.
Atergatis, 207.
Atergatopsis, 211,517 , 509, 571.
Athanasus, $28-1$.
athantica (Aennthogorgia), 396.
atlantica (Echinomuricen), 837.
atlantica (Psendorhombila), 243.
atra (Holothuria), 509, 510,
atrata (Nerita). 69.
atratus (Trochus), 74 .
atratus (Turbo), 74 .
atricapilla (Ardea), 485.
atropos (Dorippe), 26π.
attenuata (Caprella), 188, 320.

Atys, 86.
aulopora (Schmidtia). 416.
aurantia (Galformma). 106.
aurantia (Nerita), 69.
aurantia (Psammobia), 106.
aurantia (Pterocera), 503.
aurantiaca (Anchistia), 292.
aurantinea (Scintilla), 10G,
auratn (Risclla), 6?
aurata (Tosia), 175,
anreum (Callipodium), 350.
nuriculata (Modiola), 508.
australasife (Bresnin), $120,171,172,175$.
australasie (Spherechinus), 177.
australe (Cerithinm), 68 .
australe (Eehmocar(inm), 120, 171, 172, 177.
australiee(Splurechinus), 171.
australiense (Callipodium), 330,350 .
australiensis (Achelin), $188,323$.
australiensis(Chondrilla), 602.
nustraliensis (Dorippe), $185,0.48$.
australiensis (Galathea), 185, 277.
australiensis (Heteropanоре), 228.
australiensis (Leptogorgia), 330, 331, 3 ± 2.
australiensis (Leucaltis), $376,40^{2}$.
australiensis (Ligia), 187, 299.
australiensis (Lysianassi), 312.
nustraliensis (Ophlitispongia), 375, 442.
australiensis (Pseudorhombila), $184,2+2$,
anstraliensis (Raspuilia), 375. 460, 462.
australiensis (Stelletta), 472
australis (Acabaria), 365.
mustralis (Circe), 96.
australis (Colochirus), 148.
australis (Lampania), 68.
australis (Melita), 187. 315.
australis (Monodonta), 505.
austrnlis (Myra), 184, 251.
anstralis (Orcaster), 175.
australis (Paranthura), 187, 311.
australis (Podocerus), $157,319$.
australis (Protelln), 321.
australis (Syrlella), 314.
australis (Tosin), 177.
australis (Trochus), 505.
avarus (Alphens), 284.
Avicula. 112.
axicornis (Murex), 41.
Axinella, $975,462,588$, 617.

Axinellider, -46°.
axis (Duplinelln), 4).
axis (Plemotoma), 40.
Axius, 28%.
babylonica (Terebra), $+90$.
bacea (Stelletta), 472, 47.
bacillifera (Stelletta), 472.
baculifera (Iotrochota), 374, 377. 435, 588, 610.
baculost (Plysllacanthus), $172,500.510,511$.
Balanus, 321 .
Banreia, 210.
Bankivia, 75.
Bauks Islander, 8, 9 .
banksii (Cymothen), 300.
banksii (Mrtuta), 256.
barbata (Modiola), 108.
Barbatia. 110.
bassanum (Branchiostoma), 31.
bathrbia (Leucaltis), 376, 482. 389, 022.

Batrachia, 29.
beckii (Ranella), 50.
belcheri (Amphioxus), 32.
belcheri (Asterina), 131, 173.
belcheri (Branchiostoma), 32.
belcheri (Nepanthia), 175.
belcheri (Stellaster), 198, 173.

Bembicium, 61.
bergii (Sterna), 27 .
bibula (Pellina), 413 .
bicarinatus (Macrophthalmus), 238.
bicolor (Mopsellt), 363.
bicolor (Solmacis), 118 , 172, 176.
bicornis (Calnppa), 518, 550, 571.
bicostalis (Crenatula), 113.
bicostalis (Purpurca), 51.
bidens (Antedon), 155, 158.
bidens (Scearma), 184, 246.
bidentata (Circeis), 187, 300.
bidentata (Columbella), 48.
bidentata (Cymodocea), 306.
bidentata (Nresea), 308.
bifasciatuu (Cerithium), 63.
bifurcata (Muricen), 578, 579.
bifurcata (Raspailia), 375,459 .
bilamellnta (Spongia), 451.
bilamellatum (Echinodiet yum), 375, 554 $456,455,459$.
bipartitn (Terebra), 491.
bipartita (Turricula), 490.

Birds, 11, 483.
Birgus, 519, 555, 574.
birotulata(Halichondria), 438.
birotulifera (Halichondrii), +36 .
biserialis (Purpura), 51.
bifincisus (Alplicue), 284.
bispinosa (Galene), 208,
bispinosa (Litocheira), 243.
bispinosus (Alphens), 281.
bitubercularis (Hindsia), 49.
bitubercularia (Purpurn), $50,51$.
bitnberculatus (Paramithrax), 522.
bituberculntus (Paratymolus), 185, 301.
birmguiculatus (Polyo폭) $273,519,259$, 5 方务.
bleckeri (Pilumus), 219
borbonicus (Chiton), 81 .
borneensis (Scintilla), 106.

Boruella, 92
boscii (Chrenostoma), 184, $238,518, ~ i 12,573$.
boscii (Euplax), 181, 238, $518,5+2,57 \%$.
bothryoides (Cidaris), 120.
bothryoides (Pleurechinus), 119.
bothryoides (Temnopleurus), 119, 172, 176 .
Bracliyura, 181, 188.
bracteata (Chibia), 12.
Branchiostomat, 29, 31.
bretti (Hymemiacidon), 415.
breve (Cerithium), 63, G5.
brevicaudata (Megamera), 319.
breviceps (Achreus), 188.
brevidactylus (Mycteris), 248.
brevicligitata(Eucothoc̈), 187, 313.
brevipes (Ophiocoma), $139,174,509,510$.
breripes (Tutanus), 27.
brerirostris (Pencus), 563.
brerirostris (Pontonia), 515, $5642,275$.
breris (1sterina), 181, 173.
brevis (Haminea), 87.
brevis (Nepanthiu), 131.
brevispinosa (Opbiocoma), 189.
brevi-quamatus (Gomodactyltrs), 567 .
Briareum, $3 \not 2$.
brinretis (Antedon), 155, 163.
bromi (Purpura), 50.
bruguieri (Torebra), 490.
bruni (Risella), fil.
brumneus (Euchelus), 75.
bubulcus (Ardea), 485.
Buecinum, 47, 45, 51.
buceroides (Philemon), 20.

Bulls, 86
bullata (Siphonoclulina), 369, 309.
builnta (Spongia), 399, tot.
builata (Tuba), 378, 399.
burrowi (Chiton), 85, S65.
burrowi (Chitoncllus), 8 .
bursaria (Spongia), 400.
bursaria (Tuba), 400.
burtonii (Lialis), 29.
Butorides, 28 .
by ssoides (Mircinia), 5S6, 596.
cacaotica (Ophiomaza), $145,17 \%$.
Cacatua, 25.
Cacospongia, 372, 378, 586,590.
enctiformis (Spongia), 451.
carulea (Hyla), 29.
cærulescens (Littorina), 61.
carulescens (Turbo), 60.
caruleum (Cerithium), 65.
cespitosa (Ophiothrix), $140,171,174$.
calamaria (Asterias), 123, 173.
ealamaria (Echinothrix), 171.
calamus (Ellisella), 328, $330,318$.
Calappa, 257, 518, 550, 574.
calappoides (Lambrus), 517, 527, 571.
calappoides (Parthenopoides), 517,527,571.
calcar (Asterina), 131. 173.

Calcinus, 519, 557, 574.
caledonica (Micippa), 195.
caledonicum (Ceratosoma), 90.
caledonicus (Nyeticoras), 28.
callianassa (Cancer), 292.
eallianassa (Goniosoma), 232, 283.
callida (Dorippe), 257.
Calliostoma, 72.
Cnllipodium, 350.
Callistochiton, 79.
Calyptres, 503.
Calyptura, 311.
camerata (Reniera), 587, 605.
campbelli (Strombus), 5s.
Campepliaga, 13.
Camposcia, 189, 516, 520, 570.

Camptoplas, 238 ,
eanaliculata (Monodonta), 74.
cannliculntus (Penrous), $519,563,575$.
canalis (Rhizochalina), $374,377$.
cancellata (Gorgonin), 397.
cancellatir (Narica), 68.
cancellatia (Paramurieon), 348.
cancellata (Rhipidogor(gia), 338.
cancellata (Spongia), 45π, 45.
cancellata (Stomaiella), 76.
cancellatum (Echinodictrum), $375,437$.
eancellinus (Persona), 500.
cancellinus (Tritou), 500.

Cancer, 198, 217, 225, 292, 241, 257, 812.
eaniculata (Nasea), 309.
cannabiua (Axinella), 416.

Caprella, 320.
earbonarium (Cerithium), (is) 15.
earcharias (Actæa), 206.

Carcinoplax, 241, 518, 543, 573 .
Cardium, 101, 507.
carduns (Spongia), 463, (i1).
carinata (Actinometra), 168.
cariuata (Geodia), 481.
carinata (Myra), 184, 250.
cariuata (Philyra), 547.
carinata (Placospongia), 376,481.
carinicauda (Gebia), 186, 280.
carinifera (Gymnasterins), 173, 509, 510.
carnea (Calyptura), 311.
carnea (Haswellia), 187, 311.
carnosa (Aplysina), 601.
earnosa (Halichondria), 465.
carnosus (Suberites), 971 , $375,465,467$.
carpenteri (Antedon), $155,157$.
Carpilodes, 218,517, 529, 51.
carteri (Aearnus), 454.
carteri (Stellettinopesis), 376,476.
Carterispougia, 374,385 , 586, 504.
cartilaginea (Spongia), 426.
caruncula (Hymeninci(don), $371,572,275,466$, 467.

Caryatis, 95.
caspia (Sterms), 2s.
casta (Hastula), 491.
castia (Tercbra), 191.
castmina (Crassatella), 108.
castancothorax (Donacicola), 21 .
castaneothorax (Donacola), 21 .
castrensis (Ciree), 96.
eaudnenta (Idotea), 311.
cauliformis (Aplysina), 601.
caveruosa (Cacospongia), 5861,590.
cavernosa (Euspongia), $372,378$.
cavimanus (Tetralin), $518,507,572$.
celata (Cliona), 468.
celata (Vion), 168.
cenchroides (Cerchncis), 11.
ceuchroides (Tinnunculus), 11.
Oentropus, 25.
Cephalopoda, 34.
cephea (Asterins), 131.
cephens (Asperiscus), 131.
cepheus (Asterina), 131, 17%.
ceratina (Gellins), 374, 423, 424.
ceratophthalma (Ocypoda), 184, 297, $518,5+2$, 573.

Ceratoplax, $2+43$.
Ceratosoma, 90.
Cerntothoa, 800.
Cerceis, 306.
Oerehneis, 11.
cerea (Fohinogorgin), 338, 341.
cereus (Fusus), 16.
cerithina (Terebra), 490.

Corithium, 63, 500 .
cervicornis (Lencoolla), $328,3: 0,3$ n5.
cerricornis (Murex), 45.
cervicornis (Stenocionops), 521.
corvinus (Dacolo), 22, 23, 24.
chabroli (Nephthya), 579.

Chrenostoma, 238.
Chahma, 373, 393,587, 003.
chalinoides (Aplysina), 378.

Chama, 102
chaptali (Thatamita), 181, 291.
Chradeits, 27 .
charon (Alphens), 288.
Charybdis, $2: 3$.
Ohasmagnathes, -2t6.
Chemnitzia, 505 .
chererti (Leucosia), 240 .
Clibia, 12.
ehiragra (Gonodnctylus), 186, 298, 519, 565, 575.

Chiton, 7s.
Chitonellus, 81.
Chlorinoides, 192
chloris (Glyciphila), 19.
Chlorodits, 206,215 , $217,517,531,571$.
Ohlorodopsis, 216, 517, $531,572$.
chlowolepidotus (Trichoglossus), 25.
chlormotus (Stichopus), 509, 510.
chlororhynchus (PuItnus), 485.
choanoides (Italispongia), 385.

Chondrilla, 587, 602.
Chorilia, 105.
Chorilibinia, 192.
Choristides, 471.
eluysanthns (Wrightella), 578, 501.
chrysopyga (Crithagra), 483.
chrysostoma (Nerita), 69.
ehrysotis (Ptilotis), 20.
cicatricosa (Calyptrea), 503
cicatricosus (Trochns), 6.
cidaris (Narica), 69.
ciliaris (Ophiothrix), 142, 174, 176.
ciliata (Ceratoplax), 245.

Cilicrea, 308.
cincinnata (Columbella), 494.
cinerea (Plexaura), 329, $3 \div 0,3+1$.
cinercus (Anous), 48t.
cingulata (Leiopyga), 7 f.
Cinnyris, 17.
Circe, $96,506$.
Cirolana, 301.
Cirripedia, 321.
Cisticoln, 15.
eitreogularis (Philemon), 20.

Clardochalina, $373,394$.
clathrata (Hircinia), 590.
clathrata (Rrspailia), 375,401.
chathrata (Rissoina), 62, B8.
chatlirata (Tenacia), 615.
Clatloria, $875,443,588$, 612.
clanea (Lncina), 50S.
clarata (Schmidtia), 416.
Chavatula, 89.
clavigera (Mopsella), $350,300$.
clarigera (Purpura), 50.
clavosa (Stelletta), 370 , $376,474,425$
Clibanarins, 265.
clibanarius (Paguras), 265.
cliftoni (Tethea), 624.
eliftoni (Tethya), 589,的類
clio (Pachycephala), 15, 16.

Clypeaster, 122.
coccinata (Tornatella), 86.
coccinea (Echinomurieea), 337.
coccinea (Mopsella). 360.
coccinea (Wrigitella), 578, 581.
corlatus (Etisndes), 583 .
Calogorgia, 353.
Conobita, 519, 555, 574.
Coleoptern, 576.
Colina, 66.
collectrix (Oligoceras), $5: 10$.
collamianus (Alpheus), 519, 515 , 575.
Colluricinela, 13.
Colochirus, 147.
columba (Strombus), 503.

Columbella, 47, 492, columna (Cerithinm), 500.
columnaris (Mamma), 57.
columnaris (Natica), 57.
columnifera (Tethyopsi3), $477,478,+79$.
Comatula, 156.
comatularum (Alphens), $186,059$.
commensalis (Leucothoü), $187,312,313$.
communis (Tubulodigitus), 371, 373, tu1.
compressa (Desmacidon), 402.
compressa (Spougia), 402.
compressipes (Eupagurus), $185,266$.
comptus (Trochus), 71.
comptus (Ziziphinus), 72.
concamerata (Oucullica), 508.
concentrica (Ianthella), 391.
concentrica (Mitra), 499.
concentricus (Clíton), 78.

Conchifers, 93, 506.
Conchodytes, 2900 .
concinta (Myiagra), 14.
concimus (Turbo), 70.
confacierata (Spongin), 400.
confoederata (Tuba), 373, 400.
confusa (Leda), 112.
confusus (Xantho), 212.
congenera (Spirastrella), $375,469$.
conira (Dysidea), 587, 597.
conjungens (Ophiopeza), 137, 174.
comivens (Ninox), 11.
conoidalis (Trochus), 62.
consobrina (Actan), 210.
eonspersa (Columbella), 495.
constrieta (Amphiura), 171.
contracta (Pleurotoma), 39.
contracta (Urosalpinx), 47.
contractum (Buecinum), 47.
conulosum (Oligoceras), 557, 599.
Conus, 36, 487.
contexus (Chasmagnathus), $2 \neq 6$.
converus (Chorilia), 182, 196.
cunvexis (Hyastemis), 182, 196 ,
eoppingeri(Actinometra), $155,368$.
coppingeri (Astropecten), 1:2, 173.
coppingeri (Camptoplax), 184, $2 \% 9$.
eoppingeri (Chemnitzia), 505.
coppingeri (Chiton), 80.
coppingeri (Chlorinos(les), 182, 192,
coppingeri (Clathrin), 375,445 .
coppingeri (Hnlimede), 182, 208.
coppingeri (Homalodromin), 510, 554, 574.
coppingeri (Mactra), 100.
coppingeri (Murex), 42.
coppingeri (Paramithrax), $182,192,193$, 52.2.
coppingeri (Pentagonaster), 128, 173.
coppingeri (Trachynotus), 29 .
coppingeri (Turtur), 484.
corallicola (Galhthea), 278
eorallicola (Porcellana), 271.
corallicohs (Petrolisthes), 183,271 .
Coralliocaris, 294,519 , $543,575$.
Coralliophila, 497.
coralloides (Clathria), $4+2.449$.
Corbula, 103.
cordimana (Ocypoda), $237,518,542,573$.
coriacea (Doris), 506 .
coriacea (Platydoris), 506.
coriacea (Siphonochalina), 401.
coriaceum (Myzostomum), 159.
cornutn (Micippa), 524.
coronata (Cymodocea), 306.
coronata (Taanda), 71.
coromata (Mitra), 4!8.
coronata (Nassn), 18.
coronata (Trochas), 71.
coronatus (Marmorosto$\mathrm{ma}), 504$.
coronatus (Turbo), 504.
coronoides (Corvus), 12.
corrugata (Erato), 500.
corrugata (Mitra), 55.
corrugata (Turrieula), 55.

Corrus, 12.
costata (Colina), 66, 177.
costata (Nerita), 70.
costatus (Chiton), si\%.
costifera (Spongin), 455.
costiferum (Cerithium), 66.
costiferum (Echinodic(yum), 375, 455, 457.
couchi (Gellins), 371,374, 423, $+24,425$.
conchi (Halichomdria), 428, 424.
coseni (Cytherea), 95.
Cracticus, 15.
cranchiii (Acharus), 188, 520.
craniolaris (Lencosia), 184, 250.
crassa (Geotelphusa), 184, 235.
cras-a (Patiria), 131, 173, 177.
crassa (Riselln), 62.
crassa (Telphusa), 184, $235,236$.
Crassatella, 107.
crassicaudata (Cilicen), 187, 310.
crassicula (Stelletta), 472.
crassimana (Мœ⿸尸), 316.
crassimana (Leucothoè), 318.
crassimanns (Alpheus), 281.
crassimanus (Euplax), 298.
crassimanus (Gonatono(tus), 204.
craseimanus (Pilumnopeus), 228.
crassipes (Phlyxia), 184, 252.
crateriformis (Renicra), 587, 607.
cratitius (Rhaphidophlus), $450,452$.
Cratopus, 576 .
crebrepunctata (Matutn). 25.

Crella, 374,430 .
crenata (Thalnmita), 184, 232, 518, 540, 573.
crenata (Venerupis), 97.
Crenatuln, 113.
crenulata (Ega), 305.
Cribrellh, 431.
cribriformis (Reniera), 587, 600.
Crinoiders, 153.
Crowin, 51.
Crustacea, 513.
crustula (Hymeniacidon), 46.

Cryptocoloma, 227.
Cryptodromia, 259.
Cryptoplax, 85.
Cryptoportia, 203.
Ctenocella, 348.
Cucullea, 508.
Cucumaria, 146.
cucumiformis (Orcuia), 150.
cultellum (Epigonichthys), 32 .
cultellus (Branchiostoma), 32 .
cumingi (Aetinometra), $155,167$.
ermingi (Comatula), 167.
cumingiana (Natica), 59.
eumingii (Area), 109.
cumingii (Crassitella), 108.
cumingii (Divaricella), 508.
cuningii (Lacina), 508.
cumingii (Melina), 113.
cumingii (Pecten), 115.
cumingii (Perna), 113.
cunctatrix (Spirnstrella), 468, 623,
cunealis (Arca), 110.
cunninglami (Chiton), 81.
cursor (Pilumnus), 183, 223.
cuticulifera (Haminea), 87.
eurtisi (Rissoina), 68.
curtisiana (Pritonidea), 47.
curtisianns (Chiton), 78.
curtispina (Мicipa), 182, 1999.
Curtonotus, 241.
custos (Diogence), 263.
cuvieri (Scintilla), 105.
cyancuin (Doridium), 88.
cyclops (.Ega), 305.
cyclostomns (Echinoneus), 123, 172.
Cycloxunthus, 212.
Cylichna, 86, 505.
eylindrica (Cythara), 41.
cyliudrica (Mangelia), $+1$.
eylindrigerus (Erylus). 585, 505, 626.
eymeformis (Spongia), 425.
esmeformis (1sodictya). 424.
cyniformis (Gellius), 274, 425 .
Cymo, 517, 532, 572.
cymodoce (Trapezia), 515, $534,572$.
Oymodocea, $345,308$.
Cymopolia, 518, 551, 574.

Cymothoa, 800.
Cypriea, 59.
Cypricardia, 97.
Cypridina, 321.
Cythara, 41 .
Cytheren, $95,506$.
Dacelo, 21 .
dactyloidea (Tethya), 625.
dactyloidea (Tetilla), 589, 625.
dama (Schizophrys), 197.

Daphnella, 39, 40.
darnleyensis (Echinus), 121, 172.
darrosensis (Ocinebra), 492.
darrosensis (Murex), 492
darwinii (Gebiopsis), 186, 281.
darwini (Lerla), 111.
darwini (Ophiothrix), 14t, 174.
decagonale (Jaganuin), 122, 171, 172.
decagonalis (Peronella), 123.

Decapoda, 181, 188.
decidua (Hippospongia), 586, 592.
decipiens (Antedon). 155, 159, 162.
decipiens (Crassatolla), 108.
decoratus (Calliostoma), 72.
decoratus (Trochus), 72.
decoratus (Ziziphinus). 72.
decumbens (Clathria), 558,612.
decumbens (Spirastrella). 375, $470,6-4$.
defilippii (Lepidonaxia), 195.
deflexifrons (Galathea), 279.
deflexifrons (Mierohalimus), 108.
dehaani (Huenia), 191.
dehani (Pilumnus), 226.
dehannii (Xantho), 532.
Deiopeia, 577.
delicatus (Pleurobranchus), 80 .
Demiegretta, 28 .
denigratus (Euchelus), 75.
denisoni (Aplysia), 89.
densa (Eeioncmia), 471.
densa (Stelletta), 471, 472.
densigranata (Nassa), 496.
densum (Psammopem1ui), $367,378,390$.
Dentalium, 77.
dentata (Cymopolia), 501, 550.
dentata (Heteroplax), 242.
dentata (Lucina), 103.
dentata (Nursilia), 185, $258,518,548,574$.
dentata (Ophiocoma), 139.
dentatus (Axos), 454.
dentatus (Dictyocylindrus), 454.
deutatus (Epixanthus), 213, 533 .
dentatus (Panopeus), 213.
dentatus (Petrolisthes), 27.
dentifrons (Chlorodius), 217.
depressum (Laganum), 122, 172.
depressus (Macrophthalmus), $542,543$.
dèrasa (Hippospongia), $322,382,612$.
deshnyesil (Dosinia), 90.
Desmacidon, 588, 608.
diacanthus (Hyastenus), 182, 194, 195.
Diadema, 118.
dinme (Desmacidon), 429.

Dicxum, 21.
Dietyoeslindrus, 454.
diemenensis (Leucothoë), 814.
diemenensis (Littorinn), 60.
diemenensis(Mcgamœra), 318.
difficilis (Actinocucumis), 148.
digitata (Bornelln), 92. *
digitata (Pedanin), 371 , 374, 417. 583, 587, 604.
digitnta (Renicra), 417, 418.
digitifera (Dysidea), 373, 389.
dilatatus(Pentagonaster), 130.
dilopha (Placina), 470:
dimidiata (Terebra), 490.

Diogenes, 262 .
diplax (Linckia), 173, 509, 510.
Diplodonta, 104.
Diseifera, 625.
diseophora (Stelletta), 6\%5.
dispar (Porcellana), 185, 275.
dissimilis (Tethyopsis), 376; 476, 477, 479.
distimguendus (Leptodius), 214.
distinguendus (Xantho), 580.
divaricata (Acabaria), 364.
divaricata (Arca), 508.
divaricatn (Chama), 102.
divaricata (Lueinn), 103.
divarieata (Petricoln), 9 S.
Divaricella, 103.
divergens (Leptogorgia), 344.
diversimanns (Mœга), 519, 567,575.
dohsoni (Psendus), 297.
dodone (Lophozozymus) 517, 527,571.
Dolabella, 89.
dolichopsis (Hyla), 29.
Dolium, 499.
domuncula (Aleyonium), 468.

Donacicola, 21.
donacina (Crassatella), 10s.
Donacola, 21.
Doridinm, 87.
Dorigona, 180.
Dorippe, 257.
Doris, 91, 506.
doris (Alpheus), 284.
dorsalis (Petrolisthes), 272.
dorsipes (Dorippo), 185, 257.
dorsipes (Cancer), 257.
Doryehthys, 30.
Dosinia, 96.
Dotilla, 518, 543, 573.
dougalli (Sternin), 28 .
draparnaudi (Natica), 58,
Drilia, 87.
dringi (Peeten), 115.
Dromin, 259.
Dromidia, $519,552,5,4$.
dubeni (Pentagonaster), 177.
dubia (Ophionereis), 13s, 174, 509, 510.
duodecimspinosa (Arcania), 54%.
duperreyi (Megapodius), 26.
dura (Schmidtia), 416.
dussumieri (Gelasimus), 518, 541, 573.
dussumieri (Salmncis), 171.
dussumieri (Sesarma), 247.

Dysidea, 373, 388, 584, 507.

Ebalia, 518, 549, 574.
eburnea (Terebra), 490.
echidnea (Axinella), 375, 462.

Echinaster, 124.
echinata (Leuconia), 5®9, 630.
echinata (Lencandra), G29.
echinata (Mitra), 498.
cehinata (Ophiocoma), 139.
echinatum (Cerithium), 500.

Echinocardintm, 123.
Echínodermata, 117, 509.
Eehinodictyum, 375,451.
Echinogorgia, 337.
Echinoiden, 118.
Echinometra, 122.
Echinomuricea, 336 .
Echinonema, 588, 615.
Echinoneus, 123.
Echinus, 121.
Eetronida, +41 .
Eetyonider, 441.
edvardsii (Alpheus), 186, 281, 510, 561, 575.
edwardsii (Athanasus), 284.
edwardsii (Munida), 519, 500, 575.
Egeria, 191.
electra (Cancer), 217.
electra (Etisodes). 183, $217,517,532,5 \pi$.
elegans (Antedon), 155, 112.
elegans (Clathria), 614.
elegans (Crellin), 432.
elegans (Galathea), 186, 278.
elegans (Gouodactylus), 310, $566,545$.
elegans (Modiola), 503.
elegans (Ophảarthrum), $140,171,174,509$, 510.
elegans (Spongelia), 597.
elegans (Tellina), 507.
elegans (Triphoris), 502.
elegantia (Halichondria), 423, 424.
elisus (Trochus), 71.
ellioti (Voluta), 56.
elliptica (Syudosmya), 90.
elliptica (Tellina), 90.
Ellisella, $3 \nmid 8$.
elongata (Ohalina), 557, 603.
elongatr (Huenia), 191.
clongata (Juncella), 328 , S30, 346.
elongata (Lovenia), 123, $171,172,177$.
elongata (Mopsella), 360 .
clongata (Spongia), 603.
elongatum (Branchiostoma), 31 .
clongatus (Chiton), 82. elongatus (Petrolisthes), 268.
emphysema (Desmacidon), 429 .
empusa (Pseudosquilla), 567.
eusifrons (Anchistin), 294.

Entomonys, 517, 525, 571.
ephelitious (Lophozozymus), 182, 207.
Ephippiphora, 312.
cpiphytum (Alcyouinm), $4(5)$.
epiphytum (Suberites), $375,465$.
episcopalis (Mitra), 408.
episcopalis (Oliva), 497.
Episanthis, 218.
Erato, 500.
erinaceus (Ophiocoma), $171,174,509,510$.
Eriphia, 517, 534,572.
crosa (Enrynome), 524.
errones (Cyprea), 59.
ertuiformis (Chiton), 86.
Erylus, 589, 625.
erythrea (Mœera), 319.
erythrea (Морзеа), 581.
erythreus (Stillbogna(hus), $521,522$.
ergthrodactyla(Sesirma), 247.
erythrogrammus (Strongylocentrotus), 121, 171, 172
esculentus (Penæus), 564.

Esperia, 374, 436, 588, 611.

Etisodes, 215, 217, 517, 532, 52.
Etisus, 217.
euastrum (Stelletta), 471, $625,126$.
Euchelus, 75.
Encrate, 240, 241.
Encratea, 241.
Eulima, 58.
Euplax, 238, 518, 542, 573.

Eupagurus, 266.
Eurüppellia, 517, 533, 572.

Eurgale, 146.
Eurynome, 517, 523, 571.
euryihrogrammus (Strongylocentrotus), 121 .
ousiphonia (Tcllina), 974, 414.

Euspongia, 372, 378.
Euxamithus, $204,205,517$, $527,571$.
exaratus (Leptodius), 183, $214,515,530,571$.
exasperata (Oallitltea), 458.
exasperata (Codakia), 507.
exasperata (Lueinn), 507 .
exasperata (Turricula), 498.
exeavatn (Idoten), 311.
excavatus (Stelospongus), $37-2,380,384$.
exigua (Terobra), 37.
exilis (Cisticoln), 15.
eximia (Mactra), 100.
exstiptus (Fuxamthus), 517, 527, 271 .
fuba (Scintilla), 106.
faleatus (Oancer), 298.
falcatus (Podocerus), $: 220$.
fallinx (Echinaster), 124.
fallax (Ophiopeza), 137.
faseiath (Purpurn), 51.
fasciatum (Cerithium), 67.
fascintus (Chiton), 86.
faseiculata (Megamera), 318.
fasciogularis (Ptilotis), 20.

Easciolaria, 497.
farosa (Dysidea), 373, 388.
felinus (Dermestes), 576 .
fenestrata (Dotilla), 518, 543, 573.
fonestrata (Spongin), 501.
fenestratus (Leucopbleeus), 369, 375 , $464,5 \leq 8,620,621$.
ferruginea (Trapezia), $518,536,572$.
fertilis (Chalinuln), +35.
ferula (Reniera), 374, 403.
fibrosa (Phoriospongia), 375, 439.
Fibularia, 122.
fibulata (Axos), 427.
fibulata (Gelliodes), 37+, $371,427$.
fibulata (Reniera), $\ddagger 24$, 425, 411 .

Gibulatn (Rbizochalina), 402.
fibulatus (Desmacodes), 423.
fibulatus (Gellius), 371, $374,424$.
fietitia (Myxilla), 431 .
ficus (Hymeniacidon), 468.
fictts (Suberites), 468.
Fiji Islanders, $9,10$.
filamentoar (Fasciolaria), 407.
filosa (Littorina), 60.
fimbriata (Fissturella), 77.
fimbriata (Riselia), fi2.
fimbriatum (Cryptoceloma), 183, 22.
fimbriatus (Pilumnus), 227.
finitima (Acervochalina), $371,373,393,349,587$, 604.
finitima (Chalina), 399.
fiscellum (Ricinuln), 31.
fissifrons (Pilumnus), 221 .
fissurata (Carterispongia), 373.
fissurata (Spougia), 385, 386.

Fissurella, 77.
fistulosa (Desmacidon), 420 .
fistulosa (Rhizochalina), $374,424,421$.
flabellifera (Polylibrospongia), 384 .
flabelliformis (Ianthella), $373,392,557,600$.
Ilabelliformis (Spongia), 631.
dabellum (Antipathes), 337.
flabellum (Echinogorgin), $328,329,337$.
flagellata (Antedon), 161.
flava (Ptilotis), 20.
tlava (Siphonogorgia), $330,352$.
flavescens (Anthenea), 127, 173, 175.
flarescens (Risella), 62.
flavicuactus (Oriolus), 12.
flavida (Scintilln), 105.
Ilnvidux (Conus), 488.
flavirictus (Ptilotis), 19.
flavirentris (Spheeotheres), 1%.
flavocincta (Mimeta), 12.
flavogularis (Zosterops), 17.
flavotincta (Leptogorgia), $330,3+3$.
flexilis (Juncelln), 946.
flexilis (Leptogorgia), $328,325,311$.
flexuosa (Muricella), 336.
florida (Spongodes), 3:8, 329, 352, 333.
floridus (Atergatis), 207.
floridus (Conns), 488.
floridas (Strombus), 503.
fluminense (Yhosichilidium), 326
foliacen (Euspongia), 372 , 378.
foliaceas (Platychalinu), 378.
foliacea (Spongia), 378.
folioitles (Desmacidon), 402.
folioides (Tosochalina), $371,373,377,402$, 404.
foraminosa (Protoschmidtia), 415.
forbesii (Purpura), 51.
forbesii (Scintilla), 100 .
forceps (Grelasimus), 236.
forcipis (Hatichondria), $+29$.
formio (Panopeus), 534.
formosus (Alphens), 288.
fornicata (Cryptopodia), $182,203$.
formientum (Cardium), 507.
fornicatum(Ctenoeardia), 507.
fortisulenta (Corbala), 103.
fragifer (Halimede), 209.
fragills (Juncella), 330 , 347.
fragilis (Lima), 116.
fragrum (Trochus), 73.
frinklini (Orenster), 175.
frascone (Cancer), 2.57.
frenata (Cinnyris), 17.
frenatus (Hemidactylus), 486.
frondifer (Amphilectus), 448.
frondifera (Clathria), $371,575,+42,+48,583$, $50 t, 508,612$.
frondifera (Halichondria), 48.
frondosum (Desmacidon), 610.
frontalis (Epixantinas), 517, 534,572 .
frontalis (Etisodes), 217.
frontalis (Oreophorus), $185,254$.
frontalis (Ozius), 517, $534,572$.
fucoides (Ophlitaspongia), 426.
fulgurans (Columbella), 17.
fulvus (Charadrius), 27 .
fumaria (Ophiothrix), 140, 171, 174, 176.
funebris (Pesten), 116.
fungifera (Asterins), 175.
fumiculata (Nerita), 69.
funiculatum (Buecinum), 47.
furluracen (Eehinogorgin), 338.
fusca (Aplysina), 587, fiou.
fusca (Dysidea), 378, 358.
fusca (Hircinia), 586, 596.
fuscolineata (Pleurotoma), 400.
fusoum (Telescopium), 68.
fusoides (Pleurotomn), 39.

Fusus, 46.
galatere (Ophiotiurix), $142,174,176$.
Gnlathea, $277,519,560$, 575.
giluxias (Columbella), 494.

Galene, 208.
galerita (Cacatua), 25.
galloides (Calappa), 551.
gallus (Calappa), 518, $550,574$.
Gammarus, 312.
garrula (Manorhina), 18.
garrila (Myzantha), 18.
Gastrocherna, 507.
Gastropoda, $36,487$.
gattya (Homophyton), 351.
gaudichandii (Iigia), 187, 299.
gaudiosa (Nassa), +96.

Gebin, 2 so.

Gebiopsis, 281.
Gelasimus, 236,518,541, 573.
gelatinosa (Esperia), 588, 611.

Gelliodes, $37-4,420$.
Gellius, $374,423$.
gemma (Cerithinm), 63.
gemmacea (Juncella),
$325,330,346,345,348$, $578,580$.
geminacea (Verrucella), $3+5$.
gemmulatus (Conus), 487.

Geodin, 376, 480 .
geodinn (Stelletta), 625.
geographica (Voluta), 535.

Geograpsus, 518, 545, 578.

Geopelia, 25.
Geotelphusa, 285.
geranoides (Goniocidaris), $171,177$.
Gerygone, 13.
gibberulus (Strombus), 5013.
gibbia (Circe), 506.
gibbia (Crista), 506.
gigas (Dacelo), 21 .
gigliolii (Aglain), 88.
glaberrima (Modiola), 108.
glaberrima (Trapezia), 537.
glabrata (Littorina), 500.
gladstonensis (Tenus), 94.
glareosa (Acanthopleura), 81.
globator (Salmacis), 118, 119.
globostellata (Stelletta), $472,+74$.
globostellifera (Geodin), $371.370,+80$.
glomeratum (Eehinodictyum), $375,456$.
Glyeiphila, 18.
Glyphostoma, 39.
godeffroyi (Siphonogorgia), 352.
Gonatonotus, 204.
Goniosoma, 252, 518, $539,573$.
Gonodactrlus, 298, 518, 565, 57%
Gorgonella, 337.

Gorgonia, 337, 345, 346, $3+9$.
gorgonia (Pectinüra). 134, 171, 174.
gouldi (Piczorhynchus), 15.
gouldii (Varanus), 19.
gracile (Cerithium), 501.
gracilenta (Pleurotoma), 39.
gracilenta (Psammobin), 98.
gracilidactylus (Alpheus), $1=6,2>7$.
gracilipes (A1pheus), IR6, 27.
gracilipes (Chorilibinia), $152,192$.
gracilipes (Rhizopa), 24.
gracilirostris (Hyastenus), 196 .
gracilis (Anthenea), 127, 173.
gracilis (Echinonema), 53, 617.
gracilis (Leptodius), 214, $517,5810.571$.
gracilis (Leucathoé), 314.
gracilis (Paratymolus), $185,261$.
gracilis (Pentaceros), 127.
gracili= (Ptilotis), 19.
gracillima (Psilacabaria), $330,364$.
Grallina, 12.
graminea (Coralliocaris), 519. $563,575$.
granatus (Chiton), 81.
grandidieri (Huenia), 191.523.
grandis (Anchistin), 294.
grandis (Mycale), 438.
granifera (Nassa), 496.
granosum (Cerithium), 68.
gramulata (Aetra), 206.
granulata (Crmodocea), 307.
granulata (Dorippe), 259.
granulata (Ebalia), 518, 549, 574.
granulata (Galene), 182, 308.
granulata (Xursia), 550.
granulata (Petalomera), 260.
granulata (Purpura), 52.
granulatus (Achelous), $183,230,518,538$, 573.
grinnilatus (Atergatopsie), 517. 529, 571.
granulaths (Chasmagnathus), 246.
granulatus (Chlorodopsis). 183, 216.
granulatus (Diogenes), 263.
granulatus (IIypoccolus), 200.
granulatus (Pilodius), $\because 15$.
granuliferum (Megalobrachium), 273 ,
granulosa (Areania), 548.
granulosa (Toreumatica), 119.
gramulosns (Lambrus), 201.
granulosns (Penreus), 186, 295.
gramulosus (Temnoplenrus), 119, 172, 176.
graphurus (Gonodactylus), 157, 298, 519, 5455, 575.
Grapsus, $518,544,573$.
gratiosa (Tellina), 507.
Gruuealus, 13.
grayi (Acanthogorgia), 336.
grasi (Echinomuricea), 337.
gravi (Geograpsus), 518, 545, 573.
grayi (Solenocaulum), 354, 355.
grayi (Syngnathus), 30.
gregaria (Munida), 561.
grillithsii (Rhaphyrus), 408.
grisea (Defrancia), 489.
grisea (Pleurotoma), 489.
grisea (Risella), 62.
grisea (Srnapta), 146.
grisens (Amblypmeustes), 17.
gulliveri (Talitrus), 514.
gumminea (Dysidea), 587. 597.
gunnii (Asterina), 131, 173.
gunnii (Chitonellus), 84.
guttata (Truperin), 536.
guttatum (Doridium), 88.
guttatum (Sesarma), 247 .
guttatus (Ozius), 188, 208.
guttatrs (Pagurus), 519, $555,574$.
gyges (Antedon), 155, 160.
hanni (Micippa), 517, 524, 571.
Hematopus, 27 .
Haleyon, 24.
Halicarcinus, 243.
Halimede, 208.
balimoides (Paramithrax), 194.
Haliotis, 77.
Halispongia, 385.
Halopsrch. 284.
Hammen, 87.
hanleyi (Fusus), 46.
hanleyi (Trophou), 46.
hardwickii (Luidia), 182.
hartwickii (Temnopleurus), 120.
Harpa, 498.
Larpax (Lambrus), 18ㅇ, 203.
harpax (Parthenopoides), 182, 202.
Harpilius, 201.
lustata ('Terebra), 491.
hastatoides (Amphitrite), $183,229$.
hastatoides (Neptumns), $183,229$.
haswelli (Petrolisthes), $185,260,271$.
haswelti (Pseudorhombila), 241.
Haswellin, 311.
hebraeus (Conus), 487.
helleri (Gouiosomt), 23t.
Hemicardium, 103.
Hemipenæая, 297.
Hemiplax, 238.
hemprichi (Tubipora), 365.
hemprichii (Astropecten), $509,510$.
hemprichi (Spongodes), $324,332,334$.
hepatica (Calappa), 185, 254, 518, 550, 5:4.
heptagonalis (Fusns), 46 .
beraldica (Huenia), 191, 520 .
herbstii (Egeria), 191, 192.
heterochelis (Alpheus), 284.
beterodactyla (Trapezia), 537.

Heteropanope, 298.
hiantioa (Tapes), 96.
ILindsia, 49 .
hindsii (Terebra), 490.
hippocastanum (Purparst), 50, 490.
11 ippono, 121.
Hippospongia, 372, 381, $586,590$.
Hircinia, 373, 357, 586, 5!
hirsuta (Acanthogorgin), 336.
hirsutus (Pilumnıs), 21.
hirta (Naxin), 599.
hirtifrons (Gebia), 281.
hirtipes (Chlorodius), 215.
lirtipes (Cirolana), 303.
lirtipes (Hemiplax), 298.
hirtipes (Xantho), 212.
hirundinaceum (Diстиш), 21.
hispidn (Achelin), 324.
hispidula (Protoschmidtia, $274,414$.
hispidulus(Amphilectus), $374,429$.
hispidus (Dietyocylindrus), -454.
histrio, var. alba (Dosiแia), 96.
histrio (Turbo), 503.
hoekii (Phoxichilidium), $185,524$.
holdsworthi (Thalamita), 231.

Holothuria, 152.
Holothuroidea, 146, 509, 510.

Homalotromia, 519, 553, 574.
homei (Ianthella), 302.
hondurasenae (Phlcodictyon), +42.
hoplonotus (Lambrus), 201,202.
hornbeckii (Cythara), 41.
horrens (1lircinia), 373 , 387.
hospitalis (Crelln), 452.
Huenia, 191, 517, 520, 570.
humeralis (Campepbaga), 13.
buneralis (Erythranchen), 25.
humeralis (Geopelia), 25.
humilis (Clypeaster), 122, 172, 176.
humilis (Pilumnus), 221.
huonii (Euxanthus), 527.
Hyastenus, 194, 517, 522, 570.
hydatina (Scintilla), 107.

Hylochelidon, 21.
11 yimeniacidon, $375,+66$.
IIypoccelus, 206 .
hypolencus (Grancalns), 13.
hystrix (Cardium), 101.
Inathella, 373, 392, 587. 600.

1eiligorgia, 851.
Idoter, 311.
ignea (Pisania), 402.
imbricata (Ammothea), 332.
imbricatn (Area), 110.
imbricata (Ceratothoa), 187, 300.
imbricata (Cymothoa), 300.
imbricata (Nerocila), 301.
imbricata (Ricella), 61, 62.
imbricatus (Oniseus), 300.
imbricatus(Ophioplocus), $138,171,174,509,510$.
imbricatus (Pagurus), $185,26 \mathrm{t}$.
impatiens (Holotharia), 509, 510.
implexts (Stelospongus), 372, 984.
inrequimana (Anchistia), 24.
inequipes (Asthenognathus), 24 .
incanus (Chiton), 81, 82.
incanus (Totanus), 27.
incei (Stellaster), 128, $173,175$.
incisus (Clition), 82.
incolor (Terebra), 191.
incouspicua (Banareia), 183,210 .
incrassata (Ophiarachna), $174,502,510$.
increscens (Tedania), 418 .
india (Egerin), 19\%.
indicus (Eensus), fi64.
indixtincta (Isodictya), $407,605$.
indistin th (Reniern), $371,374,407,587,604$, 605.
indo-malaccensis (Echinomuricea), 328,329 , 356.
inermis (Harpilius), 186, 291.
inermis (Matuta), IS5, 256.
inermis (Мicippa), 198.
incrmis (Petrolisthes), 185, 268
inermis (Pilummus), 223.
inermis (Thyone), 150.
inermis (Tudicula), 53, 54.
infans (Murex), 491.
inlans (Ocinebra), 491.
infernalis (Ophiarachna), 134.
infernalis (Pectinura), 134, 174.
infracostata (Risclla), 62.
infradensata (Rhizochalina), $374,420$.
infranaculata (Doris), 91. infrapicta (Doris), 91.
infrequens (Halichondrin), 432.
ingalli (Tethya), 624.
innominatus (Acarnus), 453.
innotabilis (Urosalpins), 47.
insigne (Phoxichilidium), 324.
insignis(Plocamophorus), 91.
insignis (Retaster), 133, 178,
insularia (Ophiocomn), 139.
integra(Carcinoplax),518, 543, 573.
integra (Cirolana), 187, 804.
integra (Kraussia), 235.
integra (Thalamita), 518, $540,573$.
integrifrons (Nectocarcinus), 184, 234.
intermedia (Actinome(ra), 155, 166.
intermedia (Stelletta), $472,625$.
intermedius (Dacelo), 22, 24.
intermedius (Lambrus), 200, 201.
intermedius (Lennder), 186, 295.
intermedius (Metopograpsus), 246 .
intermedius (Palcmon), $185,294$.
interpres (Strepsilas), $484,485$.
intertextus (Stelospong48), 372, 885.
intestinalis (Hippospongia), $586,540$.
intestinalis (spongia), 590.
intosus (Lophozozymuz), $5 \div 7$.
Iotrochota, 374,433 , 610.

Ipliculus, 253.

irasa (Munida), 280.
iris (Munida), 280 .
irregularis (Antedon), $155,161$.
Ischnochiton, 78.
1sopoda, 299.
isseli (Risella), 62.
jacksoniana (Kellia), 105.
japonica (Acabaria), 828 , $330,361,365$.
japonica (Mopsella), 361, 363, 365.
japonica (Munida), 279, 561.
japonicus (Conus), 489.
japonicus (Petrolisthes), $185,268,272$.
javanica (Butorides), 28.
jaranica (Pteroides), 329 , 334.
javanum (Dentalium), 77.
jeffreysi (Desmacidon), 419.
johnstoni (Vioa), 468, 622.
johnstoniannm (Nymphon), 326.
jucosa (Isodictya), 424, 425.
jucunda (Ranella), 56.
jugosus (Chiton), 78.
jukesi (Actinometra),155, 168.
jukesi (Tenus), 93
jukesii (Cymopolia), 551 , 552.
jukesii (Fissurella), 77.
jukesii (Lemnalia), 332.
jukesi (Nephthya), 328, 329.
juncea (Juncella), 330, 345.

Juncella, 345, 578, 580 .
karu (Lalage), 13.
Kellin, 105.
kichmannseggi (Riselia), 61, 62.
kienerii (Purpura), 50.
kingicola (Crassatella), 108.
kirkii (Dysidea), 389 , 597.
kirkii (Eupagurus), 185, 267.
kochi (Cerithium), 67, 502.
kochi (Rhinoclavis), 502.
Kratssin, 235.
kröyeri (Ephippiphorz), 187, 312.
kröreri (Lysianassa), 312.
kutilii (Ocypoda), 184, 237.
kuhnholtzi (Peeten), 114.
labiclolepa (Galathea), 560.

Labio, 74.
labio (Monodonta), 74, 505.
labio (Trochus), $74,505$.
labyrinthicus(Pilumnus), $183,224$.
lacertosns (Achæus), 181, 188,520 .
laciniatum (Echinodictymm), $-45(6,457$.
laciniatus (Dictyocylin(drus), 454.
lacinulosa (Maurieca), 595.
lactea (Deiopeia), 577.
levicarpus (Lambrus), $182,200$.
læridorsalis (Philyra), 547.
levigata (Linckia), 12!, $173,509,510$.
Levimana (Leucosia), 184, 223,250 .
lerudanus (Eriphia), 517, 584, 572.
lævimanus (Etisus), 183, 217.
levioculis (Achatus), 516, 520.
levior (Spongodes), 329, 334,574 .
leris (Achelia), 188, 323.
lrevis (Alphæus), 519, 561, 575 .
levis (Ceratoplax), 184, 24.
leris (Chasmagnathus), 184, 246.
lexis (Chiton), S5.
lexis (Esperia), fill.
levis (Littorina), 61.
laeris (Nas-a), 49.
lari= (Paragrapsus), 184, 246 .
Laganum, 122.
lagema (Holothuria), 304, 510.
Ialage, 13.
lamurckii (Petrolisthcs), $185,268,519,557,559$, 574.
lamarchii (Vents), 03.
Inmarekii (Nanthodes), 517, $529,371$.
lambriformis (Phlyxia), $184,252$.
Lambrus, 199, 517, 527, 571.
lamellaris (Venus), 03.
lamellosa (Carterispongin), 373, 385, $3<6$.
lamellosa (Spongia), 386.
Lampania, 68.
lanatus (Pilumnus), 183, 220.
lancen (Latirus), 52.
lanceolatum (Branchiostoma), 31, 22.
lanuginosa (Spongia), 603.
lapicida (Petricola), 98.
lapidescens (Spongia), 591.

Larus, 27.
larveformis (Chitonellue) 85,86 .
Inta (Aricula), 119.
lata (Cirolana), 187,204.
lateralis (Cryptodromia), $18,3,259$.
lateralis (Jromia), 259.
Interculnta (Pleurotoma), 3 8.
latifrons (Macrophthalmus). 238 .
latifrons (Mieippa), 525.
latifrons (Porcellana), 2π.
latipes (Paratymolus), 231.
latirostris (Mfiagra), 13.
Latirus, 52, 407.
latistylis (Cirolana), 304.
Iatreillei (Cilicea), 187, 308, 369.
Intreillei (Niesea), 308.
latro (Birgus), 519, 555, 5it.
leachii (Dacelo), 21, 22, 23, 24.
Leander, 295.
Ledta. 111.
leguilloui (Menippe), 183, 218.
leguilloui (Mromenippe), $188,218$.
le guillouana (Nerita), 69.
legumen (Malleus), 112.
leichardti(Telpbusa),236.
Leiopyrga, 75.
Lemnalia, 332.
lemniscatum(Cerithium), 03.
leopardus (Pecten), 114.
Iepida (Isanda), 71.
Lepidonaxia, 195.
Lepidoptera, 577.
Leptochela, 207.
leptocheles(Xiphonectes), 538.

Leptoconchus, 497.
Leptodius, 212, 214, 215, $217,580,571$.
Leptogorgia, 341 .
Leucaltis, $376,482,589$, 628.

Leucetta, $376,482,589$, fiss.
Levecelln, 355.
leucomeln (Campephaga), 13.
leucomefans (Lalage), 13.

Leuconia, 376, 482, 589, 630).
leucoplien (Natica), 57.

Leuenphlœus, 375, 464, 585.
leucopygialis (Artamus), 21.
leucorhynchus(Artamus), 21.

Leucortis, 589, 629.
Leucosia, 249.
Lencothoë, 312.
leriusculus (Alpheus), 284.
leminii (Ptilotis), 20.
licheniformis (spongia), 427.
lifunna (Monilea), 73.
lifuanus (Trochus), 73.
Ligia, 299.
Lima, 116.
1 ima (Area), 110.
limbata (Chalina), 398, 399.
limbata (Ptilotis), 18, 19.
limpida (Natica), 57.
lincki (Oreaster), 173, 509, 510.
Linckin, 124.
lineata (Holothuria),152.
lineata (Nerita), 70.
lineatus (Cyciosanthus), $183,219$.
lineifer (Alpheus), 237.
lineolata (Aglaia), 85.
linter (Arca), 105.
Liolophus, $518,545,573$.
Liomera, 213, 517, 528, 571.

Lissocarcinus, 518, 541, 573.
literatus (Conus), 483.
Lithadin, 254.
Lithodomus, 109.
Litigorgia, 311.
Littorina, $60,500$.
liridum (Sesarmu), 247.
lividus (Leptodius), 183, 214.
lividus (Xantho), 214.
lizardensis (Conus), 36 ,
lobata (Pachychalinn), $374,404$.
lobata (Placuna), 116.
lobata (Epongia), 404, 405.
longicarpus (Mycteris), 184, 248.
longii (Nerita), f9.
longimana (Dorigona), 130, 173.
longimanus (Eurynome), 524.
longimanus (Pentagonister), 130, 182, 200.
longioculis (Lambrus), 201.
longipeda (Ophiothrix), $143,171,17-509$, 510.
longipes (Charadrius), 27.
longipes (Fgeria), 192.
longirostris (Galathea), 279.
longirostris(Hxmatopus), 27.
longi-pina (Cilicrea), 157, 311.
longispinus (Chlorinoides), $517,520,570$.
longi-pinus (Lambrus), $182,199$.
loncispinus (Paramithrax), 193, 517, 522, 570.
longistylis (Cymodocca), 187, 305.
Lophactza, 517, 527, 51.

Lophozozymus, 207, 517, 527, 571.
lorina (Acheus), 520.
loveni (Antedon), 155, 158.

Lorenia, 123.
lueasii(Atergatopsis),529.
Lucina, 103, 507.
luctuose (Mitra), 49 S.
lucunter (Echinometra), $122,171,172,177,509$, 510.

Luidia, 132.
Lupocyclus, 234.
lutaria (Halopsyche), 284.
lutarins (Alphens), 284 .
lutea (Risella), 61, 62 .
luten (Zosterops). 18.
luteostoma (Purpura), 50.
luteus (Tectarins), 62.
Inteus (Trochus), 61 .
lyncurium (Tethyn), 624.
lynx (Cyprax), 50 .
lyriea (MIangelia), 41.
matilla (Asteronotus), 506.
mabilla (Doris), 50G.
Macandrellus, 83 .
macgillisrayi (Chiton), 81.
macgillivrayi (Murex), $4 t$.
macgillivrayi (Xantho), 183, 211.
macleari (Holothuria), 152.
macleayi (Haleyon), 24.
macrodactyla (Pachychalina), 37 t, 406.
macrodactyla (Spongia), 405.
macrophthalma (Pontonia), 291.
Macrophthalmns, 237, 518, 542, 573.
Macropygia, 25 .
macrorlynicha (Pachycephaia), 15, 16.
macrostoma (Cerithium), 66, 67 .

Macrura, 280.
Mactra, 100.
Mactrinula, 101.
macilata (Cucumarin), $1+4$.
maculatn (Pleurotomn), 430.
maculata (Pontonin), 291.
maculatus (Grapsns),518, 544, 573.
maculatus (Euxanthus), 203.
maculntus (Petrolisthes), 519, $558,574$.
maculosa (Lonelreus), 505.
maculosa (Pyramidella), 50.5
maculosum (Cardium), 102.
maculosus (Octopns), 36.
madngascariensis (Foudin), 483.
madagascariensis (Gerrhonotus), 486.
madagascauriensi: (Phyllospongia), 586,594 .
madagascariensis (Zosterops), 484.
madreporarum (Coralliophilia), 497.
me2ndrina (Clathria), 5s8, 614.
magnirostris (.Esacus), 26.
magnirostris (Gerygone), 13.
magnirostris (Pseudogerygone), 13.
malabariea (Tapes), 97.
malaccana (Tellina), 90.
Malleus, 112.
Mallicollo Islander, 7, 8 .
mamillaris (3yra), 184, 251.
mamillaris (Stelletta), 625.

Mauma, 57.
Mnmmalia, 5.
mammillatus (Euxanthus), 527.
mammillatns (Heterocentrotus), 171.
Mangelin, 41 .
Manorhina, 8.
mantelli(Carterispongia), 586, 505.
mantelli (Halispongia), 385,505 .

Mantellum, 116.
Maretin, 123.
margaritifera (Aricnla), 58.
marginalba (Purpura), 52.

Marginclla, 499.
marmoratn (Linckia). 125, 173, 175.
marmorata (Pectinura), 135.
marmoratum (Dori(d mm), 87 .
marmoratus (Ophidinater), 125.
martensi (Comus), 4×8.
martensi (Ophiothrix), $1+1,1+2,174,176$.
martensii (stilbognathus), $577,521,570$.
martinii (Eulima), fis.
mascarenica (Leucaltis), 589, 628.
mascarenica (Mie ippa) 2), 523.
massalis (Leucophlous), 464, 6220 .
massavensis (Мœгг), 319.
mastersii (Megamera), 319.

Mastigochirus, 280 .
mastophora (Axinella), 619.

Matuta, 256.
Maugeria, 81 .
Mauricen, 385, 594.
mauritiana (Hippospongia), 586, 591.
mauritinna(Littorina), 60,61 .
mauritiman (Mucleria), 509, 510.
mauritiana (Scintilla), 106.
mauritiana (Spongia), 591.
mauritianus (Strombus), 502.
maxillaris (Triphoris), 502.
maximn (Holothuria), 509,510.
maxima (Thalassina 283.
medius (Piezorhynchus), 14.
megalirrhaphis (Leucetta), $589,628$.
megaloplax (Linckia), 126, 173.
megalop'ax (Pectinura), $134,174$.
megalorrlinphis (Amorphina), 374,416 .
Megamora, 317, 318.
Megapodius, 26.
megasiomn (Tuba), 400.
megisto (Pagurus), 555.
meinerti (Ega), 187, 305.
melanauchen (Sterna), 484.
melanochirus (Chlorodopsis), 217 .
melnnodactylus (Chlorodo 1 sis), $517,531,572$.
melmodactylus (Cymo), 533.
melanogramma (Ophiothrix), $145,174$.
melanolenens (Microcarbo), 28.
melanonotus (Porphyrio), 26.
melnnops(Grancalus), 13.
melanostoma (Risella), 61.
melanostoma (Trochus), 62.
melanotragus (Nerita), 69, 70.
melanura (Pachycephala), $15,16$.
meleagridis (Mytilus), 118.

Melina, 113.
Melitn, 315.
Melitma, 357, 358.
Melitella, 958.
Melithra, 358.
Melitodes, 857.
melobesioides (Placospongia), 481.
menibranacen (Spongia), $\therefore 91$.
membranosa (Aplysina), $373,391$.
membranosa (Epongia), 391, 600.
Menathius, 180, 517, 521,570 .
Menippe, 218.
mera (Terebra), 491.
Merops, 21.
mesodesma (Venus), 94.
messor (Metopograpetis), $184,245,518,545$, 573.
metis (Cancer), 217.
metis (Etisus), 217.

Metopograpsus, 245,518 , 545, 573.
Metrodira, 124.
metularia (Cidaris), 172, $509,510$.
Міптіка, 00.
micans (Opatrum), 576.
Micippa, 198, 517, 524, 571.

Microcarbo, ≥ 8.
microdiscus (Antedon), $155,163$.
microplas (Ophiothrix), 148, 174.
microrrhaphis (Lencetta), $376,48 \%$.
milberti (Aleeto), 156 ,
milberti (Antedon), 155 , 35%.
milberti (Comatula), 156.
miles (Diogenes), 263.
miliare (Astrogonium), 120.
miliaris (Actumnus), 533.
miliaris (Chlorodius), 517, 531, 571.
miliaris (Conus), 488.
milinris (Ebalia), 550 .
miliaris (Pentngonazter), 129.
militaris (Petrolisthes), 271, 558.
millepmetatus (Conus), 488.

Mimetn, 12.
miniacea (Plexaura), 328, 299, 3-1.
minor (Alpheus), 186,
$288,519,562.575$.
minor (Harpa), 498.
minor (Pleurotoma), 490.
minor (Rissoina), 62.
minus (Alpheus), 288.
minuta (Cytherea), 95.
minutus (Pagurus), 265 ,
mirabilis (Siphonogor-
gia), $328,300,352$.
minabilis (Tbyone), 149.
miranda (Modiolaria), 108.
mirificus (Triphoris), 502. Mitra, $54,498$.
mista (Chondrilla), 587 , 602.
motesta (Callithea), 499. modesta (Holothuria), 102.
modesta (P sammobia),, 08 . modesta (Turricula), 499.
Modiola, 1118. f08.
Modiolaria, 108.

Mœra, 315, 319, 519, 567, 575.
molare (Echinostrephus), 171.
moleculina (Columbella), 493.
mollior (Cacospongia), $371,372,378$.
Mollusen, $34,487$.
mongolicus (Egialitis), 27.
monilata (Chalina), 373, 394.

Munilea, 73.
monilifer(Triphoris),502.
monilifera (Columbella), 490.
monilifera (Pilumnus), 22 2)
moniliferum (Cerithium), 63.
monoccros (Menathius), $182,190,517,521$.
monoceros (Penseus), 296.
monodon (Mures), 46.
monodon (Penseus), 564.
Monodionta, 7 .
monolopha (Placinn), $476,479$.
monopodium (Crangon), 287.
montagui (Chalina), 396, C.O4.
monticulosns (Phymodius), 581.
Mopsea, 580.
Mopsella, 358.
morus (Cerithium), 63, 64,65 .
motacilloides (Sauloprocta), 14.
micronata (Callithea), 498.
mucronata (Mitra), 498.
mucronata (Nassi), 496.
mucronata (Tarricula), 498.
muggiana (Reniera), 417. muggiana (Tedania), 417. muileri (Amphioxis), 32, multidigitata (Cirolana), 187, 301.
multifida (Actinometra), $155,169$.
multifora (Spongin), 613.
multiforis (Linckia), 173, 509, 510.
multisctosns (Spondylus), 114.
multispinn (Ophioglypha), 171.
multizpinosum (Cardium), 102.
multistriatum(Cartium), 102.

Munida, 279, 519, 560, 575.
murata (Toxochalina), 374 , $40 t$.
Murex, ť. 491
muricata (Pellinar), 369, $374,411$.
murioatn (Spongia), 4te.
muricatum (Triecutriumi), 462
Muricea, $3315,578,579$.
Muricella, 333 .
muriculatus (Phos), 50.
muriger (Tlos), 205.
murigern (Lunthasia), 510, 546, 575.
murrayi (Stereoderma), 151.

Mya, 93.
Mycteris, 248 .
Myiagra, 13.
Myomenippe, 218.

mytiloides (Crenulata), 113.
mytiloides(Gastrochena), 307.

Myxilla, 374, 430.
Myzantha, 18.
Myzoinela, 17.
Myzostomum, 159.
Niesen, 308.
нани (Risellu), 61, 62. nama (Stelletta), 471. nana (Tisiphouia), 471.
Narica, bs:
Nassa, 48, 496.
Nassaria, 49.
nassatuln (Latirus), 497.
uassatula (Peristernia), 497.

Natica, 57, 500.
natator(Goniosoma), 519, $539,578$.
naueum (Atys), 86.
navicularis (Arca), 109.
Naxia, 196, 517, 523, 571.
Nectocareinus, 234.
Neoplax, 511.
nepa (Squilla), 186, 298.
Neplithya, 131, 352, 578, 579.

Nepturus, 229.
neptunus (Alphens), 186, $284,258,519,562$, 575.
nepiunas (Oncinopus), 196.

Nerith, 69, 503.
Neritias, 5u:
neritoides (Littorina), 60.
Nerosila, 308.
nervosum (EChinodictyum), 457, 45 S .
Nivella, 3315.
niger (Caloro lins), 183, $215,517,533,571$.
nigerrima (Neriti), 69 . nigra (Nerita), tiv, 70.
nigrescens(Tedania), 417, 418.
nigricans (Hylochehidou), 21.
nigricans (Petrochelidon), 21.
nigrigularis (Cracticus), 15.
nigrina (Crenatula), 113.
nigrispinosa (Murex), t2.
uigro-balteatum (Ceri-
thium), 65 .
vigrofasciatum (Cerithimm), 63 .
nigrum (Doridium), 85.
Ninox, 11.
nitens (Lysianassa), 312.
nitons (Murex), 492.
nitida (Kraussin), 184, 255.
nitida (Myiagra), 14.
nitida (Porcellana), 185, 27.
nitidus (Gebiopsis), 281.
nitidus (Lopbozozymus), 527.
nitidus (Notonyx), 245.
nitidus (Piczorlyynelus), 14.
nitidus (Pilumnus), 223.
nobilis (Aliamira), 90.
nodicostatus (Phos), 496 .
nodosa (Linchia), 124, 173.
nodosa (Asterias), 128.
nodosus (Lambrus), 182, $200,201$.
nodosus (Oreaster), 128, 173.
nodulosa (Dorippe), 257.
nodulosa (Vemur), 93.
nodulosus (Oreaster), 175.

מoirâtre (Nérite), 60,
norvegicus (Teredo), 93.
notata (Ptilotin), 19, 20 .
nove-hollandia (Cerithium), 68.
novx-hollandim (Larus), 27.
nowa-hollandise (Leacothot), 314.
novic-hollandia (Trichoglossus), 25.
novie-zoahundix (Caprellia), 321 .
novie-zealandie (玉ga), 303.
mubilus (Marex), 45.
muda (Cladochulint), 369, $373,325,397,473$.
madirostris (Coralliocaris), 563%
nudus (Typhlocarcinus), $\because 44$.
Nursia, 2.2.
Nussilin, 253, 518, 548, 57.
nux (Stelletta), 472.
Nycticorax, 2 s.
nympha (Columbella), 48.

Nymphor, 326.
obesa (Caprella), 320.
obesomanus (1 phleus), $186,257,519,561$, 575.
obeatla (Porcellana), 272.
obesulus (Pulyonyx), 185, $272,5 i 9$.
obesus (Chiton), 81.
obiensis (Pachycephala), 15, 16.
obliquata (Caryatis), 506.
obliquata (Cythorea), 506 .
obscura (Esperia), 375, 488.
obscura (Myzomela), 17. obensa (Aeanthellit), 463.
obtusolis (Tellima), 99.
obtusidentatus (Xiphonectes), $518,535,572$.
obtusum (Acanthella), 42.
obtusns (Carpilodes), 213.
occideutalis (Dacelo), 23, ㅇ.t.
occidentalis (Penæus), 564.
ocellata (Leucasia), 184, 249.
ocellata (Sicyonia), 180, 295.
ocellifera (Nectrii), 175.
ocellifera (Patiria), 175.
ochracea (Melitodes), 355, 303.
Ocmas, 147.

ALPHABETICAL INDEX.

octogonum (Dentalium), 77.

Octopus, 31.
ocularis (Clyciphila), 18.
ocularis (Stigmatops), 18, 19.
oculata (Chalina), $\ddagger 03$.
oculata (Spongia), 303.
oculatus (Chitonellus), $8 t, 81$,
Ocypuda, 287,518,542, 573.
oflicinnlis (Euxpongia), $371, \ddot{7}-3,378$.
okeni (Thyone), 149.
olevacea (Rbizuclalina), 420.

Oligoceras, 587, 598.
Olisa, 497.
Onchidium, 92.
Oncidium, 92.
Oncinopus, 1! 10 .
Omiscus, 300.
Ophidiaster, 125.
Ophiocoma, 1:9.
Ophiopeza, 1:7.
Ophinroidea, 134.
Ophlitaspongin, 442.
Ophlitispongia, 375,429 , $4+2$.
oplioides (Neoplax), 509, $510,511$.
Ophiopinnx, 135.
Ophiothrix, 140.
orbicularis (Lissocarcinus), 51s, $5+11,573$.
Oreula, 1,0.
Oreaster, 127.
Oreopliorus, 254.
oricutalis (Ehalin), 550 .
orientalis (Iciligorgia), $330,350$.
orientalis (Rocinela), 187, 204.

Oriolus, 12.
Ophiact is, 138.
Ophiarthrum, 140.
Ophiolepis, 138.
Ophiomaza, 145.
Ophiomercis, 188.
Ophioplocus, 138.
ornata (Lucina), 103.
ornnta (Vorcellann), 260.
ornata (Tosin), 175.
ornatus (Merops), 21.
oryx (Clorilia), 195,517 . $52,2 \% 0$.
oryx (Hynstenus), 182, $195,517,522,570$.

Ostracoda, 321 .
otahitica (Curterispon-
gia), $373,385,386,583$, $584,586,5415$.
otnhitica (spongia), 385, 595.

Othilia, 124.
ornta (Lahaina), 520.
oratus (Chorilia), 517, $522,570$.
ovatus (Halicarcinus), $184,248$.
oratus (Mynstenus), 517, 522,570 .
Ovuln, 59.
Ovulum, 39.
orum (Arublypneustes), 171.
owenii (Mangeria), 81.
Oxyperes, 101.
Ozims, 2.28, 517, 584, 572.

Pachyceplala, 15.
Machychalinn, 374, 404.
Pachycheles, 273 .
pacifica(Huenia), 191,517, 520.
pacificum (Callipodium), 350.
pacificus (Alpheus), 284.
pacificus (Macrophthal$14 n s), 233$.
Pagurus, 264, 519, 555, $5 \pi+$
Palremon, 205,
pallnsi (Aplysina), 587, 600.
pallida (Psammogorgin), 345.
pallida (Voluta), 56.
pallidula (Scintilla), 106.
pallidus (Amblypnenstes), 177.
palmata (Clathria), 375, 47.
palmata (Halichondria), 402.
palmata (Spongia), 610.
palmensis (Peusus), $56 \pi^{2}$.
palmosa (Ccelogorgin), 355.
palmulata (Teredo), 95.
pannyensis (IIaliplana), 45.
panicen (Amorphina), $414,417,440$.
panicea (Halichondria), 355, 415.
Panopeus, 213.
papilia (Ophlitispongia), 412.
papillaris (Spongin), 385.
papillosa (Crelln), 432.
papyracea (Siphonochalina), 400.
papyracea (Spongia), 593.
papyracen (Phyllospongia). $584,593$.
Paragrapsts, 246 .
Paranicipya, 198, 109, $517,520,571$.
Paramithrax, 192, 517, $5 \cdot \boldsymbol{2} 2,570$.
Paramuricea, 338.
Paranthura, 311.
Paratymolus, 261 .
pardalina (Columbella), 48.
$1^{\text {ardalis (Holothuria), }}$ $509,510,511$.
parishii (Impluilectus), 43%.
parishi (Esperin), 374, 436.
parishii (Raphiodesma), 436.

Parthenopoides, 203.
parricirra (Actinometra), $155,168$.
partimanus (Macrophthnlmus), 518,542, 575.
parvirostris (Alpheus), 287.
parvispinus (Plyylhean(hus), 171.
parristella (Stelletta), $5-99,627$.
paryula (Risella), 62.
Pasiplima. 297.
Patella, 77.
patelliformis (Kenospongia), 377.
patiens (Cerithium), 63, (i4, 65).
Patirin, 131.
pancicirra (Actinometra), $155,169$.
panciforis (Linckia), 126, 173.
peasei (Ilitra), 5.5.
Perten, 114.
pectinata (Actinometra), 105.
peetinata (Circe), 96,506.
pectinata (Crista), 506 ,
pectinata (Ctenocella), $328,330,347,348$.
Pectinura, 134.
pelagicus (Neptunus), $183,229$.
Pellinn, 374, +11,587, 607.
pellucida (Esperia), 875, 437,611.
pellueida (Rhizochalina), 588, 608.
Peneus, $295,519,563$, 575.
penicilatus (Diogenes), 263.
peninsularis (Ninos), 11.
pennatula (Carterispongia), 586, 595.
pennatula (Spougia), 595.

Pentaceros, 127.
Pentagonaster, 128.
pentagonus (Gonatonotus), 18\%, 244.
pentingularis (Culeita), 177.
pentaphyilum (Ophiothrix), 139.
peregrina (Ilolothuria), 152.
perflava (Leptogorgia), 330, $3+3$
pergamentacen (Clndoohalina), $371,373,393$, 30 s .
perimina (Leucaltis), 482.
perlata (Coenobita), 519, $555,574$.
perlatus (Chlorodinz), 532.

Perna, 113.
Peronella, 12.
Peronia, 92.
peronii (Idoten), 311.
peronii (Lagamum), 171.
peronii (Nantho), 206.
perramosa (Muricea), 580.

Perrinia, 74.
Petalomera, 260.
petersii (Naxia), 517, 523, 571.
petersii (Naxioides), 517, 523, 771.
petitiana (Narica), 69.
petitthouarsi (Anchista), 180, 293.
petleyi (Phlyxia), 252.
petrieus (Oreophorus), 25.)
petrect (Tlos), 235.
Petricoln, 95.
Petroebelidan, 21.
Petrolisthes, 2iS, 519, inti, 57.
petrosuin (Cerithium), 63, 64.
Phalotia, 7:-
Phasianelln, 504.
phasianella (Macropygia), 25.
$\mathrm{p}^{\text {hatianus (Centropus), }}$ 25.
phasma (Nymphon), 326.

Philemon, 20.
philippensis (Hypotienidia), 26.
philippensis (Rallus), 26.

Philyra, 518, 54f, 573.
philyra (Micippa), 182, $158,199,525$.
Phlaodictyon, 419.
Phiyxia, 252.
Phoriospongia, 375, 489.
Phos, 49, 496.
Phoxichilidium, 325.
Phyllacanthus, 118.
Phyllidia, 506 .
Phyllophorus, 150.
Phyllospongia, 586, 593.
Phynodias, 517, 531, 571.
physa (Desmacidon), 429.
pica (Peeten), 115.
pica (Ophiocomn), 174, 509, 510.
picata (Grallina), 12.
piceus (Chiton), 81, 82.
picta (Thalamita), 517, 540, 573.
picturata (Bankiria), 75 .
picturata (Glabella), 499.
pieturata (Marginella), 499.
pictus (Grapsus), 54.
Piezorlyuchus, 14.
pileolus (Toxopneustes), $172,500,510$.
Pilodins, 216 .
pilumnoides (Chlorodopsis), 531.
Pilumnopeus, 298 .
Pilumnoplax, 241.
Pilumbus, 210.
Pinarocichla, 19.
Pinarolestes, 13.
pinniformis (Antedon), $155,156,160$.
Pinnotheres, 247 .
piperata (Aplysia), 89.
piperata (Pleurotoma), 490.

Pisania, 492.
Pisces, 29.
1'itta, 21 .
Placenta, 116.
placenta (Arachnoides), 171.

Placospongia, 376, 481.
Placma, 116.
plamasit ($\mathrm{Pima}_{\text {a }}$), 196.
planavius (Chorilia), 196.
planasius (Hyastenus), $182,106$.
planatus (Halicarciums), 248.
planicostata (Placenta), 116.
planissimus (Liolophus), $518,545,573$.
planulata (Maretia), 123, $171,172,176$.
platurus (Gymnodacty1 u 3), 29.
platycheles (Mycteris), 218.

Platydoris, 91.
platypes (Paramicippa), 525.
platythorax (Pagurus), 265.
pleetrorhynchus (Axius), $186,282$.
Pleurechinus, 119.
Pleurobrimehus, 88.
pleuronectes(Amussium), 116.

Pleurotoma, 37, 489.
plexa (Nerita), 503.
1lexaura, 839.
Plexaurelln, 389 .
plicata (Nerita), 503.
plicatula (Risella), 62.
plicatus (Phos), 49,
Ploeamophorus, 91.
plumben (Natica), 57.
plumosn (Halichondrin), 430.
plumosi (Spongia), 430.
Plyctolophas, 25.
pocalum (Cacospongia), 386.

Podoseroz, 319.
Podophthalmin, 181.
podophthalnus(Peneus), 565.

Poliolophus, 19.
polita (Xerita), 503.
polita (Pseudophilyra), $518,3+7,574$.
polyneanthus (Aetreodes), 206.
polyacanthus (Astropecten), 133, 173,500, 510.
polraemthus (Chlorodius), $20 t 5$.
polybioides (Lissocarcimis), 541.
Polyfibrospongia, 383.
Polyonyx, 272, 519, 559, 5%.
polyplax (Asterias), 124, 178.
polyzenia (Octopus), 34.
pommи (Dolinm). 499.
pomum (3alea), 499.
ponderosa (Siliquaria). 68.
ponticerianus (Francolinus), 483.
Pontonia, 290, 519, 562, 575.

Porcellana, 271, 272,273, 274.
poressa (Xantho), 212.
Porphyrio, 26.
Portunts, $2: 22$.
poupineli (Trochus), 72.
powisiana (Nntica), 58.
pralonga (Plexaura), 329 , 339, 340.
pretexta (Folata), 56.
prasinus (Varamus), 29.
primigenia (Lencetta), $371,376,482,583,589$, 628.
procerus (Rhaphidophlus), $375,451$.
producta (Mactra), 100.
producta (Spirula), 100.
proliferans (Asinella), $588,618$.
propinqua (Ophiothrix), $174,509,510,511$.
proscissa (Mitra), 54.
proteus (1Inexia), 182, 191, 520.
proteus (Leucophlens), $588,617,620,621$.
proteus (Phyllophorus), 150.

Protoschmidtia, 374, 414.
protracta (Cslichna), 505.
prymina (Thalamita),231, bil.

Psammobia, 98.
Psammopemти, 373, 390. pereudo-antipathes (Gorgonia), $3: 37$.
Pseudogerygone, 13.
Pseudomicippa, 197.
Pseudophilyra, 518, 547, 584.

Psendorhombila, 239.
Psilacabarin, 857, 363.
Pterocera, (5in).
Pterogorgia, 349.
Pteroides, 334.
Ptilopus, 25.
Ptilotis, 19.
pubescens (Cymodocea), sos.
pubescens (Paratymolus), 261.
pubescens (Spluxroma), 308.
pugilator (Actumnus), 225.
pugilator (Pilumuns), $183,225$.
pulchella (Arcmaia), $5+19$.
pulchella (Ohama), 102.
pulchella (Ebalin). 549.
pulchella (Ranella), 565 .
putchellus (Pachycheles), $185,273$.
pulchellus (Podocerus), $\$ 20$.
pulcher (Pilumnus), 183. 219.
pulcherrima (Arcania), $185,253$.
pulchra (Crassatella), 107.
pulchra (Petalomera), $185,260$.
pulchra (Terebra), 490.
pulchripes (Porcellana), 268.
pulchrum (Cardium), 507.
pulchrum (Papyridea), 507.
pulln (Holothuria), 509, 510.
pulsinar (Leucortis), 629,
pumila (Antedon), 155, 157.
pumilus (Murex), 491.
pumilus (Ocinebra), 491.
punctata (Codakin), 5018.
punctata (Liomera), 517, 508, 571 .
punctata (Lacina), 50₹.
punctata (Nerita), 69.
punctatum (Oncidium), 92.
punctatus(Cycloxanthas), 213.
punctatus (Hypocalus), 182, 206.
punctolimbata (Ophiothrix), 143, 174, 176.
punctulata (spirastrella), 589, 62:3.
punctulatus (Maerophthalmus), $184,237$.
punctulatus (Pagurus), $519,255,574$.
pupa (Cerithium), 63, ti.).
pupaforme (Cerithium), (ib.
pura (Cytherea), 95.
pura (Deiopeia), 577.
Purpura, 50, 52, 496.
purpurascens(Cerithium), 63.
purpurea (Actinometra), 165.
purpurea (Aplysina), 301, 392.
purpurea (Halichoudria), 433, 43.
purpurea (Othilia), 124.
purpurea (lotrochota). $369,371,374,376$, 377, +33, 434, 4:34, $473, \quad 583,584,588$, 610.
purpurea (Stelletta), 369, $376,377,470,+22$, $473,475, \sqrt{589}, 627$.
purpurem, (Aleyonium), 468, 470.
purpureus (Echinaster), $124,173,509,510$.
pusilla (Ranella), 500.
putriclosum (Aleyonium), $331,420$.
Pyeuogonida, 329.
pygmea (Colina), 66,67.
pygmæa (Pleurotoma), 490.
prkei (Dictyocylindrus), $454,459$.
pykei (Eehinodictyum), 455, 457.
Pyramidella, 505.
Pyrazus, 68.
pyrum (Turbinella), 53.
quadrata (Ligia), 300.
quadratus (Macrophthalmus), $2: 8 s$.
quadridens (Cmeer), $25 \overline{7}$.
quadridens (Dorippe), 257.
quadridentata (Dorippe), 257.
quadridentata (Ebalia), 252.
quadridentata (Pblyxia), 252.
quadrilobata(Porecllana), $185,276$.
quadrilobata(Thalanita), $518.539,5 \pi 3$.
quadrilobatus (Cymo), 533.
quadrilobatus (Mastigochirus), 12f, 250 .
quadrimanus (Mœra),569.
quadriradiata (Fissurella), 88.
quinquedentatus (Xantho), 530 .
radiatn (Aztropyga), 172, 509, 510.
radiata(Carteriospongia), 595.

Radius, 59.
Rallus, 26.
ramosi (Ammothen), 332.
ramsayi (Plilyxia), 25.2.
ramsayi (Mcera), 187,315, 569.
ramulosa (Borella), 339.
ramulosa (Echinogorgia), 339.
rama (Murex), 56,
ram (Ranella), 56.
Ranella, 56, 500.
rangiana (Neritina), 503.
rangiana (Smaragdia), 503.
rapa (Turbinella), 53.
Raspailia, 375, 459.
rara (Pleurotoma), 39.
rectangularis (Philyra), 518, $546,573$.
rectangularis (Psammogorgia), 333, 344 .
rectimanus (Diogenes), $185,262$.
recurva (Nassaria), 49.
reerianuu (Cardium), 101.
regina (Antedon), 155, 160.
regularis (Asterina), 131, 173.
reinwardti (Clathria), $309,375,377,446.448$.
Reniera, 074, 407, 587, 605.

Renierida, 40 F ,
Reptilia, 29, 48%.
Retaster, 133.
reticulnta (Voluta), 56.
reticulatus (Oreophorus), $185,254$.
retifera (Moysella), 879.
retroflexa (siellettu), 376 , 473,474
retusa (Camposcia), 181, $189,5 \pm 0,5111$.
Rhaphidophlus, 375, 149.
Rhinoclaviz, 67.
Rhipidogorgia, 338.
Rhipidura, 14.
Rhizochalina, 374, 419, $588,618$.
rhode (Alpheus), 284.
richtersii (Penteus), 519, $544,575$.
Ricinula, 51 ,
ricinus (Sistrum), 497.
rigidn (Thyone), $1+9$.
rimosa (Desmacidon), 588, 10108.
Risella, 61.
Rissoinn, 62.
robusta (Actinometra), $155,166,167$.
robusta (Stelletta), 472.
robusta (Tethya), 624.
robusta (Iosochalina), 373, 403.
robustus (Cracticus), 15.
Rocinella, 804.
rodgeria (Centrostephanus), 171, 177.
rosea (Isodictya), (605.
rosea (Reniera), 587, 604, (605).
rossii (Cirolann), 303.
rostratum (Cerithium), 501.
rostratus (Chitonellus), 84.
rostratus (Leptoconchns), 497.
rotata (Ophiothrix), 142, $1+3,174,176$.
rotunda (Dromin), 552, 553.
rotunda (Kellin), 105.
rotundatus (Lmpocyelus), 184, 234.
rofundifrons(Porcellana), $185,274$.
rubecula (Myiagra), 14.
rubeola (Tubipera), 365.
rubidus (Geograpsus), 545.
rubispina (Spongia), 427. rubra (Stomatía), 7 is.
rubrinodis (Clathraria), 363.
rubromaculata (Mcm), 187, 315, 319.
rubropunctatus (Calliosterna), 72.
rubropunctatus(Trochus), 72.
rubropunctatus (Ziziphinus), 72.
rubrovittatus (Pagurus), 265.
rudis (1hilyra), 518, 547.
rufa (Avieula), 113.
rufeseens (Chlorodius), 215.
ruffifous (Rhipidura), 14.
rufignster (Colluricincla), 13.
rufignster (Pinarolestes), 13.
rufixentris (Pachycephaln), 17.
rutopiperata (Columbella), 494
rufopunetata (Actra), 517, 528, 571.
rufopunetata (Trapezia), 518, 536, 572.
rufopunctatus (Pilumnus), $183,220$.
rugatus (Carpilodes), $517,520,571$.
rugipes (Actæodes), 531.
rugipes (Plymodias), 317, $331,571$.
rugosa (Conobita), 555.
rugosa (Tellina), 507.
rugosum (Cerithium), 63, in, 65 .
rugosus (Etisodes), 217.
rugosus (Euxanthus), 517, 527,571.
rugosus (Oreophorus), 250.
rugosus (Petrolisthes), 185,270 .
rumphii (Dolabella), 89.
rumphii (Dromia), 553.
rüppellii (Actax), 183, 209.
rutilans (Nassa), 49.
saccharata (Leucandra), 482.
saccharata (Leuconia), $370,482$.
sacella (Thyone), 149.
sacellns (Stolus), 149.
sacellus (Thyone), 149.
sacra (Demiegretta), 28 .
Salmacis, 118.
sanoonsis (Chlorodius),
218.
sanctus (Haleron), 24.
sandrockii (Lambrus),
212.
sandrockii (Parthenope), 202.
sarcophagus (Callistochi(ton), 79.
Sandoprocta, 14.
savicam (Nerita), 69.
savignii (Ophinetis), 138, 17.
savignyi (Thulamita), $230,540$.
Saxicara, 93.
scabra (Littorina), 60.
scabricula (Eriphia), 518, $534,572$.
scabricala (Petrolisthes), 271, 558.
scalriuscula (Trivia), 500.
scalaroides (Phos), 49.
scalpta (Pleurotoma), $4!0$.
scaphoides (Corbula), 103.
scapulatus (Corrns), 484.
schayeri (Ophionereis), 171.
schiödtei (Cirolana), 187, $302,303,304$,
Sehizochiton, 82.
Schizophrys, 197.
schmeltzii (Thyonidium), 150.
schmideliana (Culcita), 173, 509, 510.
schmidti (Crella), 374, 432.
schmidti (Tribrachium), $477,478,479$.
schmidti (Vioa), 569 , 622.

Schmidtia, 374.
schorileini (Ophiocoma), 510, 510.
schrammi (Iciligorgia), 35%.
Scintilla, 105.
Sclerogorgia, 340 .
seobinata (Tellinn), 507.
scolonendrina (Ophiocoma), 140, 171, 174, 509, $510,511$.
scripta (Columbella), 48. scufpta (Lithadia), 1850 , 254.
sculpta (Venus), 93.
sculptilis (Etisodes),
218.
sculptilis (Euxanthus), 204.
sculptus (II ypoceclis), 206, 527.
sentiformis (Clypeaster),
$172,509,510$.
Scutus, 7.
Seylla, 518, 538, 573.
seyphonoides (Reniera),
374, 407.
seyphonoides (Spongia), 407.
semen (Tellina), 99.
semicanalis (Dysidea), 369, 373, 389.
semigrauosa (Lophactiea),
517, 527, 571.
semilævis (Tellina), 507.
semilavatus (Pilumnus), $183,22.2$.
seminudus (Pilumnus), 222.
semiserrata (Megamœra), 319.
semitecta (Tellina), 90.
semitubulosa (Pellina), 414.
semperi (Cucumaria), 147.
senex (Diogenes), 263.
seuticosus (Phos), 50.
septemspinosa (Arcania), 253.
septosa (Euspongia), 372, 381.
septosa (Spongia), 381.
serenus (Leander), 295.
serenns (Palamon), 205,
serialis (Doryichthys), 30 .
seriata (Ophlitispongia), 42.
serpulifera (Naxia), 1S2, 196.
serrata (Acabaria), 300, 362
serrata (Oypricardia), 07.
serrata (Lucima), 103.
serrata (Seylla), 518, $2 \sharp 8$, 573.
sernatifrons (Pilumnojeus), 183, 228.
serratifrons (Porcellana), 27.
serratus (Schizophrys), 197.
serripinaa (Antedon), 157.
serrulata (Aricula), 112.
sertum (Topas), 496.
sertum (Purpura), 496.
Sesarma, 2\#5.
setifer (Actumnив), 183,
$225,517,533,572$.
setifer (Cancer), 225.
setifer (Pilumnus), 225.
setipes (Melita), 315.
setosu (Amphithoë), 317.
setosa (Carcinoplas), 541.
setosum (Dindema), 118 , $171,172,176,509,510$.
setosun (Dietyocylin(drus), $4,54$.
setosus (Minerophthalmus), 238.
sexdentata (Pseudorhombila), $181,239$.
sexdentatus (Eucrate), 239.
sexspinigera (Taramicippa), 198.
sexspinosus (Paralymo14) $, 185,261$.
seychellensis (Alemo), 583.
seychellensis (Columbella), 493.
Sicyonia, 295.
sieboldi (Hyalonema), 400.
signata (Nerita), 70.
signatus (Gelasimus), 184, 236.
Siliquaria, 68.
sima (Dorippe), 259.
sima (Thnlamita), 184, 231, $518,539,573$.
simillima (Pitta), 21.
simplex (Stellettinopsis), 477.
simplex (Tellina), 99.
simulans (Isodictya), 604.
sinensis (Nassaria), 49.
singaporense (Phlcodictyon), 421 .
singaporensis (Fissurella), 77.
singaporensis (Rhizocbalima), 371, 374, 377, $420,421,473$.
singaporinus (Pecten), 115.
singularis (Pentagonaster), 129
Binuata (Nursia), 185, 252.
sinuosa (Itippospongia), 586, 591.
sinuosa (Spongin), 591.
Siphonochalina, $3 \overline{7} 3$, 401.

Siphonogorgia, 352 .
Sistrun, 51, 497.
smaragdina (Aricula), 113.
smithi (Telesto), 323, 329,334.
smithii (Alexella), 331.
smithii (Eriphia), 517, 534, 572.
smithii (Telesco), 334.
Solanderia, 3 3).
solaris (Actinometra), $155,164,165,166$, 167.
solaris (Pecten), 114, 115.

Solenocaulon, 353.
Solenocaulum, 353.
Solenogorgin, 333.
solidn (Kellia), 10.5.
solidula (Tornatella), 86.
Solomon Islander, 7.
soluta (Akera), s7.
sordidus (Haleyon), 24.
sororia (Tuba), 401.
sparsinotata (Aplysia), 89.
sparsus (Ectyon), 454 .
spathulifora (Rhizochalina), 374,421 , 425.
apatulifer (Paramithrax), $19+$.
spatulifrons (Cryptopodia), 182, 208.
spatulifrons (Micippa), 199.
spatulifrons (Parami(ippa), 199.
speciosa (Trochus), 71, 72.
speciosus (Ozius), 183, 228.
speciosus (Ziziphinus), 71.

Spheroma, 308.
Sphecotheres, 12.
spiculifera (Axinella), 588, 617.
spinicarpa (Lencothoë), 187, 312.
spinicarpus (Gammarus), 312.
spinifer (Lambrns), 199.
spiniferum (Goniosoma), $184,283$.
spinifrons (Schizoplerys), 197.
spiniger (Chiton), 81.
spiniger (Schizophrys), 197.
spinosa (Holothurin), 151.
spinosa (l'aramicipua), $18 \div, 199$.
spinosa (Spongodes), $328,329,3 ; 32,3: 33$.
spinosi ('Luticula), 53 , th.
spinosirostris (Galathea), 519, $560,575$.
spinosits (Entomonyx), 517, 526, 571.
spinosus (Xantho), 206.
spinulifera (Munida), $180,279,551$.
spinuliferus (Harpilius), 18ii, 릅․
spimulimanus (Diogenes), 2033 ,
Spirastrella, 375, 467, 4is, 589, tit3.
Spogzodes, 332 .
Spondylus, 114.
spongíphila (Iga), 303.
spongiosa (Dromia), 553.
spongiosa (Dromidia), 519, 552, 574.
spongiosus (Iphiculus), 18i, $2 \pi 3$.
spongites (Acasta), 322 .
Spongoder, 332,578 , 579.
spurea (Clavatula), 39.
spurea (Glyphostoma), 39.
spurca (Pleurotoma), 39.
squamata (Ophiocoma), 139.
squamulata (Nerita), 70.
squarrosa (Siphono-
gorgia), 352.
Squilla, 298.
staurella (Tellina), 507.
Stellaster, 128.
stellata (Pectinura), 135, 136, 171, 174.
stellatus (Ophiopinax), 176.

Stellettn, 375, 471, 522, 589.

Stellettinopsis, 376 , 476.
stellifera (Amorphinu), 477.
stellifera (IIalispongin), :35.
stellifera(Stelletlinopsis), 47.

Stellospongin, 383.
stelospongus, 372, 383 .
Stercoderma, 150.
Sterm, 27.
sternalis (Metalia), 172, $5099,510$.
Stichopus, 151.
stigmaria (Nassa), 49\%
Stigmatops, 18.
Stilbognuthus, 517, 521, 570.
stimpsonii (Dromia), $5122,5 \pi 3$.
stimpsonii (Drouidia), $519,552,574$.
stimpsonii (Eurynome), 517, 523,571 .
stimpsonii (Thalamita), $184,232,5+0$.
stolidus (Anous), 27, 485.

Stolus, 149
Stomatella, 76.
Stamatia, 73.
Stomiopera, 20.
strangei (Natica), 57.
strenuus (Alpheus), 281.
streptochirus (Porcellana), 277.
striatus (Conus), 488 .
striatus (Chiton), 84, 85, 86.
striatus (Chitonellus), 81.
strigata (Modiola), 109.
strigosus (Grapsus), 518, $54, .58$
striolata (Ophiothrix), 142, 174.
Strombus, 58, 502.
Strongylucentrotus, 121.
strota (Actinometra), 167.
studeri (Spongodes), 329, $332,578,579$.
styliferus (Peneus), 297.
stylirostris (Penaens), 56-4.
Stylocheilus, 90.
subarmigera (Cladochalina), $373,393,396$, 397.
suberassa (Diplodonta), 104.
subeylindrica (Clathrin), S75, 377, +46.
suberea (Hymeniacidon), 468.
suberea (Papillina), 468, Suberites, 375, 465, 559, 622.

Suberitidn, 465.
Suberitide, 465.
Suberogorgia, 349.
suberosa (Gorgonia), 349 .
suberosa (Suberogorgia),
$3 \% 8,330,349$.
subfibrosa (Psammopemma), $373,390$.
subglobosum (Echinodictyum), 375, 457.
subgranosa (Ranella), 5it.
sublateralis (Diplodonta), 104.
subnodulosa (Venus), 9t.
subocularis (Glyeiphila), 18.
subocularis (Stigmatops), 18.
subpellucidus (Oncinopus), 190.
subquadrangula (Arca), 109.
subrugosa (Mumida), [13].
subtriangularis (Thalysins), 416.
subulata (Metrodira), 124, 173.
subulatum (Terebellum), 59.
subverrucatus (Mycteris), 248.
suctoria (Pedania), 417.
suensis (Megamœera), $187,317,319$.
sïensonii (Bursa), 56.
sulcata (Acasta), 188, (ize.
sulcata (Dotilla), 543.
sulcata (Solmacis), 118, $171,172,177$.
suleatifrons (Pseudorhombila), 184, 242 .
sulcatus (Obeliscus), 505.
sulcatus (Pyramidella), 505.
sulcatus (Pyrazus), 68. sulcifera (Monodonta), 75.
superbus (Pcten), 115. superciliosa (Micippa), 190.
supraoculata (Phyilospongia), $586,5: 4$.
suturalis (Hindsia), 49 .
suturalie (Massaria), 49 ,
swainsoni (Ptilopus), 25.
swainsonii (Cirolana), 303.
swainsonii (Eurydice), $30:$
Sydella, $3+4$.
symmetricn (Area), 111.
Syuapta, $1+6$.
Syndosmya, 49.
Synguathus, 30 .
Syringella, tho.
syringella (Raspailia), $400,461,462$.
treniatus (Clibanarius), $185,265$.
tremiatus (Pagorus), 235.
tabitensis (Penrens), 504.
talpa (Thalassina), 186, 283.
tantillus (Trochus), 62.
Tapes, 96.
Tedania, 374, 417, 587, 607.

Teinotis, 77.
Telesco. 30%.
Telescopium, 68.
Telesto, 334.
Tellina, 99, 507.
Telphusa, 235.
Temnopleurus, 119.
tenebrica (Arca), 110.
tenebrieus (Octopns), 35.
tenella (Melitaea), 361.
texellum (Cerithium). 501.
tenern (Muricella), $3: 9$, 335.
teuue (Ceratosoma), 90.
tenticaudata (Cilicera), 310.
tenuipes (Huenia), 191.
tenuipes (Pseudomicippa), 198.
tenuirostris (Ifrastenus), 517, 522,570.
tenuirostris (Lahaina), 523.
tenuis (Akera), 87.
tenuis (Mitra), 498.
tenuispina (Murex), 43.
temnispira (Alures), ti,
tenuistylis (Cirolana), 187, 308.
Tercbellum, 59.
terebellum (Obeliscus), 505.
terebellum (Pyramidella), 505.

Terebra, 37, 490.
Teredo, 93.
teres (Lithodomns), 109.
ternatus (Acarnus), 375, 453,588, 611, 615.
ternispina (Opbiocoma), 139.
territus (Murex), 45.
tessellata (Natica), 500.
tessellatus (Conus), 483.
testudinaria (Reniera), 374, 409, 606.
testudinarimim (Aleyonium), 419.
testuclinarius (Echinanthus), 171.
Tethya, 589, 624.
Tethyopsis, 376, 476, 477.
tethyopsis (Stelletta), $471,4 \pi 2,47+475$.
Tetilla, 589, 625.
Tetractinellida, 471.
Tetralia, 518, 537, 572.
textiformis (Mopsella), $32 \mathrm{x}, 330,358,360$, 362,363 .
textilis (Phos), 49.
Textrix, 97.
textrix (Tapes), 97.
Thalamita, $230,518,539$, 573.

Thalassima, 283.
thalia (Cancer), 198
thalin (Miejpra), 152, 198, 517, 524, 571.
thersites (Nassa). 48 .
thomasi (Hymeniacidon), 415.
thomsoni (Megamæra), 187,318.
thikujar (Metapograpsus), $2+6$.
Thyone, 149.
Thyonidiam, 150.
tibicen (Calcinus), 519, 557,574.
tibiellifer (Amphilectus), 874,428
tictonica (Fissurella), 7, 78.
tigrina (Columbella), 48.
timorensis (Varnnus), 29.

Tiunanculus, 11.
Tlos, 255.
tomentosns (Actrodes), $517,580,571$.
tomentosus (Actumyns), 225.
tomentosus (Pilumnus), 220.

Tonicis, $8!$.
toreuna (V enus), 93.
Toreumntica, 11!.
toremmaticus (Temnopleurus), 119, 120, 172, 176.

Tornatella, 86,
Tornatina, 50.5.
torquata (Diemenia), 29.
torresi (Cerithium), 66.
torresi (Thalutia), 72.
torresi (Trochnts), 7 .
torresiana (Drillia), $: 77$.
torresiana (Pleurotoma), 37.
torresiana (Venus), 94.
Torres-Straits 1slanders, 5, 6.
torta (Plexaura), 338.
torthosa (Area), 111.
tortuosum (Solenoenu$\operatorname{lnm}), 328,330,353$, 334.

Totanus, 27.
Tuxochalina, 573, 402 ,
Trachyootus, 29.
trachypoma (Syngnathus), 30.
tranquilla (Geopelia), 25.
transitoria (Spirastrelli1), 559,621 , 623 .
transversa (Heteroplas), 242.

Trapezia, 518, 534, 572.
Trapezium, 97.
trinugularis (Mactra), 101.
triangularis (Mithrax), 197.
triangularis (Thalysias), 416.

Triate, 625.
Tribulus, 43 .
tribulus (Murex), 43.
tricarinatus (Eupagurus), 267.

Trichoglossus, 25.
tricolor (Lalage), 13.
tricolor (Rhipidura), 14.
tricuspidatus (Alpheus), 561.
tridacne (Conchodytes), 290.
tridacnee (Pontonia), 990 , 563.
tridens (Helice), 246.
tridentata (Cerceis), 307.
tridentata (Corallioenris), 15i, 231.
tridentata (Pscudophilyma), 547.
trifilosi (Pleurotoma), +90.
trigonocephala (Ceratothoa), 360 .
trigonocephala (Cymothou), 340.
trigonus (1Balanus), 189, 321.
trilineata (Ophiothrix), $124,509,510$.
triloba (Purcellama), 276.
trilopha (Placiza), 479.
trincomalienxis (Spirastrella), \#68.
Triphoris, 502 .
Tripnenstes, 121.
Trisis, 111.
Triton, 500 .
triton (Alpheus), 284.
Tritonidea, 47 .
Trivia, 500.
trivirgatus (Piezorhỵnchus), 15.
Trochus, 61, 71, 504.
truncata (Cymodocea), 36.
truncatipes (Mœra), 509.
truncatus (Cliarybdis), 232.

Tuba, 373, 399.
tubaria (Goniocidaris), 171, 177.
tuberculata (Calappa), 255,
tuberculata (Ricinula), 52.
tuberculatum (Cerithium), $63,64,65$.
tuberculatum (Purpura), 52.
tuberculatum (Sistrum), 52.
tuberculatus (Achæus), 520 .
tuberculatus (Strougylocentrotus), 171.
tuberculosa (Philyra), 547.
tuberculosus (Colochirus), 147.
tubereulosus (Euxanthus), 182, 205.
tuberosi (Clathria), 975 , $441,44$.
tuberosa (Drillin), 38.
tuberosa (Microciona), 44.

Tubiporn, 363.
Tubuledigitux, 373, 401.
tubulusn (Euspongia), : ${ }^{2}$ 人1.
tubulosa (Siphonochalima), 371,373 , to1.
tubulosa (Solenogorgia), \% m Н.
tubulosa (Spongia), 401.
Tudicha, 53.
Tudieuln, 53.
tulipa (Cumis), 488.
tunicata (Corbula), 103.
Turbinclla, 53.
Turbo, 70, 503.
turneri (Voluta), 56.
Turriculn, -105.
turricula (Cythara), 41 .
turriculatus (Conus), 487.
turriger (Lambrus): 201.
turritus ('Pentuceros), 128.
tursicus (Turbo), 504.
turturina (Columbella), $+92$.
typica (Plexaura), 329, 335, $3+0$.
typicum (Echinonema), 015.
typicus (Archaster), 183, $173,175,509,510$.
typus (Suberites), 468.
uberrima (Rinalda), 420 .
ulnus (Clathrin), 450.
umbonata (Area), 110.
umbraticoides (Muricea), $328,329,336,584$.
undata (Purpura), 50 , 51.
undntum (Sistrum), 51.
undecimspinosa (Areania), $518,5+8,574$.
undosa (Pisania), 492.
undosa (Tritonidoa), 402.
undulata (Littorina), 61 .
unedo (Cardium), Ie3.
unedo (Hemicardium), 103.
unguis (Scutus), 77.
ungulata (Idotea), 311.
migulatus (Phymodius), 531.
unicolor (Brissus), 172, 509, 510.
unicolor (Nassa), 48, 49.
unicolor (Ptilotis), 20.
unicolor (Spongodes), 575, 579.
unicolor (Stomiopera), 20 .

ALPILABEIICAL INDEX.

unicolorata (Nassa), 49.
unidens (Pontonia), 5 (i3.
unidentata (Dromia),

unisemitu (Stichopus), 151.

Urosalpinx, 77.
ursulus (Pilumnus), 219.
vagabunda (Holothuria), 509, 510 .
ragabinda (Spirastrella), $371,375,418,470,624$.
vaillantianus (Carpilodes), $5 \geq 9$.
validum (Stereoderma), 150.
validus (Pentagonaster), 1:9, 173.
validus (Podocerus), 320.
vallata (Tosochalina), $402,40 t$.
varia (Halichondria), +24.
rarisbilis (Actinometra), 155, 169.
variabilis (Schmidtia), $374,415$.
varians (Muelleria), 500, 510.
varians (Pseudomicippa), $182,197,198$.
raricosa (Modiolaria), 109.
taricosa (Pbyllidin), 506.
taricosa (Pleurotoma), 38.
variegata (Artemis), 9\%,
variegata (Columbella), 45.
variegata (Hipponoü), 121.
variegata (Ophiocoma), 139.
variegata (Tapes), 97 .
variegatum (Cerithium), (63, 64.
variegatum (Coniosoma), 184, 233.
variegatus (Charybdis), 232.
variegatus (Portunns), 2:3.
variegatus (Stichopux), 150.
variolatus (Scytaster), $173,209,510$.
varipes (Pagurus), 5.7.
varius (Gellius), 371, 374, $+24,425,424$.
vasiplientum (Echinodictyum), 456 .
rasiplicatum (Echinonema), 454, 6146.
velata (Spongelia), 590.
rellicata (Cypricardia), 97.
vellicatum (Trapezium), 97.
velutinus (Penxeus), 186, 296.

Vencrupis, 97.
renosus (Carpilodes), $183,213$.
ventilabrum (Pbacellia), 456.
ventriculoides (Halispongia), 355.
Venus, 93.
vermiculntus (Pilumnus), 225.
vermifera (Carteriospongia), 385.
Verrucelln, 346,348 ,
verricosipes (Dromia), 259.
versicolor (Columbella), 48.

Vertagus, 67.
rertagus (Cerithinm), 67.
vertebratum (Cardium), 101.
respertilio (Pilummus), $183,219, \geq 25$.
Testita (Pseudorhombila), 184, 239.
restitus (Cancer), 241.
vestitus (Carcinoplax), $2+1$.
vestitus (Curtonotus), 241.
vestitns (Pilumnus), 219, 220.
victorim (Spondylus), 114.
victrix (Matuta), 185, 256.
ridua (Spirastrella), 468.
vigilans (Rocinela), 304.
rigilans (Xiphonectes), $518,532, .72$.
Villogorgia, 338 .
rillosa (Porcellana), 559 .
villosa (Thyone), 149.
villosns (Alpheus), 290.
villosus (Petrulisthes), 5119, $539,575$.
villosus (Pimotheres), $154,247,240$.
vimiualis (Rnspailia), 554.
Vioa, 589, $6 \mathbf{1} \div 2$
violacen (Chirodota), 509, 510.
virgata (Chondrocladia), 433.
virgata (1sodictra), 424.
Tirgularia, 335.
viridis (Chelonia), 29.
viridis (Mora), 5t9).
vitiensis (Cythara), 41.
vitrea (Psanmobia), 107.
rocans (Gelasinuss), $3+1$.
Voluta, 56.
voluta (Tornatinn), 505.
Volva, 59.
volva (Fibularia), 122, 172.
rolva (Yoluta), 56.
vulgaris (Clibanarius), $293,266$.
vulgaris (Dromia), 519, 5033, 574.
rulpina (Spongia), 615.
walkeri (Oypras), 59.
wallichi (Thenea), 625.
webbii (Ega), 305.
whitei (Crmopolin), 518,动1, 574.
Whitei(Lencosin), 154. 240.
Wrightella, 578 , 5×0.
wrightiauus (Spondylus), $11+$.

Nanthasia, 518, 5 $\pm 6,573$.
Xantho, 211.
Aanthodes, 517, 520,571.
Xiphonectes, 518,538 , 57.2

Nylotrya, 93.
zebra (Avicula), 113.
zebrn ('Trochns), 74.
zebuensis (Area), 111.
Zeuxis, 49.
ziczac (Littorina), 60.
zigzag (Microcyphus), 17%.
Zaziphinus, il.
Zosterops, 17.

EXPLANATION OF THE PLATES.

MELANESIAN COLLECTIONS.

HUMAN CRANIA.
Plate I.
Skulls of Torres-Straits Islanders.
Figs. A and B. Side views, one half natural size.
Piatr II.
Skulls of Torres-Straits Islanders.
Figs. A and B. Front views.

FISHES.

Plate III.
Fig. A. Trachynotus coppingeri.
B. Doryichthys serialis.

MOLLUSCA.

Plate IV.
Fig. A. Octopus polyzenia, dorsal view; A^{1}, rentral riew; A^{2}, end of hectocotylized arm, lower side ; Λ^{3}, lateral view of same.
[D' shows the naked calcareous axis of one of its branches.] $\mathrm{D}^{\prime \prime}$. Portion of $\mathrm{D}^{\prime}, \times 6$. From Port Molle.
Fig. E. Acaberia serrata. Portion of larger specimen in spirit, nat. size. E'. Portion of second joint above first bifurcation, of same specimen, from Port Darwin, 7-12 fms., $\times 6$.
F. Iciligoryia orientalis. Type specimen, in spirit, reduced to one half nat. size. F ${ }^{0}$. Portion of left-hand branch, the margin as seen from the side, showing the depressions for the zooids and the common groove which contains them, $\times 2$. F'". Portion of main stem just below bifureation, from front, showing four exsert zooids. From Torres Straits, 10 fms .

Plate XXNYIII.

Fig. a. Mopsella clavigera, cortical elarate, a^{\prime}, cortical bifureate, and $a^{\prime \prime}$ \& $a^{\prime \prime \prime}$, Blattkenle spicules. $\times 100$.
b. Melitodes allitincta, fusiform, and b^{\prime}, small nodular cortical spicules, $\times 100$.
c. Acabaria serrata, long, and c^{\prime}, short verruca-spicules; $c^{\prime \prime}$, short, and $c^{\prime \prime \prime}$, long cortical fnsiform spicnles. All $\times 150$.
d. Echinomuricea indo-malaccensis. $d \& d$, chief forms of the toothed spienle of the verruea, $d^{\prime \prime} \& d^{\prime \prime \prime}$, cortical spicules. All $\times 70$.
e. Iciligorgia oricntalis. Chief forms of spicules, $\times 70$.
f. Psilacabaria gracillima, cortical, $f^{\prime} \& f^{\prime \prime}$, verruca-spicules, $\times 70$. [The ridged cortical spicule has been omitted.]
g. Plexaura prefongu, var. typica, radiate, and g^{\prime}, Blattkeule cortical spicules, $\times 70$.
h. Plexaura pralonga, var. cinerea, Blattkeule cortical spicule, $\times 70$.

SPONGES.

Plate XXXIX.

Fig. A. Stelispongus excavatus. Type specimen (dry) from Arafura Sca. Reduced to one half nat. size.

Fig. B. Stelispongus implexus. The most symmetrical of three specimens from coral-reef, Port Molle ; dry: Nat. size.
C. Siphonochalina butlata. Left-hand half of largest dry specimen from Port Curtis, showing two completed tubes, and behind them (c) the margin of an incomplete one. Reduced two thirds nat. size.
D. Reniera testudinaria. Small part of large dry specimen from 4 fms ., Port Denison, showing the lobes and ridges which characterize the surface of the species. Reduced to two thirds nat. size.
E. Mhisochalind spathutifera. The type (dry) specimen from Thursday Island, 45 fms . Reduced to two thirds nat. size. [The lower part overrun by the filiform stolons of a Hydroid Zoophyte.]
F. R. canalis. Dry specimen, one of the types, from Port Darwin, $8-12 \mathrm{fms}$. [The lower end of the figure shows that one end of the canaliform Sponge has been broken off and the centre of the specimen coated by a calcareous Polyzoon (Cellepora).] Reduced to two thirds nat. size.
G. Towochalina robusta. Terminal branches of a spirit-specimen from Port Jackson; upper surface, showing vents. Reduced to two thirds nat. size.
H. Cladochalina subarmigera. Part of a specimen in spirit from Warrior Reef, Torres Straits, seen from above, showing vents and short and seanty spines. Nat. size.
I. Gelliodes fibulata. One of the larger and moro ramose specimens, exhibiting several anastomoses of the branches. Dry ; from Thursday Island, $3-5$ fms. Reduced to two thirds nat. size.
J. Pellina muricata. Part of the type specimen, in spirit, from Port Darwin, between tide-marks, showing serial arrangement of the hispid cloacal tubes to form a wall-like ridge. Nat, size.
K. Rhapladophlus procerus. The largest spirit-spceimen from Port Darwin, $7-12$ fms. [The basal portion includes a Digitized by Microsoft (8)

Serpulid or Vermetrus-shell, and forms several roots.] Reduced to one third nat. size.

Fig. L. Iotrochota purpurea. A small but symmetrically developed dry specimen from Torres Straits or its neighbourhood. Nat. size.
M. I. baculifera. Portion of type (spirit) specimen on stone, from Port Darwin, between tide-marks. Nat. sizo. [The small pointed conuli are not quite so well marked on this as on the reverse sido of the specimen.]
N. Schmidtia variabilis. The greater part of the type specimen (spirit), from Port Darwin, 7-12 fms. [Seen from the side, the true base is towards the right-hand margin of the plate.] Reduced to two thirds nat. size.
O. Pcllina aliformis. The type specimen (in spirit), from Port Darwin, 7-12 fms. Scen from one side, one wing almost conccaling the other. Nat. sizo.

Plate XL.

Fig. A. Echinodictyum glomeratum. Type specimen (dry), from Thursday Island, Torres Straits, 4-5 fms. Nat. size.
B. Pachychalina macrodactyla, portion, including the second and third bifureations above base, seen from the front. B^{\prime}. Apex of branch from front, slightly inclined to one side to show lateral series of vents. From dry, somerrhat macerated, specimen from Friday Island, Torres Straits. Nat. size.
C. Amphilectus hispilulus. The greater part of the type (dry) specimen; the real base is on a shell (omitted) to the left. From Thursday Island, Torres Straits, 3-5 fms. Nat. size.
D. Eelinocictyum cancellatum. The lower part (about half of the whole) of the type (dry and macerated) speeimen from Warrior Reef, Torres Straits. One third nat. size.

Digitized by Microsoft (B)

Fig. E. Stelletta purpurea. One of the larger specimens from abore, showing (e) rent. In spirit. West Island, Torres Straits, 7 fms. Nat. sizc.
F. Clathria coppingeri. The type specimen (dry), from Albany Island, Torres Straits, 3 fms. One third nat. size. [The margins are slightly reduced by fracture.] F^{\prime}. The same; two meshes, from front, from specimen in spirit; West Island, Torres Straits, $3-4$ fms. Nist, size.
G. Myxilla arborescens. About one half of type specimen (in spirit), from Port Jackson, $0-5$ fms. Nat. size.
H. Tethyopsis dissimilis. Larger of tho two specimens from Port Darwin, 7-12 fms. In spirit. Nat. size. [Imperfect above and below.]
I. Clathria aculeata. The type specimen, from Thursday Island, Torres Straits, $3-4 \mathrm{fms}$. In spirit. Nat. size.
J. Raspailia bifurcata. The type specimen (in spirit, but macerated), from Prince of Wales Channel, Torres Straits, 5-7 fms. Nat. size.
K. Esperia pellucida. One lobe of type specimen, with part of incrustation involring stones \&c. ; in spirit; from Alert Island, Torres Straits, 7 fms . Nat. size.
L. Rhaphidophlus arborescens. The type specimen (dry), from Friday Island, Torres Straits. Two thirds nat. size.

Plate XLI.*

Fig. A. Hippospongia derasa. The type specimen, from West Island, Torres Straits; dry, macerated. Seen from the longest side. Reduced to two thirds nat. size.
B. Dysidea semicanalis. The type specimen, from North-east coast of Australia ; dry and macerated. Reduced to one half nat. size.

[^22]Fig. C. Dysidea digitifera. The type specimen, from Albany Island, 8 fms. ; in spirit; growing over Hydroid zoophyte. Nat. size.
D. Oladochalina diffusa. One of the type specimens, from Singapore, between tide-marks; in spirit. Reduced to two thirds nat. size. d. Portions of primary and secondary fibre of vertical section, $\times 95 . \quad d^{\prime}$. Detached spicule, $\times 190$.
E. Hymeniacidon agminata. The type specimen, from Port Jackson, $0-5 \mathrm{fms}$.; in spirit. Reduced to two thirds nat. size.
F. Raspailia clatlurata. Basal portion of type specimen, from Thursday Island, 3-4 fms. Nat. size.
g. Eusponyia officinalis, var. cavernosa. Vertical section of type (dry) specimen, from Torres Straits. $\times 38$.
h. Psammopemma densum, var. subfibrosa. Vertical section of type (spirit) specimen, from Torres Straits. $\times 38$. [The surface faces to the right.]
i. Oladochalina vuda. Portion of vertical section of type specimen, from Alert Island, showing the contained spicules. $\times 190$.
j. C. nuda, rar. abruptispicula. Spicules of type specimen from Thursday Island. $\times 190$.
k. Chaliza monilata, portion of primary fibre of rertical section of type, from Port Jackson, showing the contained spicules, $\times 370 . k^{\prime}$. An isolated spicule, $\times 370$.
2. Cladochatiaa subarmigera, portion of primary and secondary fibres of vertical section, l^{\prime}, spicules, of type specimen, from Warrior Reef. $\times 190$.
m. Toxochatiza folioides, fibre of main skeleton as seen in rertizal section. m^{\prime}. Skeleton-spicule, $\times 6 \mathrm{~S} . m^{\prime \prime}$. Tricurvate flesh-spicule, $\times 370$. From specimen from Port Darwin.

Fig. n. Toxochalina robusta, portion of skeleton, showing primary and sccondary fibre. n^{\prime}. Skeleton accrate and tricarvato accrate spicules. $\times 370$. From type specimen from Port Jackson.
o. Pachychulina macrodactyla. Skeleton-spiculo, $\times 190$. From specimen figured Plate XI. fig. B.
p. Protoschmittia hispidula, portion of rertical section, \times 68. p^{\prime}. Skeleton-spiculo, $\times 190$. From type specimen from Albany Island. [Note.-Some loose spicules in tho interspaces of the skeleton have been omitted for the sake of clearness.]
q. Rhizochalina spatlutifera. Skeleton-spicules, \times 68. From type specimen from Thursday Island.
r. R. canalis. Skeleton-spieule, $\times 68$. From type specimen from Port Darwin.
s. R. singaporensis, var. Spicules, $\times 190$. From specimen from West Island, Torres Straits.
t. Schmiltia variabilis. Spicules, $\times 68$. From type specimen from Port Darwin. [The median curse of the diagonallyplaced spicule is ropresented as too sudden, and the two lateral curres introduced do not exist.]
u. Reniera testudinaria, part of rertical section, $\times 38$. u^{\prime}. Spieules, $\times 68$. From dry specimen from Port Denison.
v^{\prime}. Pellina maricata. Skeleton-spicule, with ends of two others, exhibiting the wide range of variation, $\times 190$. From type specimen from Port Darwin.
w. P.aliformis. Skeleton-spicule, $\times 68$. From type specimen from Port Darwin.
x. P. cusiphonia. Skeleton-spicules, $\times 68$. From type specimen from Port Darwin.
y. Amphilectus hispidulus, vertical section, $\times 68, ~ y^{\prime}$. Skeleton acuate spieule, $\times 190 . y^{\prime \prime}$. Anchorate spicule from front and side, $\times 370$. From type (dry) specimen from Thursday Island.

Fig. z. Gellius cymiformis. Spicules, $\times 370$. From specimen from Thursday Island.
aa. Crella schmidti. Spicules (anchorate from front and side), $\times 370$. From type specimen from Port Jackson.
bb. Gelliodes fibulata, fibre of part of vertical section, showing the very stout and straight primary and the secondary fibres; $l b^{\prime}$, portion of secondary fibre, showing arrangement of spicules and isolated skeleton-spicule: $\times 68$. $b b^{\prime \prime}$. Bihamate spicules, $\times 370$. From dry specimen from Prince of Wales Channel.
cc. Amplitectus tibiellifer, skeleton acuate and tibiella-spicules, $\times 190$ (head of latter enlarged). cc'. Tricurrate acerate, $\times 190$. cc $c^{\prime \prime}$. Anchorate seen from front and side, $\times 370$. From one of the types from Prince of Wales Channel.

Plate XLII.

Fig. a. Myxilla arborescens, portion of vertical section, $\times 190$. a^{\prime}. Skeleton acerate spicules, $\times 190 . \quad a^{\prime \prime}$. Equianchorate spicule from front and side, $\times 370$. From type specimen (in spirit) from Port Jackson.
b. Acarnus ternatus, acnate, grapnel, and tricurrato spicules, and head of grapnel as seen from above, $\times 190$. b^{\prime}. Tibiella and equianchorate (from front and side) spicules, $\times 370$. From specimen from West Island, Torres Straits.
c. Ophlitispongia custraliensis, fibre of vertical section, $\times 190$. c^{\prime}. Skeleton cylindrical and echinating aeuate spicules, \times 190. From type specimen from Port Molle.
d. Clathria tuberosa, vertical section, $\times 38$. From specimen in spirit from Prince of Wales Channel.
e. Iotrochota purpurea, vertical section, and e^{\prime}, dermis, \times 20. $e^{\prime \prime}$. Two sizes of skeleton-spieule, $\times 190$. $e^{\prime \prime \prime}$. Birotulate spicules, $\times 370$. From dry specimen from Prince of Wales Channel, $e^{\prime \prime \prime \prime}$. Two ciliated chambers, from specimen of green var. from Amirante Island, $\times 3 \pi 0$.
f. I. baculifora, tibiella-spicule of dermis, $\times 370$. From type specimen from Port Darwin.

Fig. g. Phoriospongia fibrosa, cylindrical, bihamate, equianchorate (from front and side) spicules, $\times 370$. From typo specimen from Prince of Wales Channel.
h. Esperia pellucilla, skeleton acuate spicule. h^{\prime}, large (from front), $h^{\prime \prime}$, small inequianchorate (from front and side); $h^{\prime \prime \prime}$, bihamato spicule; and $h^{\prime \prime \prime \prime}$, trichite-bundle, $\times 370$. From type specimen from Alert Island, Torres Straits.
i. Clathric coppingeri, small and large spined acerate, and smooth variety of end of latter, and smooth subspinulate spicules, $\times 190 . i^{\prime}$, equianchorate spicule (from front and side), $\times 370$. From speeimen from Albany Islaud.
j. C. frondifera, smooth acerate spieule, three sizes, $\times 190$. j^{\prime}, spincd acuate, two forms, $\times 190 ; j^{\prime \prime}$, trieurrate spicule, and $j^{\prime \prime \prime}$, equianchorate (from front and side), $\times 370$. From specimen from Fitzroy Island, Queensland.
k. C. aculeata, smooth acuate and subspinulate, and spined acuate spicules, $\times 190$. k, trieurrate, and $k^{\prime \prime}$, equianchorate (from front and side), $\times 370$. From type specimen from Thursday Island.

1. Raspailia bifurcata, portion of fibre from near base, showing spined acuate spicule in situ, $\times 190 . l^{\prime}$, smooth acuate and acerate spicules, $\times 38$. From type specimen (in spirit) from Prince of Wales Channel,
m. R. australiensis, part of vertical section from near middle of Sponge, $\times 38 . m^{\prime}$, larger and smaller neuate spicules, \times 68. From type specimen (in spirit) from Port Darwin.
n. Rhuphidophlus arborescens, smooth and spined acuate spicules, and head of spinulate variety of the former, $\times 190$. n^{\prime}. Equianchorate seen from the front, $\times 370$. From type specimen from Friday Island.
o. R. procerus, part of rertical section, $\times 68 . o^{\prime}$, skeletonspicules, $\times 68$; $o^{\prime \prime}$, flesh-spicules, $\times 370$. From type specimen (in spirit) from Port Darwin.

* This figure has been erroneously referred to as fig. i in the text on p. 448 .

Fig. p. E:hinodictyom glomeratum, spicules, $\times 190$. From type speeimen from Thursday Island.
q. E. cancellatum, spicules, $\times 190$. From specimen figured Pl. AL. fig. D.
r. E. costiform, spicules, $\times 190$. From specimen from Port Molle.
s. Leucophlous fenestratus, part of vertical sectiou from type specimen, $\times 38$.
t. Amphilectus tibiellifer, skeleton acuate and tibella and tricurrate acerate spicules, $\times 190 . t^{\prime}$, head of tibiella, and $t^{\prime \prime}$, equianchorate as seen from front and side, $\times 370$. From type specimen from Torres Straits.

Plate NLIII.

Fig. a. Avinella celhidnea. Spicules, $\times 68$. From dry specimen from Thursday Island.
b. Geodic globostcllifera, globostellate, external and internal stellate spicules, in tissuc below dermal crust, $\times 370 . \quad b^{\prime}$. Portion of cortex, showing crust of balls covered by membrane containing smaller stellates, and tuft of surface acerate spicules projecting from it, $\times 68$.
c. Spirastrella decumbens. Spicules, $\times 190$. From type specimen from Alert Island.
d. S. conycnera, skeletal spinulate spicules, showing two forms of head, $\times 190$. l^{\prime}. Flesh-spicules, $\times 370$. From type specimen from Thursday Island.
e. S. vagabunda, skeletal spinulate spicule, $\times 190$. e^{\prime}. Fleshspicules, $\times 370$. From specimen from Torres Straits.
f. Hymeniacidon umminata, spicules, \times 190. f.' Head of spinulate spicules, $\times 370$. From type specimen from PortJackson.
9. Leucophlous fenestratus, var. Spicule, $\times 68$.
h. Suberites epiphytum, rertical section, $\times 68$. h ', spicule $\times 68$: $h^{\prime \prime}$, head of spicule, chief forms, $\times 370$. From spirit-specimen from Port Curtis.

Fig. i. Stelletta cluvosa, acerate, anchoring quadriradiate, and zone spicules, $\times 68$. i^{\prime}, head of zous-spicule, as seen from abore, $\times 68$; $i^{\prime \prime}$, stellate flesh-spicules, $\times 370$. From typo specimen from Prince of Wales Channel.
j. S. purpurca, acerate, anchoring quadriradiate, and zonespicules, $\times 68$. $j^{\prime \prime}$, stellato flesh-spicules, $\times 370$. From type specimen from Torres Straits.
k. S. purpurea, var. retroflaxa, the zonc-spicule, $\times 68$. From specimen from Torres Straits.
l. Tethyopsis dissimilis, diagrammatie vertical section* across upper end of larger \dagger speeimen from Port Darwin, \times about 2. l^{\prime}. The same ${ }^{*}$ of smaller specimen from Port Darwin, \times about 3 [the dark parts represent canals, the dotted portions those occupied by the skeleton and tissnes in the Sponge itself]. $l^{\prime \prime}$. Portion of dermis \ddagger from between two longitudinal skeletal lines, from larger specimen from Port Darwin, as seen frominside, \times about 25 , $l^{\prime \prime \prime}$. Part of septum between two large canals, from same specimen, \times about $25 . l^{\prime \prime \prime \prime}$. Skeleton triradiate spicules, one normal, the other with abnormally elongated third ray, $\times 34$. $l^{\prime \prime \prime \prime \prime}$. Acerate spicule from small Port-Darwin specimen, and $l^{\prime \prime \prime \prime \prime \prime}$, from Torres-Straits specimen, $\times 34 . l^{\prime \prime \prime \prime \prime \prime \prime}$. Fleshspicules from larger specimen from Port Darwin, $\times 850$.
m. Leucaltis bathybia, var. australiensis, tri- and quadriradiate spicules of outer surface; m^{\prime}, triradiate from centre of wall; $m^{\prime \prime}$, quadriradiates of subjacent parts. All $\times 68$. From type specimen from Port Jackson.
n. Stellettinopsis carteri, the skeleton-spicule, $\times 68 . n^{\prime}$, the larger, and $n^{\prime \prime}$, the smaller stellates, $\times 370$. From type specimen from Torres Straits.

[^23]
COLLECTIONS FROM THE WESTERN INDIAN OCEAN.

MOLLUSCA.

Plate XLIV.

Fig. A. Conus martensi.
B. - articulatus.
C. Pleurotoma (Defrancia ?) grisea.
D. Murex (Ocinebra) pumilus.
E.

F. \qquad
G. Columbella seychellensis.
H. - cincinnata.
I. -rufopiperata.
K. -umirantium.
L. -albocaudata.
M. Coralliophila amirantensis.
N. Mitra tenuis.
O. Turricula (Callithea) bipartita.
P. Marginella pictarata.
Q. Cerithium albovaricosum.
R. - amżаитizm.
S. - (Rhinoclavis) acutinodulosum.

T, T^{1}. Triphoris mirificus.
$\mathrm{U}, \mathrm{U}^{1}, \mathrm{U}^{*} . T u r b o$ tursicus.
$\mathrm{V}, \mathrm{V}^{1}$. Trochus (Gibbula ?) amirantium.
V. Chemnitzia coppingeri.

Fig. C. Frontal region of (rimerlectyles ((' cleyans, of?), showing the form of the rustrum, $\times 3$.
D. Part of right ginathopod of More diversimanes. d, part of left gnathopord.

SPONGES.

Plate Lill.

Fig. A. Lercophlikes fonestretus. Specimen which las incorporated mauy caleareous fragments with its base, and gives off a remarkable smooth flat lobate process (e) from the base. In spirit. From Providence Recf, 24 fims. $\times 1 \frac{1}{2}$.
B. L. protous. Variety distinguished by its almost ontirely massive and smooth habit, a small part only (b) of the surface exhibiting the usual ridged and pilose character. b^{\prime}, apparently accidental pit. In spirit. From Providenco Reef, 24 fms. Nat, size.
C. Dysidea gumaminecu. Small specimen, based on a stone, showing lateral extension into lobes. In spirit. From Providence Island, 19 fms . Nat. size.

D, Hipposponyiu intestinalis, var. Part of a large contorted mass, showing great irregularity of growth and variation in the stoutness of the twisted lobes [the dermal shect of fibres has been abraded from the lobes towards the top of the figure (d)]. Dry. From Providenee Island. Nat. size.
E. Axinella proliferans. Left-hand half of small specimen from Providence Island, 19 fms . In spirit. $\times \frac{3}{2} . \mathrm{E}$ '. Profile riew of upper part of same specimen, slightly shaded. Nat. size.
F. Desmaciton rimosa. The type specimen, showing the large vents and well-marked grooves (f, f) of the excretory canal-system. In spirit. From Mozambique. Nat. size.

Fig. G. Reniera cribriformis. The most complete of the fragments, representing the type specimen, from the exterior. In spirit. From Seyehelle Islands, 12 fms. \times ?

H \& II'. R. camerata. Two fragments, probably belonging to ono (the typieal) specimen. H shows the compact, even character which distinguishes the outer surfaee: H^{\prime} the chambered or plicate condition of the interior. In spirit. From Marie Louise Island, 16-17 fms. Nat. size.

1. Clathria morandrina. Part of the type specimen, inerusting a stem. In spirit. From Marie Louise Island, Amirantes, 17 fms. Nat. size.
J. C. fromelifera. The largest specimen obtained ; attaehed to rock. It shows a transition from a tlattened expanded (j) to a rounded trabecular ($j j^{\prime}$) form of the constituent lobes of sponge-substance, and exhibits more definiteuess of form as a whole than is usual in the species. Dry. From Providence Recf, 24 fms . Nat, size.
K. C. alecrmbens. The type specimen, showing considerable variation in the proportionate amount of fenestration to the surface (c, y, at k the surface is entire, at k^{\prime} it is regularly fenestrate) ; at $k^{\prime \prime}$ the surface is abraded. In spirit. From Etoile Istand, 13 fms . Nat. size.
L. Lereortis anguinea. The type specimen, in spirit. From Providence Reef, $24 \mathrm{fms} . \times 2 . \quad l$, stem.
M. Erylus cylindrigerus. The type specimen, in spirit. From Providence Reef. Nat. size.

N*. Plypllospongia madagascarensis, var. supraoculuta. From African Island. Dry. N'. The same, upper margin of median lobe, from abore, to show thickness of frond and characters of vents. Nat. size.

[^24]
Plate LIV:*

Fig. a. Lencaltis bathylia, var. mascarenich, the two forms of stont guadriradiate and the triradiate spicules of the main skeleton. $\times 38 . \quad$ ' . The minute tri- and quadriradiates of the cloacal surface, $\times 370$. From type specimen from Seychelle Islands.
b. Axinella spicmlifraa, two sizes of the skeleton-spienle; \times is . From specimen from Darros 1sland.
c. A. prolifercus, the skeleton-spienle, $\times 68$. From type specimen from Providence Island.

1. Leterortis enyminert the stont acorate, and different forms of the tri- and quadriradiate spicules of the main skeleton, $\times 68, \quad d^{\prime}$, the slender acerate (?) of the peristome (the outer end imperfect), $\times 370$. From type specimen from Providence Recf.
c. Erytus cylindrigerus. part of the disk-spienle, in profile, $\times 190$. ℓ^{\prime}, the disk-spienle. from the front (tubereles omitted, except at apex) $\times 190$: $c e^{\prime \prime}$, the same, the tubercles, $\times 300$; $e^{\prime \prime \prime}$, the cylindrieal spicule, two forms, $\times 6 \mathrm{~S}: e^{\prime \prime \prime \prime}$, the mimate acerate spicule, young and adult, $\times 190: e^{\prime \prime \prime \prime \prime}$, larger stellate spicule, twe forms, showing variation in the number and spination of the rays, $\times 190$: $e^{\prime \prime \prime \prime \prime \prime}$, the small stellate, $\times 370$. From specimen from Providence Recf.
f. Esperite getatinosa, the subspinulate, f^{\prime}, large, and $f^{\prime \prime}$, small anchorate (the latter from the frout and side), $f^{\prime \prime \prime}$, lihamate spieules; $f^{\prime \prime \prime}$, triehite-bundle. $\times 370$. From speeimen from Providence Island.
\%. Olathria decombens, the skeleton and echinating aeuate spicules, $\times 190 . \quad g^{\prime}$, the equianchorate flesh-spicule, from the front and side, $\times 370$. From type specimen from Etoile Island.
[^25]Fig, h. Clathrie meambink, the stout and slender smooth acerate, and the spined acnate spicules, $\times 190$. $\pi_{\text {, the tricursate }}$ accrate, and $h^{\prime \prime}$, the equianchorate spicules (the latter from the front and side), $\times 370$. From type speeimen from Marie Louise Island.
i. Reniera, sp. allied to R. crateriformis, average form of skeleton-spieule, $\times 68$. From speeimen from Providence Island.
j. Rhizochatinu pellucikt, the skeleton-spicule, $\times 190$. From type specimen from Irovidence Island.
k. Leucophleus protens, the skeleton-spienle, $\times 68$. From specimen from Providence Recf.

1. Echinonemu gracite, the skeleton- and echinating spicules, $\times 190 . l^{\prime}$, the tricurvate acerate, and $7^{\prime \prime}$, equianchorate spicules, $\times 370$. From type specimen from Providence Rcef.
m. Desmacidon rimosu, the skeleton-, and m^{\prime}, tricurvate acerate spicules, $\times 190 ; m^{\prime \prime}$, the equianchorate, from the front and side, $\times 370$. From type specimen from Mozambique.
2. Reniera camerata, the skeleton-spicule, $\times 190$. From type speeimen from Maric Louise Island, Amirantes.
o. R. cribriformis, the skeleton-spicule, $\times 190$. From type specimen from Seychelle Islands.
p. Spirastrella practulatie, the skeleton-spicule, $\times 190$. j^{\prime}, the spinispirular flesh-spicules, $\times 370$. From type specimen from Mozambique.
q. S. transitoria, the skeleton-spienle, $\times 190 . \quad q$, the spinispirular flesh-spieules and curiously attenuated variety of apex, $\times 370$. From type specinen from Darros Island.

Digitized by Microsoft (8)

Montern Broa . Im

Digitized by Microsoft ${ }^{(8)}$

Digitized by Microsoft ${ }^{(8)}$

Digitized by Microsoft ©

Digitized by Microsoft ${ }^{8}$

Digitized by Microsoft ${ }^{\circledR}$

Digitized by Microsoff ©

Digitized by Microsoft ${ }^{\text {(® }}$

Digitized by Microsoft ${ }^{(8)}$

$=$
1808
180

4int

Digitized by Microsoft(B)

Digitized by Microsoft (8)

Digitized by Microsoft ${ }^{(8)}$

Digitized by Microsoft (8)

Digitized by Microsoft (8)

QL British Museum (Natural
A55 History) Dept. of Zoology Report
Biological
\& Medical

PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: * During the winter of 1879-80 Sir George Nares returned to England, and was succeeded in the command of the 'Alert' by Captain Maclear, formerly of the 'Challenger' Expedition.

[^1]: * Derado, to rub down, in allusion to the emoothess and compact texture of the surfare.

[^2]: * Secondary of Marshall, primary of Hyatt, tertical of Carter.

[^3]: * From Lat, monile n ceklace.
 \dagger Ann. Mus. Hist. Nat. xx. P. 446.

[^4]: * This so-called rariety seems, by the constancy of the peculiarities of its external form, viz. knife-like shape, two marginal rows of vents, and smooth surface, to differ specifically from C. armigera, and may therefore stand as Cladochalina pergamentacer.

[^5]: * From Gr. ró乡or, a bow ; and χ a $\lambda_{\text {ras }}, \mathrm{n}$ thong.

[^6]: * From Lat. muratus, walled.

[^7]: + i.e. dividing many times at one point; from roi入ákss.

[^8]: * From iov, a violet. and $\tau \rho n \chi^{\circ}{ }^{5}$, a wheel, in allusion to the purple colour and the birotulate flesh-spicules.

[^9]: * Ther lengile of ther equianchorate should have been stated there as 015 millim., and the bise of the slender smooth newate describel as sliphty intated.

[^10]: * Spongia cactiformis, Lamarek (Ann. Mus, Hist, Nat. xx. p. 440), is also n Rhaphidophlus, differing from R. arborescens, so far as tho material at my disposal shows, mainly in the non-spinulation of the smooth acuate.

 $$
 202
 $$

[^11]: * Mr. Carter gires reasons (l.c.) for his supposition that the West Indies are the home of this species; the specimen, bowerer, to which be appeals in support of this vier, riz, that attached to the base of a spicimen of the West-

[^12]: * In the Trincomalee specimen described by Mr. Carter the vents are not placed at the apices of the lobes of the sponge, the adult spieule is scarcely spinulate at alf, und measures only 0127 millim . in diameter, and the spinispirulm appear to be scarce. For these reasons it appears desirable to distinguish it under the name S, vogabunda, var, frinconaliensis.

[^13]: * S.euastram of Carter (? Schmidt) described (Ann. \& Mag. Nat. Hist. 1882, v. pp. 135, 136, pl, vii. figs. 41, 42) from the Gulf of Manaar and Australia, inelades two distinct species, of which the first at any rate is distinct from Schmidt's species; they belong to a remarkable group of forms which connect Stelletta with Gcodid: the surface-disk forms a character of sufficient importance to distinguish the species which possess it from Stelletta s. str. S. nuz of Selenka (Zeitsch. wiss, Zool, srii. p. 569, pl. xxxv. figs. 11-13), from the Samoa Islands, is probably a Tethyas, str., as its stellate agrees with the large stellato of that genus, and its "forks" are rare and probably foreign to the sponge.

[^14]: * From clacus, a nail, in alluxion to the fine nail-like zone-spicule.

[^15]: * Mem. Bost, Soc. ii. pt. 4, nos. ii. \& r.
 + Proc. R. Irish Academy, xxviii. p. 13, pl. i.

[^16]: * sinee writing the above, I hase been assured by Dr. Polejaeff, whose Report on the 'Challenger' Coratosa is in the press, that he has found the skeleton of

[^17]: Oligoceras to possess in parts the orlinary reticulate arrangement found in Cacospongia, dc. This observation seriously militates against its generic distinctness.

[^18]: * Also British, if Chalina limbate, Bowerbank, is identified with it.

 Digitized by Microsoft (B)

[^19]: * From camera, a chamber, in allusion to the chambered interior.

[^20]: * Rimosus, full of furrows, referring to the spparance of the surface. Digitized Dy Microsoff(182

[^21]: * Anguineus, snake-like, from the elongate pliable character of the specimens.

 Digitized by Microsolt (B)

[^22]: * The microscopic details in this and the following Sponge-plates hare been in almost all cases prepared with the aid of sketches made to scale by Mrr. Ridley bimself.

[^23]: * Canals.-1, anterior ; 2, posterior ; 3 and 4, lateral; 5 and 6, anterolateral ; 7 and 8 , postero-lateral ; 9 (in l), axinl.
 \dagger Note.-Since writing the account of the canals (given at p. 478 of Part I. of the Report), I have discosered that the apparently single pair of lateral spaces in the larger specimen is in reality double.
 \ddagger Showing that the long arm of the skeleton-spicule commonly extends over two interfascicular spaces, and is not confined to one as stated in the description at p. 477.

[^24]: * Hy an inadrertence these figures have been referred to in the teat (p. 504) as $\mathrm{Mt} \mathrm{anc}^{2}$.

[^25]: * Sife. - The tigures in thia Plate hare been prepared with the aid of sketcher, to seale, made by Mr. Ridley.

