$\mathrm{Cr}-\mathrm{H}$

theot Aumarne

解ibrary of the 急lusemm
 or

COMPARATIVE ZOÖLOGY,

IT HARTARD COLLEGB. CAHBRIDGE, MASS.

Foumiè bu pribate subscription, in 1861.

Deposited by ALEX. AGASSIZ.

No. ?

THE CHONIOSTOMATIDE

THE CHONIOSTOMATIDE

A FAMILY OF COPEPODA, PARASITES ON CRUSTACEA MALACOSTRACA

BY

Dr. H. J. HANSEN

WITH THIRTEEN COPIER PLATES

AT THE EXPENSE OF TIIE CAILSIBEIGG FUND

We want facts, not inferences, observations,
not theories, for a long time to come.
-Natural Science: 1896.

COPENHAGEN

ANDR. FRED. HOST \& SON, PUBLISHERS
(in)

\qquad

PREFACE.

TWhis work contaius an accomnt of forty-three species of Copepoda, all parasitic on malacostracons Crustacea, and all belonging to the same family. When in 1890 I began my study of this group, there were published descriptions of only three species, and mention had been made of a fourth. Two more have been since described and a seventh named, but not described; so that mitil now (July 1897) only five species have been really made known. In the present work I increase this number abont nine times, and yet, most likely, my discoveries only extend to one fifth or one sixth or perhaps a much smaller part of the species extant. I have been bronght to this conclusion by the consideration that no less than thinty-three of my species have been found exclusively on Crustacea in the Zoological Museum of the Copenhagen University. What multitudes of these animals are likely to be discovered, when some day the large foreign musemms acquire rich collections of non-decapod Malacostraca, and when this material is submitted to a thorongh research! On the whole, my studies of late years have given me the impression that of nearly all the Crustacea living on the bottom of the sea - the Decapods excepted - we only know from abont half down to a rery small percentage of existing species. Especially to the parasitic forms does this apply, and I think one of the most important results of the present work is to show the wealth of a group, which hitherto has occupied only a very diminntive place. It may be added that, in the course of the last two years, I have fomd on the material bronght home from the sea near Iceland and Greenland by the "Ingolf« expedition several new forms which cannot be included in the present treatise, but which will be subjected to future examination.

A chance led me to this study. In dissecting a female of Idotleca marina (L.) I discovered in its marsupium an monown parasite belonging to the Epicaridea, and further researches led to the discovery of a number of specimens of this species and of a form neally akin to it on Edotio nodulosa (Kri). Both parasites were afterwards described from
my material by Giard and Bonnier (the gemus Clypooniscus G. and B.). Those authors had jnst previously described an Epicarid living as a parasite on Ampelisca diademu Costa. What I had found on Idotheida tempted me to go on looking for Epicaridea, so I examined our Ampeliscidæ and fonnd - not these forms, - but several species of Choniostomatidæ as well as another most remarkable parasite, which I described in 1892 under the name of Rhizortina Ampelisce H. J. H. Professor Sars has told me (1886) that he had found some species of Spheronella on Amphipoda. Now, as my own discoveries had called forth my interest, I began in the Copenhagen Mnseum an examination of the material of Amphiporla and later on of the other orders of Malacostraca.

Professor G. O. Sars lent me all his material of this family for my researches, and he firther provided me with newly discovered forms - seven in all, - of which fonr are particularly interesting; two of the most remarkable genera, the parasites on Mysidx, are owing entirely to him - for all of which 1 have great pleasnre in offering the eminent naturalist my best thanks. - The Rev. Camon A. M. Norman, F. R. S., lent me the types of Aspiduecia Normani Giard and Bonnier, and the Rev. Th. R. R. Stebbing, F. R. S., determined for me some Amphipoda from the Mediterranean, the West-Indies, the Cape and Hong-Kong, for which I beg these gentlemen to accept my thanks.

Last, not least, 1 wish to express my warm gratitnde to the managing Committee of the Carlsberg Find for having allowed me a considerable sum to defray the expenses of the present work.

The English translation from the Danish manuscript is the work of Miss Lonise von Cossel.

CONTENTS.

Page
I. Introductory Remarks 1
II. General Historical View 4
III. General Representation of the Family 24
A. Structure and Development 24
a. The Female 24
b. The Male 35
c. The Ovisacs and the Development of the Eggs. 43
d. The free Larva 47
e. The post-larval Development; the Pupæ 53
B. Habitation, Biology and Distribution 63
a. The Place of the Hosts in the System and the Habitation of the Parasites 63
b. Age and Sex of the Hosts 65
c. Number of Parasites on each particular Host. 68
d. Number of Species of Parasites on the same Species of Host 69
e. Number of Species of Hosts of the different Eamilies 70
f. Occurrence together with Parasites ol other Urders or Classes 71
g. Nourishment 72
h. The Influence of the Parasites on their Hosts 73
i. Geographical and Bathymetrical Distribution of the Eamily 75
j. Geographical Distribution of the particular Species relatively to that of their Hosts 76
k. Frequency of the Parasites in Proportion to their Fertility 76
C. About Classification 78
a. Limitation and Characters of the Species 78
b. Limitation and Characters of the Genera 81
c. Characters of the Family S3
d. Place of the Family in the System 84
IV. Description of Genera and Species 87
I. Stenothocheres n. gen. SS
II. Homoeoscelis n. gen 93
III. Sphceronella Salensky 98
a. Parasites on Amphipoda 99
b. Parasites on Cumacea 148
c. Parasites on Isopoda 163
IV. Choniostoma H. J. H. 170
V. Mysidion n. gen. 177
VI. Aspidoecia Giard and Bonnier 184
Explanation of the Plates 191
Errata 206

I. INTRODUCTORY REMARKS.

TThe majority of the species here described I fornd in examining systematically for this purpose the collections of the Zoological Mnsema in Copenhagen. Thronghout a number of years the two directors of the entomological department, the late Professor J. C. Schiodte and his snccessor, Inspector Dr. F. Meinert, have taken care not only to acquire as many species as possible, but - of the smaller forms - also as many individnals as could be procmred, so that of a good many northern Amphipoda, and of a great number of Danish Amphipoda, Cumacea, etc., the mnsenm possesses hundreds of specimens. This has been of the greatest use to me in my researches, for while a few of the parasites - at least of those found on our own material - are met with rather frequently, the greater number are very rare, and a considerable part so scarce, that only one or two specimens are fornd on each hundred of the animals examined. As a matter of course, I have examined nmmerous species without finding a single parasite.

Of the following forty-three species only one lives on the outside of its host (Mysidæ veræ), two occur in the branchial cavity of Cumacea, two in the branchial cavity of Hippolyte: all the remaining species are only found in the marsupium of the female of Amphipoda Gammaridea, Isopoda, Cmmacea and Mysidæ veræ (or sometimes in yonng individuals of Amphipoda on the ventral side of the thorax between the gills). In the Isopoda, the Mysidæ, and sometimes in the Amphipoda, parasites can be seen by looking throngh the plates of the marsupium. In most Amphipoda and in Cumacea the marsupimm has to be submitted to a closer examination; some of the plates have to be lifted up and examined throngh a lens; in the small forms even the adnlt parasites can only be discovered by help of a simple microscope. Where a closer search of an infested marsupium is reguired, it is usnally necessary to place the host in a hollow gromd glass-plate monder water, and to examine it very carefnlly twenty or thirty times magnified mder a simple microscope, in order to be able to discover the male animals which are generally ${ }^{1 / 4}-1 / 6 \mathrm{~mm}$. in length, as well as the free larvæ and the pupx, and to find out the way in which these minute animals are hinged.

Parasites are not at all easy to deal with; when taken out, everything - except perhaps tolerably large females and ovisacs - must be kept in glycerine on an objectglass, for if males, preæ, etc. are put in spirit, they are generally difficult to find and to get out of the tubes. For this use the glycerine must always be strongly diluted with water, otherwise the animals shrink very much, and the females especially are very apt to lose their shape. The water is made to evaporate by standing exposed to the air. Neither the females nor the males nor the animals in any stage of development, can bear the pressure of a glass-cover, or of part of it, without losing their natural shape. In order to make drawings of the entire animals or of parts of the females, the following method was employed: I took very small covers (frequently a middle-sized cover was cnt into four parts), and placed a very thin wooden wedge mider the middle of the back edge of the cover, so that by very carefully pulling the wedge a little, I made the glass touch the animal, or part of it, just sufficiently to keep it in a certain position; by means of a hair, which was introduced throngh the opening, its attitude could easily be changed. In this way I was able after some fractice to manipnlate a male of the length of $1 / 6 \mathrm{~mm}$., so that I conld make accurate illustrations of one specimen seen from below and sideways without damaging it at all. After use the animal and all the parts that had been examined were placed muder a large glass-cover in the way described above, and the opening was closed with varmish. The female was always dissected, in order to submit the head and the genital area to a careful examination. The latter part was treated in the following way: with a sharp and very small knife I cut throngh the animal a little above the genital region, after which this part was placed under a simple microscope which magnified it a lundredfold; the inside of it was cleaned with a knife, so as to leave only the muscles of the genital apertures and one or both of the receptacula seminis. I specify this proceeding, which I learned by degrees throngh rather troublesome experiences, partly that the reader may judge of the accuracy of my illustrations, partly to enable future students, who may not possess such ample material, to conquer the difficulties with comparative ease.

As far as possible, I have everywhere given figures of an adult female, a male and an ovisac (sometimes adding one or two pupa) magnified to the same scale, in order to show the relative size of the two sexes, the ovisacs and eggs. The size of the male compared with the female and the ova varies very much in the different species. For the convenience of the student, and in accordance with earlier statements (1890), I have always figured the males vertically from the rentral side and laterally from the left-hand side. While in symmetrically shaper Arthopoda, in dorsal or ventral view, I generally arrange the position of the legs and figure those on one side to correspond with those on the other, with the parasites described in the present work I have not ventured to do this." The animals were often a little crooked on account of a slight pressure, to which they had been exposed in the marsupium; maxilliperls and legs were fomd stradding in different directions, and as a rule were too small to allow of much alteration in their attitude, withont great risk of
damage ensuing. I only rentured slight attempts at construction, not being able to calcolate how the details - e. g. legs of males and larvie - would appear, if drawn in a position differing from the one in which they were fomd. As a mule I have figmred the ammals with all the irregnlarities they presented, and the limbs in the position they happened to occupy at the time of drawing. Where I had several specimens at my disposal, of course I chose the one which was most suitable for illustrat on.

I must briefly mention one point in my nomenclature. In 1893 I stated (in $\mathrm{D}_{\mathrm{Z}}^{\mathrm{Z}} \mathrm{m}$ I. Anzeiger«) that the two pairs of limbs which had been formerly mamed the first and second pairs of maxillipeds, onght to be regarded as the second pair of maxille and a pair of maxillipeds. Shortly afterwards Dr. W. Giesbrecht gave rery detailed proofs of the same fact (Mitth. Zool. Stat. Neapel, 11. B.). I also proposed to introduce the names "maxilhuæ" and "maxillæ« (in analogy with the commonly used names "antenmulæ" and antemæ»s) for the two pairs of jaws, and I shall here avail myself of these short, 'convenient and very intelligible names.

In conclusion a few remarks may be offered about the plan of the present work. For several reasons I have contented myself with representing the external structure of the adult animals and their post-embryonic development, and I have spent an exceedingly long time, partly in finding females and eggs, males, larrie and pupæ, partly in studying the material I had discovered. The result is that at present scarcely any moderately large family of genuinely parasitic Copepoda is so well known as the Choniostomatidx. I have found the males of thirty-two of the forty-three species, the larva of twenty-three, the pupæ or other stages of the post-larval development of a pretty considerable number of species. At the same time I must call attention to the great and numerons gaps in the knowledge of the metamorphosis of these animals, which vary remarkally according to the different species. On their embryology I do not enter at all, and their anatomy is almost totally omitted; I could not have given information of any value moless I had stayed long enongh at the seaside to enable me to collect a large supply of living animals of sereral species, but this wonld have considerably delayed and increased the work, which is rather voluminous as it is; so, not being able to present an exhanstive study of these topics, I lave - contrary to the habit of mumerous anthors - only treated what was indispensable to classification (the genital region and receptacula seminis). Besides, I should advise stndents mot to enter upon the anatomy of forms so small, difficult and for the most part rare, before having acquired a thorough autoptical knowledge of representatives of variuns other families among parasitic Copepoda.

II. GENERAL HISTORICAL VIEW.

Uufortunately I am obliged to go much into detail in this chapter, not only in order to give a summary of our previous knowledge and its defects, but also and particularly in order to throw light on a number of very objectionable postulates, reflections and theories put forward by Mssrs. A. Giard and J. Bonnier in their two (fomr) papers. Very short contributions (by G. O. Sars and J. Sparre-Schneider) are mentioned in the special part.
W. Salensky: Spheronella Leuckarti, ein neuer Schmarotzerkrebs (Archiv fiur Natur geschichte, 34ter Jahrgang, 1868, p. 301—322. Taf. X). The author has given a very extensive account of this new genus and species, the first form which was discovered of this family. He has found females, males, eggs, larvæ and pupæ, in fact all stages, and on the whole his descriptions are good, but unfortunately the illustrations are rather rude, which is indeed a pity, as the species happens to belong to the most difficult group of the large genus. I do not think it necessary to point out some slight differences between the author's account and my own, e. g. his incorrect statement of the number of joints in the antennulæ of the larve etc., but it must be mentioned that he has overlooked the rudimentary antennæ (2nd pair) in the male and the female, that his very detailed description of the rostrum is not correct, as he has taken the hairs outside the membranous border of the month for »Radiärfalten« in the membrane itself (p. 303), and that his long description of the more solid chitine lists of the rostrom is too diagrammatic. This is connected with his quite wrong idea on the maxillulæ, about which he writes: „Es sind nämlich zwei solcher Kiefern vorhanden, welche eingliedrig sind und an ihrem Ende eine Borste tragen« (comp. my description below). On the other hand it must be acknowledged that he has found and described correctly the legs and the caudal stylets of the female, but in the male he misinterprets the stylets, taking them for a third pair of legs; he has found spermatophores etc. Furthermore, his representation of the genital area is defective, and he has overlooked receptacula seminis, but he is right in stating that the female has no anus. He also gives a somewhat detailed account of the embryology of these parasites, making out their stages of development till they appear as full-grown larve, but this part of the development I have
scarcely studied at all. Finally he describes three stages of the pupe, mentioning their waut of internal structure during the first stage and their considerable growth. but he has failed to understand their month, nor does he mention the possibility of a very different development of the two sexes. He concludes with some reflections on the place which the new form onght to occupy in the system. thinking - with good reason - that it "in keine der bis jetzt anfgestellten Familien vollkommen hineinpasst « (p. 320), but that it is nearest akin to the Lerneida on acconnt of similarity in the structure of the month, an opinion which I cannot share (s. below). Salensky took his species at Naples on an Amphipod which was many years after determined by Della Valle as Microdentopus yryllotalpa Costa. About its occurrence on mates as well as on females he has a statement (p.302) which will be mentioned later on in the part headed "Habitation, biology and distribution".

Max Weber: Die Isopoden gesammelt wüluend der Faluten des Vrillem Barents in das nördliche Eismeer in den Jahren 1880 und 1881 (Bijdr. tot de Dierkmode, 188t). The anthor informs us (\mathbf{p}. $3 \overline{5}$) that in a vesicular swelling on the carapace of a specimen of Hippolyte Gaimardii M. Edw. he found four globular bodies which contained either eggs or larve, and he thought they were "Bopyriden-Larven im ersten Larven-Stadium« and that the eggs »werden wohl schubweise abgesetzt vom Weibchen mind von einer gemeinsamen Hülle nmgeben«. His suggestion of Bopyrid-larvæ is a great mistake; what he fonnd were the orisacs of a Choniostoma. The statement is only of interest in so far as it indicates a locality of the genus; the fact that this otherwise excellent author happens to be the first who found such ovisacs appears more than valneless to me, considering how he explains the matter, and I only mention it here, because it relates to my remarks in the criticism of Giard and Bomnier.
H. J. Hansen: Oversigt over de paa Dijmphna-Togtet indsamlede Trebsdyr (DijmphnaTogtets zool.-bot. Udbytte, 1887). In this paper (p. 271-278, Tab. XXIV, fig. 7-7h), I gare a detailed description of the female, of ova and larvæ of a species found on Hippolyte Gumardii M. Edw. and Hipp. polaris (Sab.) in the Kara Sea, and I gave it the name of Choniostoma mirabile. Furthermore, on this torm I established a new family, Choniostomatidæ; I did not know Salensky's paper at the time, but when Prof. G. O. Sars had called my attention to it, I mentioned it in the French résumé worked ont later on (p. 511); however, I maintained my new genns. In the female I fomd antemulæ, antemæ and a month with supposed mandibulæ, the anterior branch of the maxillulæ and the maxillæ. The description of the mouth is not quite correct, as I did not mention the membranous month-border, but I found the hairs which I thonght proceeded from the margin of the mouth; I also overlooked the rudimentary maxillipeds, nor did I find the genital apertures. The description of the larva is pretty correct on the whole, but I have with some hesitation mentioned four joints instead of three in the antennulæ, nor have I understood its olfactory seta as such. In 1889 Giard and Bonnier were of the opinion that the specimen found by me on Hippolyte polaris belonged to another species which they called Choniostoma Hanseni; this opinion
was based on the fact that it was much larger and liverl on another species. The animal did in fact prove to differ from Chomiostoma mirabile; however, the two reasons alleged by the authors proved to be wrong, for a female with eleven ovisacs found on Hippolyte Gaimardii and proving to be identical with the species on Hipp. polaris, was even somewhat smaller than the largest Choniostoma mirabile. Consequently Chon. Hansenii is found ou two species of Hippolyte, whereas Chon. mirabite has as yet only been noticed on one.
A. Giard and J. Bonner: Sur un Épicaride parasite d'un Amphiporle et sur un. Copépode purasite d'un Épicuride (Comptes-rendus de l'Acad. des Sciences, 29 avril 1889). This preliminary note is only mentioned here for the sake of completeness, as its contents are largely worked out in the following publication.
A. Giard and J. Bunner: Note sur l'Aspidoecia Normani et sur la famille des Choniostomatida (Bull. scientifique de la France et de la Belgique, T. XX, 1889, p. 341—72, Pl. $\mathrm{X}-\mathrm{XI}$). In this paper the anthors have partly described and fignred the Aspidoccia Normani, the new species and gems established in their preliminary note, partly given a very detailed critique of all that has been written on the subject. Each of these parts deserves a special mention. Of their new species the authors lave examined a female with five ovisacs and two males attached to it, sitting on the back of the carapace of Erythrops microphthalma G. O. Sars (belonging to Mysidæ veræ) muder an obliquely placed Epicarid, Aspidophryxus Sarsi Giard and Bonnier. Accidental circumstances led them to adopt the following conclusion as the most plausible: »qu'il existe un rapport soit de parasitisme soit de mutualisme« (p. 353) between Aspidoecia and Aspidoploryxus (which is a mistake; ə: below); they say that the female Copepod "était reliee à l'Aspidophryxus par un appareil fixateur" (p. 344), though such an object does not exist, and they declare that it »adherait certainement ia la Mysis par me ventouse" (p. 344), which is not the case either, as it is attached by what later on I shall call »the adhesive plate«, a congealed substance forming a plate-like cover on the forehead in front of the mouth, and which is secreted by the »glandes cémentaires« mentioned by the authors (p.349). In their description of the female (p. 347-50) they mention "les deux points chitineux" (entrances to the receptacula seminis), and they give a correct description of the genital apertures, except that the small opening which they call "pore de fécondation«, and of which they say that it serves »évidemment à l'entrée des spermatozoïdes", does not serve this purpose at all. They have found "la ventouse" on the head, but they camot make out whether the mouth is situated at the bottom of it (which it does), or whether it is fomud »à la partie supérieure de la ventouse, celle-ci servant uniquement a la fixation du parasite«. Finally, they have overlooked the antennulæ, the maxillnlæ and the maxillæ. However, it must be borne in mind that having had only one individual which they were not allowed to dissect, it would be unfair to expect them to be able to study the organs of this small and extremely difficult animal much better than they have done. With regard to the male the case is different; it is much easier to examine, besides they had two specimens. After having studied ny own material of the same species,

I came to results which differed very much from the figures and descriptions of the authors. Thongh feeling convinced that I had stndied animals belonging to their species, I wanted to make quite sure of it and asked the Rev. Canon A. M. Norman to lend me the animals which had served as types to the French anthors, and I received a male and a female. The male was kept in a preparation made by Mssrs. Giard and Bonnier, but it was considerably flattened in an oblique direction, these animals - as stated above - not being able to withstand the pressure of a glass-cover; its position was about the same as that shown on pl. XI in their paper. The spot where the animal was found was encircled by a red ring on the glass-cover, and there could be no donbt that it lay just as it had been placed by the anthors. I did not open the preparation, as all I wisherl to see was clear enough. I fond what I expecterl: perfect similarity between this specimen and my own males - and the statements of the anthors proved to be incorrect in the following important points:

1) »Les pattes nageoires font complétement défant, on sont réduites à des appendices difficilement visibles (pt.) <. The first part of this sentence is right, but to judge from the specimen in hand, the two dots marked pt. are spots possessing a slight deviation in the refraction of light, and sitnated beneath the inner side of the skin; according to my experience with other animals, they are accidental.
2) »La partie postérieure du corps est divisée en denx renflements arrondis renfermant chacun une sphère à contour très net dont le contenn est formé de quatre sphères appliquées les unes contre les antres et déformées par pression réciproque comme les blastomères d'un oeuf au stade quatre de segmentation. Les deux sphéroïdes sont des spermathèques" (p. 346-47). In the following pages I also call the two globules spermatothecæ, thongh I am not absolintely certain that they are not testicles; so far we agree, but no further. In the male of their preparation there was no restige of a fold in the middle of the body. The spermatothecæ showed inward folds which were not nearly so regnlarly arranged as it would appear from their description and figuring of the contents, nay they seemed to be empty. A careful and exact adjustment of the microscope showed that the granular substance usually contaned in the animal was outside the spermatothecæ, thongh a less accurate adjustment might give the impression that it also was inside; filled spermatothece have a very different look. The folds are easily explained by the flattening of the animal through the pressure to which it had been exposed.
3) About the antennulæ they write: "elles sont formées d'nne saillie basilaire sur larquelle est inséré un article unique en bâtonnet terminé par une pointe courte«. However, this "saillie basilaire« in their preparation is considerably longer and somewhat different in shape from their figure of it; it is in fact the antemnuæ itself (comp. my figure pl. XII, fig. 3 k .). What they call »nn article« is the olfactory seta; nor is its extremity so slender and pointed as they represent it.
4) They say about the mouth (p. 346): "La membrane de la rentouse est soutenue par de fins rayons chitineux constituant les génératrices du tronc-cône. Ces rayons ont été
vis par Salensky et par Hansen dans la ventouse de Spheronella et de Chomiostoma. Mais le premier de ces observatenrs les a considerés comme de simples replis de la membrane; le second n'a pas ru la membrane et a pris les rayons pour des cils chitineux. Un examen très attentif pent seul permettre d'éviter cette donble erreurs. In spite of this well worded phrase, I must observe that they have not arrived at any better result than the predecessors they criticise. The membrane exists withont folds and without »rayons chitineux«, for these "rayons« are free hairs, »cils chitinenx", which originate at the base of the membrane, leaning freely against it on the outside, and in their own preparation these hains, as usnal, stand clearly out beyond the edge of the membrane.
5) "La première patte mâchoire (mxpi) est rédnite à molong stylet droit aign, beancoup plus simple que l'organe correspondant du mâle de Sphceronellan (p. 346). What they describe and figure here is only the terminal joint of the maxilla (according to my definition of this pair of limbs); it is not straight, but slightly curved, in their own type specimen, as well as in my drawing (pl. XII, fig. 3 k .). They lave also overlooked the very large, long and broat basal joint, which appears distinct enongh in their own type; if they had seen it, they would have found the missing resemblance with Spheronella, and it seems difficult to mnderstand this gap in their observation.
6) However, the climax of the incomprehensible is reached in their description of the maxillipeds. In their text they mention three joints, of which "le troisième se prolonge en une dent crochne«, yet this »dent" is drawn as a claw-like joint, which is well separated by an articulation and can be folded up towards the joint above it. But in examining their type specimen, I found that it agreed perfectly with my figure on pl. XII; what they describe and draw as the three first stout joints, indeed is only one single joint without a vestige of the two articulations they mention and figure. The "dent croclme« is really jointed on, as they figure it, but furthermore, in their own preparation it consists of two distinct joints, and I cannot have misunderstood their text, for their statement abont the claw »a laquelle fait face m petit tubercule pointu« is fairly correct. So, seeing that their own type specimen agrees exactly with my illustrations, I leave it to the reader to compare their description, and especially their fignre, with mine, and to find out how they can possibly have been so much mistaken; as for me, I am at a loss to understand it.

I have two reasons for yiving this detailed demonstration of the mistakes committed by the anthors in their description and figure of this male specimen. In the first place I wish to verify in detail the identity of their species with my orin, secondly I wanted to be able to refer to this substantiation in the following pages, where I shall have to point out that in a later paper the same anthors have made considerable mistakes in their description of two other forms, of which I have not seen their type specimen.

The anthors ($\mathbf{p} .356$) state their opinion that the family Choniostomatidæ is nearest akin to Chondracanthidæ, Lernæopodidæ and Ascomyzontidæ. I agree with them as to

Lemmopodidxe; Chondracanthide seem to me to differ much more, and Asconyzontida do not show any real relationship.

The anthors quote and criticise at great length all that has heen written abont this family, but in their eagerness to exhanst the matter, they seem to go a little ton far. They give a long quotation from H. Kiöner: a Monografisk Fromstilling uf Slreplen Hippolyte's norrliske Arter (Kgl. Danske Vidensk. Selsk. Skrifter, Nat. Math. Aflh. LX. 1842, p. 263-(it)" in order to prove that this excellent investigator was the first to discover an animal of this family, and that his specimen belonged to the genus Choniostoma. They quote the passage in Danish (1. 368-69) and in a French translation; the latter is comrect, except in three points, of which one may be called a very free translation, whereas the others are indeed important mistakes and will be mentioned presently. Kröyer states that he has fomm a specimen of Hippolyte gilla (from Spitzbergen), whose carapace was much swollen on both sides; however, he fomd no Bopyrid in it, but abont a score of sub-globular: yellowish white bodies of different size (from ${ }^{2 / 5}{ }^{\prime \prime \prime}$ to nearly $1^{1 / 2}{ }^{\prime \prime \prime}$ in diameter), which were lying free and monnected side by side. He supposes them to be eggs of an manown parasite and adds: "the smaller ones I fond filled with a yolk-like, gramuloms substance fade mindre af dem har jeg fundet opfyldte af en æggellommeagtig, grynet Masse"], whilh tiard anl Bomier translate as follows: »Les plus petits étaient remplis d'me masse greme ressemblant a des oeufs", but this gives a very different meaning from the word "yolk-like, and may cuite well be understood, as if the globules were ovisacs containing the eggs of a Choniostomu. though Kroyer's expression does not imply such an idea at all. Kröyer comtinues: In the larger globnles, which were probahly very near matnrity, I have noticed a rather long $(6-7$ "" $)$, thin, vermiform body. It may be, that some leech-like anmal developsitself" out of these eggs« [»i de storste, som rimeligriis vare merved Modenhed, har jeg iagttaget ef temmelig langt ($6-7{ }^{\prime \prime \prime}$) tyndt, ormedamet Legeme. Maaske mbvikler der sig altsata at disse Fg et igleagtigt Dyr ${ }^{\text {F }}$. Judying from the two sizes indicated by Firiyer, we might suppose that the larger globules were females, the smaller ones ovisars of a Chomiosfomm. but it seems tor me ver improlable, that a naturalist like Kroyer shomb not have seen that the small glomes in reality contaned eggs or larve, instead of supmsing their contents to be a yolk-like, granulons substance, and lis statement that he found a rernitorm body abont 13-15 millim. in length in the large glohules, must in my opinion du allay with any idea that it conld be the female of a Chomiostomen (romp my desmiptiom of this gems later (m). But then, how shall we explain that Giard and Bumier cond adrible surlo an opinion? Well, in their translation of Kroyer's description of the contents of the large globules, they translate the first words: ai de storste / in the larger ones | ly: pres des plus grose which gives quite a ditferent meaning, albwing this remakahle, remifom bodys to be taken for a free animal belonging to another vass. Thas two falts in thoin tallslation of Kröyer Jead them to find a similatity which does mot really exist between a c!henostome with its wisacs and Krayer's description. I am mathe to toll what the wheres
examined by Kroyer could be, hut the sugestim that the large globules which, acenrling to his statement, contained a long, vermiform body of about half an inch or a little more in length, shonld be females of a Choniostoma, indeed seems overhold to me, even in onr golden age of loose conjectures, and if we could really suppose Kröyer to have made such extraordinary mistakes in his statements, we shomld indeed consider them worse than worthless and deserving of everlasting oblivion. When in 1889 I read this passage by Giard and Bomier, I remembered, that while working at my previous investigation of Choniostoma, I had pernsed the short paragraph in Kröyer's excellent monograph: "Et Par Bemærkninger on Snyltedyr paa Hippolyler« [Some remarks abont parasites on Hippolyfe«] (p. 262-65) without finding anything at all applying to the parasite I was going to describe. On p. 371 the two anthors write further: "Il est singulier que Hansen ait laissé passer inaperçue l'observation de Wemble, et surtout le passage beaucoup plus important de son compatriote Kborime. I shall pesently make a few remarks abont Weber, and as far as regards my overlooking Kroyer, I will only ohserve that it would certainly have been wiser of Mssrs. Giard and Bonnier, whose success in finding a pretty good pronf in favom of their assertion was entirely owing to two rather mufortnate fants in translation, to consider whether they themselves had not read kroyer wromgly, before aremsing me of having done so, especially as this combryman of Kroyer's has repeatedly expressed his appreciation of him, precisely in the report on the results of the Dijmpha-expedition, and who about twenty pages earlier (1. 25s) has pinted ont Kröyer's description of small, hat interesting, joints in the antenne and in the mandible-palp in another Copepod.

Concerning the censure of my ignoing Max Weher, 1 will make a few remarks. In my dissertation: Fabrice oris Dipterorm, 1883 (Natmrh. Tidsskr. 3 R. B. XIV), in mder to avoid mnecessary length, I did not mention all authors and their opinions, but confined myself to the statement (1). S) that I had made a rule of leaving out writers whom I did not consider as having added new elements of importance to the existing knowledge of its the month's, structure, or its nse for classification, or whose incorrect views had proved to be of no impritance. I lave followed the same principle in later works, lint it seems that, in order to aroid the accusation of ignorance, I slall have to use the same precantion as in my dissertation, where, immediately after the quoted passage, I enmmerate the authors whon are not mentioned, hecanse they are mimportant with regard to the subject in hand, thomgh they may be excellent in their treatment of other handhes. I do mot think that I had noticel the above-mentioned erroneons observation by Max Weher before publishing my essay (of which selarate copies were distributed in duly 1886), and I cannot tell now if I slonld have choted it, had I known it then, but, as a matter of fact, I had read and moderstond it lufor I wrote the French resmmé (in which, as mentioned above, I corrected my omission with respect to Salensky's (to me) important work) and I pmposely forbore mentioniny Whasi, considering lis ubservations irrelevant, thongh four or five lines would have been sulficient to reporduce their essence. The interest attached to his statements
(onsists in his indicating new a locality for Choniostomo on the other side of Nora Zemblia opmosite to mine (the Kara Sea), and that an otherwise rery deserwing anthor has rommitted a most peculiar mistake. That is all; whether I onght to have mentioned the subject is a matter of opinion; at the time I thonght it might as well be left ont.

I shall pass over several other remarks which might call for censure, and take up some hypotheses set forth rather hesitatingly by the authors, p. 352-53. After having declared themselves at a loss to understand that a Choniostoma with its ovisacs can cause a swelling in the carapace of a Hipmolyte entirely resembling that which is produced by Gryge Hippolytes, they write: »Il nons parait heancomp plus vraisemblable d'admettre que le Copéporle a infesté les Hippolytes déjà parasités par les Gyqc. et qu'il supplante les Epicarides on tout an moins profite pom se loger de la déformation produite par ces demierse. To this conclusion they add a doulbt which I think lather irrelevant, and say further: Néanmoins en rapprochant l'éthologie d'Aspintocin de celle de Choniostoma, il noms semble bien probable quil existe moprort, soit de parasitisme, soit de mutualisme, entre ces parasites et les Epicarides des gemes Aspidophymas et Gyge". However, they go still further: They have fombl a genus of Epicaridea, Porluscon G. and Pa, on a speries of the genns Amperisco, and Salensky has fonnd numerons examples of a Spharonelle in all stages on an Amphipor of an celtogether different family. Here we should think it would be rather difficult to establish a comection between the Epicaridea (Portuscon) and the Choniostomatida (Sphoromfla), which live »exactement dans les memes comditions«; nevertheless they continue: „on peut se demander s'il n'a pas existé antrefois entre cess denx groupes de parasites des rapports analogues à cenx que nous avons cherché à démontrer entre les antres Choniostomatidés (Aspidorcire et Choniostomu) et certains Epicarides. With the worl antrefoise the authors resort to the past, but it will be impussible in a case like the present one to gain any perfect or imperfect knowledge concerning the fommer state of things. We confens that this invention would be ingenious if - as sometimes happens where an excellent thing is caried to an extreme - it had not oremstemped the limit and hecome ridicnlons.

My experience, which is hased on very extemsive researches, enables me to derlare that, as far as the present time is concerned, these lypmotheses, which the anthors repeat with additional remarks in two later papers, are entirely destitute of formedion.

Ot infested Isoporla this work mentions fomr examples of three species with three speries of Syheronelle; of Cumacea with parasites in the masmium twenty-fom examples helonging to six species (the parasites belong to five specties), and of these six species I have examined several hondred specimens, in order to find those that were infested. Of two speries of Cumacea seventy-three instances were fonnd with (two species ol) Homoroscelis moler the carapace; finally, one lundred and forty examples of Amphipoda (helonging to twenty-eight species) were fomm and proved to be infested with twenty-eight species of spharomolla amb Stenotocheres. Of these twenty eight speries of Amphipodal have examined seremal thousand specimens. So the result is, that of all there urders together I hume seen whout hro bemberel
(1nd forty spercimms hefomging to thirty-pight species infesterd with Choniostomatille, but neither on these. nor on cmy other of the thousands of individuctls betonginy to these thirty-cight species, hure I found one single Epicurid. So we have done with thirty-eight of my species of Chomiostomatidæ, and of the five remaining species two may be passed over, viz. the species of the gemus Mysidion, for neither I nor any other anthor have fomd any Epicarid in the marsupimm of the hosts of Mrysidion, viz. the genera Erythrops and Parerythrops. Only on the outside of the body of the species belonging to the genus Erythrops, and in the branchial cavity of two species of Hippolyte, others as well as myself have found altogether three species of Choniostomatidæ, and at the same time species of Epicaridea. As a rule the animals of each order were found on separate specimens; in one case observed by myself, and in me case mentioned by Giard and Bomier, animals of both orders were fomd on the same sperimen. Still it call be proved that these two quite different types of parasites, thongh perhaps in rely lare cases they may be in each others way, stand at least in no other mutnal relation. As for Choniostomu Hansenii, I can pove that the animal itself pornces the swelling on the carapace (comp. my special description of this animal), and in the only case where Chomiostoma and Gyye were found on the same side moder the carapace, a male and a still smaller female of the latter gems had lodged themselves in a large swelling, which was inlabited by an adnlt female Choniostomu with eleven ovisacs. As for the last of my species - Aspidoccio Normuni - I have fomd it on twenty-one specimens of all five species of the genms Erythrops, but I fomr no Epicarid on any of these animals. Moreover, the occminence of Aspidocin, not unly on the shitd, lont also on the exterior side of the thomx and on the six abdominal segments, as well as on the eyes, proves sufficiently that it stauds in no comection whatever with Aspidophoyrus, which parasite lives only on the carapace.

Immediately after the pragraph criticised above the anthors write: "Tontes ces considérations sont sams doute fort hypothétiqnes, mais elles peuvent inspirer de nowelles recherches et indiquer la voie anx inventigatems. Elles ont de plus l'avantage de rattacher par un lien éthologique commm les types de Copépodes si étranges qui constitnent la lamille les Uhomiostomutidra. This »lien éthongigne« is quite broken now and will scarcely ever be restorerl. As for the first part of the gmotation, I regret to say that it has indicated mo path to me, and that, fir from having heen inspired by their aconsiderationse, I have been obliged to waste time amd space mon proving the motembility of some mwaranted hypotheses. To suggest such hypotheses inteed is not very difficult, and must zoologists have imagination enonglh to invent scores of them. If productions of this kind had any real value, it would be easy to promote the progress of science. But I confess that, thongh I homour everybody who is rapable of stggesting a theory which proves to be well founded and fertile in results, I have always felt and, as time goes on, feel more and more distaste for sumerficial conjectures.
A. Della Valle: ©fammarini del Golfo di Napoli" (Fanna und Flora des Golfes von Neapel, 20. Monographie, 1893, 4to). In the chapter »Parassiti dei Gammarini" (p. 289-6(0) the author informs us of some observations he has made, and suggests some hypotheses abont Spheronella. The species on which Salensky fomnd his Speronella Lenclartio is said to be Microrloutopus gryllotalpa, and the author has found it in the locality indicated by the discoverer of the species. He further states that he has fomd the same Spheronclle on Ampelisca diurloma Costa, where it lives under the same conditions as Podascon Dellu Vallei G. and B. And he proposes three hypotheses, viz. that Spheronclle changes colour according to its residence, in order to look like the eggs of the two different species of hosts; that it does not live at the expence of the host itself, but by consuming its progeny, and that for some time after having left the egg, the young Splicronnlla is entoparasitic, not ectoparasitic, developing itself in the oviduct and consming the eggs successively as they appear. In support of this last conjecture he states that he has found on an Ampelisce a Splicromelle with its multitude of ovisacs, which host at the same time pracchindeva in uno dei smin ovidutti, verso l'estremo esterno, mo piccolissima Spharonfla, in cui nondimeno erano già ben visibili le nova quasi mature" (p.290), but in spite of this rather peculiar observation, his conjecture seems modny hasardons, as an attentive pernsal of Salensky's excellent treatise with the description of the pupa stage, which follows the larval stage, wond have shown its absurdity. Besides, Giard and Bonnier have refuted all these hypotheses in a laterpaper; they justly maintain that there is a physiological reasou for this castration (ncastration parasitaire«) effected by the parasite on its host, and they consider the form found on Ampelisca as a different species from Sph. Lenckarlii, in which no donbt they are right. So I think I need not throw further light on these questions. -

About Rhizorhima Ampelisce H. J. H. the author in his Bibliographia, p. S97, ouly writes: "Questo movo Copepodo rassomiglia molto alla Sphrvomello Lenctionti, Salensky. The quality of this resemblance is treated in the following pages.
 France: Spheronella microcephula, G. et B. et Selenstive tuberosice, G. et B. (Comptes-rendus de I'Acad. d. Sc., 2a sept. 1843). The coutents of this preliminary note appear in a later essay, much enlarged and - in one point -- altered.
A. Gialid et.J. Bonnibir: ${ }^{\text {a }}$ Contributions ì l'étude des Épictridess (Bull. Scientif. de la
 PI. XII-XIII). This part calls for a detailed comment.

The authons describe and figure the female and eggs of Splucronello microcephente G. et B., a species fomd on fom specimens of Ampeliset tenmicornis Lilljeborg from Croisic. Doubtless the fiame of the head is incorrect, for a list like the one represented in the illustration (Pl. XIL, fig. 43) as going from the outemost posterior angle towards the median line behind the base of the maxillix, does not exist. If there is a comection between the frame and the sub-median skeleton -- which by the by they have not seen - but which is
never wanting in any Spharonella, there most also be a list belind the maxillipeds. However, the whole frame seems to me most prollematical, nor have I fond it in specimens which, as far as I can judge, belong to the same species. I should mot have dared to suppose so great a fault in this illustration, if I had not seen their type sperimen of the male of Aspidoecin, which enabled me to ascertain their astonishing mistakes in the representation of several organs, especially in the maxilla and the maxillipeds (comp, above 1. 7-8). Moreover, they have decidedly overlooked the maxilnla, which I have never found wanting in any female of this family. Abont the maxilla ("les maxillipedes internes") they say that they are "formés de quatre articles" (1.464), but this is wrong, for these limbs in all females, males and larve of this family contain at most three joints, and the two last joints are even fremently so completely fused that we moly find two distinct joints, as shown in my illustation (pl. V1II, fig. 2d) of the head of this species. Neither do I donbt that their representation of the maxilliperds with their strange flexim and the second joint thick and quite as long as the first, is entirely wrong. Their description and figure of the genital region (1. 465, 11. XII, fig. 44) is not successful either. By the words of the text: »un arf de cercle chitinemx (c) (mi posteriemement, se temine par demx branches..." and by the illustration, it is seen that they have tmmed the whole part mpide dom, as in reality hoth branches tmon fon ward towards the head of the animal, seen from the ventral side (comp. my fig. 2a an fll VIII). The chithons arch with its branches is pretty correct. Their representation of the genital apertures and their muscles is perfectly comect, while the apertures marked a and designed as being »les onvertmres d'me paire de grosses glandes
les glandes colléterifuess - are the orifices of the receptacnla seminis (comp. my description below and my figures of several other species of the gemss). In fig. 2 f on pl. VIII, as in sevemal other instances, I lave not remesented these orifices, lnt after a renewed examination of the same speries, I can state that the mifices, leading to the receptacula seminis in my Sph. microcephen G. and B., are fomm precisely in this place, and from these openings each of the midde-sized receptacula - forming an oblong sac - comres gently backward and somewhat inward thwards the centre. I am at a loss to molestand inything about these glands illustrated by the anthors. They also represent a pair of very large preceptacula seminis as opening into the genital apertures; thongh mable to explain what they are, I am positive that they are mot what the anthoss smpose them to loe finally, what they describe as follows: "An centre même de laire génitale il existe mespace cordifome rair
 grande et la plus nette; tonte cette partie est sitnée profordément, soms le tégumenta is certainly no organ or organs, but accidental fomations produced by coagulation or the like.

The anthors have taken their speries on Ampelisen temicomis Lilljehorg from Croisis (somth coast of Brittany), aml their detemination of the lost has been confirmed by the eminent Carcinolngist, Prof. (t. O. Sans. The specimens described later on in this work, which I have comsidered as belonging to the same species, were taken on Ampetisco typica
S_{p}. Bate. During the interval between the appearance of the first publication and that of the principal essay $[$ rorrespouded with the authors about these unestions, and as they guote sume of my written statements, [must make a few remarks. It is not only the fact that Sph. microcepheta had been fonnd in Denmark un Ampelisce typica and in Flunce on Amp. tomicomis, which I may have thonght »très curieux«, but in examining a large quantity of Danish material of A mp. temicomis, not only had $[$ found no specimen of S phl. microcepleala Whatever, but I had fimnd several specimens of a very different species (sph. longipes n. sp.), so it struck me as "Very cmious« that Amp). temicomis from the Danish coast had a parasite which it had not near the French const, while in the latter locality it lad a parasite belonging to the same gemns, and which was not found on the Danish Amp. temicomis, thonght this very parasite lives in Demmark, but had passed on to Amp. typica. However, I will add that future researches may prove both species of parasites to live om both species of hosts in either locality. In this case we shall womder no longer, but until further notice we have reason to find the circmmstance cmions.

Subsequently the anthors enter upon a critigue of Della Valle's ouservations and hyputheses. To the species fonm by Della Valle on $A m p$. dlanlomu Costa, they give the name of Sple. diudemu (t. and B., which comsequently is put down withont description. Howerer, as [have hriefly stated the principal points of Della Valle's uhservations on a finmer page, I may pass them over here; I will only add that I am mot preprared to fudge of the valne of the reflections set forth ly Giard and Bomnier abont the molom of the eggs of parasites - though [can say for certain that Della Valle's minion is wrong. On p. $462-63$ the anthons repeat the above rriticised sngestion of a romertion between (lhoniostomatidae and Epicaridea: Les Choninstomatides sont-ils des parasites des Épicarides dont ils prendraient la place en les laisant périr, un les Épicarides tacilitent ils senlement l'entrée des Chominstomatides en produisant sur les Mulurostror" des déformations et une castration parasitaire plus on mons complete? C'est cette derniere hypothese qui mons parat actuellement la plns vaisembable".

That Della Valle had found a species of Spharonelln on two specimens of Ampelisen dinelemor. and a species of the gems. Iodreson (an Epicarid) on two nther specimems of the same Amphipod indeed was the only fact of interest which had ncemred since their previons work in 1889, but this fact only proves that a fom speries of Choniostomatide has been added to the three, of which it has been stated above that they live on species infested with Epicaridea, and this is of the slightest importance compared with the statistics [give on $1 \cdot 11-12$, and the conclusions drawn from these statistics and from my olservations.

We now arrive at the most mnfortmate idea adranced loy these anthons, their grouping of Choninstomatitre H. J. H. and of Herpmllolicitre H. J. H. as sulb-frmities (uithe the suffire ines) of the fumily Spharonmider G. amt B. In onder to refute this combination - one of the most inappopriate I have ever met with in Carcinology - and some hypotheses comected with it, I shall also have to mention the family Herpyllobiida.

In 1892 I published an essay: "Phizorlina Ampetiser n. gen. n. sp. En my tit Herpyllobiatce 11. fam. horende Copeporl, smyltende paa Ampelisca lavigata Lilljeb. (Entomol. Meddelelser, 3. B. 5. Hefte p. 207-34, Tab. III), which in the first place contains a detailed description of the above-mentioned new and very curions form, in the second place makes an important contribution to the knowledge abont Herpyllotrins Stp. and Ltk.; finally the new family Herpylloliidle is established, and the genera - seven in all - which can with more or less certainty be referred to it, are grouped together. Two of these genera, Trophoniphila M' Intosh and Ocstrella M' Intosh, are described so defectively that we prefer not to consider them in this place. The female of the other five genera has a globular or oblong body without any vestige of month or limbs; posterionly are two genital apertures, each with its ovisac. The front part of the female of Rhizorhino forms a short, slender stalk, which pierces the skin of the gill of its host; the inside of this stalk consists of two tubes. Just beneath the skin of its host the stalk expands rery much, the tubes are considerably dilated, they separate and ramify iregularly throughont the gill, even entering somewhat into the body of the host. In the genera Herpyllolins Stp, and Ltk, and Eurysilenitm M. Sars, the stalk, which consists of a single tube, is foumd on the ventral side of the body, pierces the skin of its host and expands inside it like a collar, but this collar is surronnded by the root of a large, oblong, foliaceols or irregularly sansage-shaped body, which is decidedly homologons with the tubes of the Rhizorhimu, and, like these, has the function of drawing nomishment from the host to the external, limbless body, whose business it is to develop the egg.s. In Succopsis Lev. and Brandophita Ler. Levinsen has indeed fomod the stalk, but no body at the expanded end of it in the body of the host. However, he had but slight material of buth forms to work with, sol will now state as my personal opinion, that a body, or one or two tubes, may have proceeded from the stalk into the body of the host; otherwise it wonid be impossible to molerstand how the parasites could get their food. Moreover, I may mention that, when (in Nov. 1896) I spoke to the anthor, Inspector G. M. R. Levinsen, abont the matter, he felt inclined to share my opinion. Giard and Bomier (in their above-mentioned paper) describe a new parasite, Sclenshigu bubrosu, of which a single specimen was fomd on Ampelisen spinipes Boeck tiom Croisic. They confess (p. 474) that it "présente certamement me très grande ressemblance avec Rhizorhina ampeliscre.... et nous avons longtemus hésité à maintenir le genre Sulenshya, crée par nous [in the preliminary note] quelques mois aprés la publication du tharail de Havsox«. Still they think they are justified in maintaining it, "au moins provisuirement", (m) the following hasis:
"Au lieu d'être fixé à soll hôte par des racines rappelant un peu celles de Succutinu, ${ }^{103}$ par un renflement comparahle à celui des Herpyllobims, la femelle de Salensliyn pussèrle in appareil chitmenx spécial, qu'on ponrait rapprocher plutôt de celni de Succopsis terchellichis figuré par Lbvinsen « (p. 475). I have just spoken of Succopsis, and I will nowv express my opinion that if a specimen of Salensky is found again on Amp. spimipes, and the part of the host occopied by the parasite is cut off, this part will contain intermal tulles exactly
like those I have descriled in Rhizorhina; the two apertures mentioned and described by the anthors are the roots of these tubes. Separate copies of my essay abont Rhizorhina were distributed in July 1842 (me of them was sent to the authors). Thein prelininary note, in which they establish Salenslya, mentioning its "appareil fixatem enf forme damphidisque on de boutom de manchetter, is dated Sept. 25th 1893, but it is quite evident that, at the time their manuscript was sent to the press, they had not read my essay. So, having but one specimen of the animal to work um, they committed the same mistake which I had made with my first specimen of Rhizorlina: without having any idea of the tubular srstem inside the lost, I detached the visible part of the parasite, thus breaking the stalk which minted it to the hidden part. After what I have just said about their inrestigation of the male Aspictocciu, I am quite justified in not trusting their statements in a qnestion so difficult as that concerning Salenshyf, where their judgment rests on the examination of but one individual. The result is that the genns Sulenskya G. and B. must be cancelled, heing established only on this one single character. Whether their species differs from Rhizorhina Ampelisce will have to be proved by ascertaining if the slight differences between our representations of the males agree with facts. Thongh this on the whole may possibly be the case, I donbt that they are right in stating that the larra of the parasite they describe has two orifices for the ducts of the genital organs; I have only found one loole surrounded by a somewhat thickened ling.

The authors quote from their preliminary publication (p. 475-76) a long passage, in which they suggest "progenèse" and "dissogonie" in the male of Salenskya. They now give up these theories, saying: "Les recherches de Haxisia ponrent que chez Rhizorhinu la métamorphose régressive existe bien chez les mâles de ce gemre dHermpllobinuce et qu'elle est tout anssi accentnée que chez les Choniostomatinc." Howerer, the last sentence which is meant to establish a relationship between the two gromps to each other, is very misleading, as the male of Plrizorlina (and Merpyllotins) is a body entirely without limbs, month or any other extemal organ or intemal muscles, with nothing in fact but genital organs, the male of any Choniostomatid whatever is a highly developed animal with antennulæ, a very complex month with mandibles, besides maxillulæ, maxillæ and maxillipeds with some joints, intermal muscles ete. So in saying: "Ce charactère différentie] ["progénèses in Salenshya and other Herpyllobiidæ] entre les deux sons-groupes ne pent dona être maintemu", they are perfectly right, but such a negative feature does not imply any kinship.

Howerer, the principal points are contained in the following paragraph, and in order to criticise it I am obliged to quote the last half of 1. 476 and a little of 1.475 in their paper; I will, howerer, divide the quotation into three parts. They write: "Le reste de l'organisation concorde dume façon remarquable, non senlement chez la femelle out, en raison de la dégradation, tonte comparaison pent sembler dépourne de valeur, mais anssi chez les mâles et les embryons: même tendance à la disparition de la deuxième paire
d'antennes, même structure de l'appareil buccal avec la ventouse si spéciale et les appendices transformés en stylets, même disposition des membres thoraciques, etc.

Les jennes individus surtont présentent me ressemblance extraordinaire et indiquent nettement la parenté des deux groupes.

Mais il est un caractère du mâle smr lequel nous désirons particulièrement attirer l'attention, parce qu'il est très exceptionnel et qu'on ne le retronve dans ancune antre famille de Copépodes, en dehors des Choniostomatine et des Herpyllobrince.

Les canaux excréten's des glandes génitules mûles débouchent dans la partie céphaTique de lianimal et dans le voisinage de la bouches.

Let us examine this a little more closely. Though the authors think that the larve in particular slow "une ressemblance extraordinaire", we find that these larve, which indeed may be said to be in the first Cyclops-stage, resemble each other less than the larve of a Choniostomatid and of an Achtheres respectively, according to the illustration given by Clans (Zeitsclnift wissensch. Zoologie B. XI, Taf. XXIII, fig. 5). At any rate, the likeness between the months of the larve of a Rhizorhina and of that of a Choniostomatid is not so great as the anthors seem to think, and it is certamly much smaller than that between the month of a larvæ of the last-mentioned group and e. g. of a larva of Pennella. The maxillæ of the two groups deviate mnch from each other in shape and position etc. Several great differences between the males of Choniostomatidæ and of Herpyllobiidæ have been pointed out above, and we shall soon mention more. The differences between the adult females also seem to be so great that we are struck by the astonishing boldness of the assertion that: "en raison de la dégradation, tonte comparaison pent sembler dépourve de valeur. In the former type, the Choniustomatidx, the female possesses at least the antemulæ, a well-developed mouth with mandibles, maxilhulæ and maxillæ; in the latter, the Herpyllobiidae, the body has no vestige of these organs or of any limbs, and in the three genera which are examined so thoronghly, that our knowledge about their nutrition is perfectly reliable, we know that it takes place throngh a large mysterious body (in Herpyllobius and Silenium) or through an efually mysterious tubular system (Rhizorhina) which is found in the body of the host, and which has a most cmions, hitherto unexplained development (comp. my essay about Rhizorthimt). Indeed, I can find no other likeness between the females of these families than the small size of their botlies, their subglobutar or oral form, and their two genital apertures, and as this last character seems to be common to all parasitic Copepoda, we might as well pass it over.

But still more objectionable is the statement printed in italics, that in the males of both families the genital aperture is found on the head near the month. I shall begin by speaking of Herpyllobiidæ. The authors substantiate their opinion in these words: "Ce caractère, tellement extraordinaire que nous ne l'avions signalé qu'avec réserve dans motre étude sur Aspidoccia et dans nos recherches plus réceutes sur Salenskya, Hinsen l'a mis
completement hors de doute daus son bean travail sur Rhizorkmu... This requires a comment. I have proved the following facts. The males of Rhizortina and of Herpyplobins are not the larce. The larva fasteus itself to the female by a gluey substance, after which all its muscles etc. are dissolved; the limbs are emptied of their contents and the whole plasma of the larva contracts and surounds itself with a new skin, this forming " mate without limbs, month or other external organs, and without visible internal organs excent testicles and their efferent ducts which gradually derelop themselves. In the Rhizorhina this male remains inside the skin of the larva: pushing its remarkable spermatic ducts out throngh the hole in front of the mouth of this dead case. In the Herpyllohius the skin af the larva bursts, the male fasteus itself with its front, and the spermatic ducts proceed (behind the attached end) throngh the split produced by the bursting of the larval skin. So in both cases the male is transformed to such a degree as to render a morphological orientation rather uncertain; at all events, we can no longer speak of »le voisinage de la bonche», as there is no mouth at all. This description of the male of Herpyllohiidæ will also give a sufficient idea of the immense difference between this animal and the males of Choniostomatidie which, moreover, fix their spermatophores on the females in the usual way.

The authors continue: „Chez tous les Spheronellidee, les canaux génitaux mîles servent aussi à l'excrétion d'une substance cémentaire avec laquelle le mâle se fixe sur la femelle dune façon phas ou moins durable. Ce rôle nouveau et ces connexions singulières des canaux génitanx constituent à coup sûr le trait le plus saillant de la morphologie de la famille des Sphcronellida, telle que nous la comprenons«, mamely Choniostomatidæ and Herpyllobiidæ together. The authors are bold indeed; they do not hesitate to suggest one hypothesis after another, the second more erroneous than the first. Now, to begin with Herpyllobiidæ, who has said anything that could justify the statement that the genital organs of the male secrete the riscous substance by which the animal attaches itself? The anthors have seen nothing themselves, and they cannot base their statement on my essay about Rhizorhino, as I maintain that the larva of this animal attaches itself by a gluey matter proceeding from the mouth before the mate is dereloped and before there is any indication of genital oryans. The male keeps inside the skin of the larva, whiclu remains attached to the female, and no further fixation takes place ${ }^{1}$). How then must we quality the sentence the authors pronounce as if it were proved? To put it mildly, we can only call it a product of imagination. - We shall now turn to the second division of their "Spheronellides : the Choniostomatidæ, and here again we shall have an opportunity of considering their above quoted lines in italics: "Les canaux excréteurs des glandes génitales mâles débouchent dans la partie céphalique de l'animal et dans le voisinage de la bonche«.

[^0]The authors have proved (1889) that in Aspidoccir the male is hinged by a thread which proceeds from a hole on the ventral side of the front part of the head: »ce filament est secrété par deux grosses glandes cémentaires probablement homologues de celles uni servent à la fixation chez les Cirripèdes". No doubt it is this comparison on which they base their opinion that the genital aperture is fom on the head, and also that the spermatic glands secrete the viscons substance which forms the thread, as these organs are believed to perform this double function in the Cirripeds ${ }^{1}$). A slight basis indeed for such remarkable statements! The observation about the hingement of the male is correct, but then, has the thread to disappear in order to allow the spermatophores to come out of the hole, or is the order of the two processes to be inverted, or does the male possess another genital aperture on its front near the base of the thread? Unfortunately we get no answer to all these legitimate questions - though indeed we can scarcely imagine any possibility besides these three. No, the doctrines about the genital aperture on the head and the double function of the sexual urgans in the Choniostomatidx are postulates without any fountation. Within the family mentioned it is an ordinary phenomenon to find the male attached by a thread; this prevents it from being washed away and allows it to creep as far as the thread can reach, giving it frequent opportunities to fix its surmatophores on the entrances to the receptacula seminis. Besides, the genital aperture is not found on the head; in Spheronella paraloxa I have been able to prove the existence of two genital apertures at a short distance from each other on the rentral side of the trunk: from each spermatotheca proceeds an efferent duct forward and obliquely towards the median line, and these canals open on the posterior side of the depression between the first pair of tronk-legs, or at least somewhat behind the basis of the maxillipeds. But then, what remains of the hypotheses adranced as facts by the tro authors, that the genital aperture of the male in the Choniostomatidx is fomd on the head, and that the "canaux genitaux« secrete the viscous substance by which the animal attaches itself? Nothiny, alsolutely nothing! And what remains of their best proof - based on these organs --, that Choniostomatidie and Herpyllobiidæ ought to be grouped in one family? Equally: nothing! except a rather surprising impression of the loose method of the authors: to establish unreliable conjectures as facts in order to prove an absurdity.

Though I suppose that most readers have now formed a pretty clear idea of the great differences between the two families, I will give a summary. The likeness between the two families is limited to the following features: both are parasitic Copepoda, in which the males are several or many times smaller than the females; in both sexes the body is small, sub-globular or oblong; the last larval stage of Herpyllobiidæ is the first Cyclops stage, it resembles to a certain degree the larva just coming out of the egg in the Cho-
${ }^{1}$) I will not here enter upon criticisms which have appeared elsewhere about Darwin's unfortunate statements upon this subject, nor on Giard's later suggestions concerning Rhizocephala.
niostomatidæ. The differences between the families will be slown most clearly by giving a short description of each. In the Choniostomatidx both sexes possess ut least antemmla, a month with mandibles, maxilnlie and maxilla, and the males hare always maxillipects, and they fix their spermatophores on the females in a normal way. The female deposits its eggs in one or two tree lumps or, in most cases, in ovisacs, of which at least four or five and sometimes more than twenty are fond; the larva attach themselves ly an arlhesive plate on the forehead and - whether passing throngh the pupa stage or not - ilevelon themselves into animals of either sex. In Herpyllobiide both sexes lack antemax, mouth and appendages; the females project a mysterious body or two ramified tubes into the host and draw nonrishment throngh these organs. The males project from the anterior part of their body in adrance of the month of the larval skin two long spermatic ducts, which are formed by a secretion in the genital organs, and throngh these canals nearly the whole substance of the body, having been transformed in the service of propagation, is transferred into the female. The female has two orisacs; the larva attaches itself by a gluey sulbstance proceeding from the month, and is transformed into a limbless male or female. In the latter case the animal forms a stalk which pierces the skin of the hust, inside which it dilates and develops into the above-mentioned organ of mutrition. - Whereas the Choniostomatidx, on the whole, fit in well among the other families of parasitic Copeporla, the Herpyllobiidæ remore themselves from the others by a series of very peculiar features, occupying a more isolated position than any other of the families.

This, I hope, will be sufficient to prove that the juxtaposition by the anthors of the two families in question as sub-divisions of one family, is contrary to all somd classification. I think also that sufficient light is thrown on the characters and hypotheses of the anthors. The present work being a kind of monograph, I fomd it necessary to write this rather detailed critique of their publication. However, this task has not been at all pleasant to me, becanse in another hranch, the Epicaridea, they hare published works which must be considered the principal sources of om knowlerge about important groups belonging to this large and difficult family. In the interest of the authors and of carcinology, as well as for my own sake, I wish they lad not published thein four, at least not the two last of their contributions (the preliminary note in $18!3$ and their final essay 1895) about Choniostomatidæ. It would indeed have been very natmal to postpone the publication of their two last papers, as their material of these animals (whose manipulation presents considerable technical difficmities) was rather scanty, and as, even-as early as 18:1, they know that I was preparing a work based on rery abmiant material. (I need sarcely add that the fact of their publishing a report about une species previously to myself affects me rery little; indeed I might easily have secured this priority by some "preliminary motes). If, nevertheless, they were intent non describing their tew animals, their researches might and ought to have been much better, and they nught to have abstained from filling up real
or imaginary gaps by a mmber of unproved assertions and unwaranted hypotheses regarding structure, biology and classification.

Nowadays many anthors have a remarkable weakness for publishing imnmerable immature notes, for buifding zoological card-honses, drawing up genealogical trees and inventing theories and hypotheses, especially where they know very little. Where they have acquired considerable knowledge based on thorough study of a large material, as a rule, they abstain more from hazardous conjectures. One result indeed has been obtained: Zoo$\log _{y}$ has been encumbered with endless preliminary notes, with papers abounding in faulty and defective representations and maccomitable postulates and reflections, so as to render the study of it tronblesome to an almost unsurmonntable degree.

Jules Bonnmer: Résultats scientifiques de la Campagne du "Caudan" dans le Golfe de Griscogne, Aout-Septemine 1895. Edriophthalmes. (Aun. de l'Université de Lyon, $\left.1896)^{1}\right)^{1}$. In an appendix to this valuable work the author describes and fignres a new species, spheronella serlentarim Bom., which he has discovered in the branchial cavity of Cyclaspis longicaudatu G. O. Sars of the order Cmmacea, in a depth of 960 metres, lat. $44^{\circ} 5^{\circ} \mathrm{N}$. , long. $4^{\circ} 45^{\circ} \mathrm{E}$. He fomnd an adult female, four ovisacs and a small specimen, which he considers to be a young female, but which is no doubt a male. The species belongs to my new genus Homocoscelis, and comes very close to my H. minutu. He begins by describing the small specimen, and his description of its body, the borders of its head, its antemnule, maxillipers, trmk-legs and candal stylets is essentially correct. He also conrects Salensky's erroneons conception of the caudal stylets as a third pair of legs, but the has certainly orerlowed the maxillulit (comp. my drawings of the males of my species: pl. II, fig. $1 \mathrm{i}-1 \mathrm{k}$ and pl . XIII, fig. $1 \mathrm{f}-1 \mathrm{~g}$), which are never wanting in any species of the whole fanily - muless the outer part of the mandibles possibly may be the larger part of the maxillule, which might indeed be supposed from the drawing. The hairs surrounding the membranous border of the month are overlooked, and the basal joint of the maxille which he mentions (his maxillipede internes) does not exist; what he takes for this joint is no doult a part of the sul-median skeletrm. As will appear from my subsequent description, the only feature by which the male and a young female of the same size of the genus Homocoscelis can in all cases be distinguished from each other, is the distinctness of the genital apertmes in the female. The anthor has fomid no such apertmes, and this circumstance, as well as the occurrence of the animal together with an adult female, indicates that it must have been a male. The author's comparison of the female with the small specimen is correct; only his description of the genital area calls for a few remarks. He

[^1]is of the opinion that each of the genital apertures is provided with a separate frame, of which he presents a drawing (fig. 5e), but the anterior part of these frames is scarcely correct in drawing, as it is not likely to reach up to the "pore de fecondation« (orifice of the receptaculum seminis) which - we see - here for the first time is proved to exist in an animal of this family. Neither has he seen the median part of the firm chitine of the genital area which muites the two "framess, but it must be pointed ont, that withont a special dissection - in which, moreover, a certain amonnt of practice is desirable these details are difficult to discover. The whole description of the tro small specimens is considerably better than the above-mentioned joint work on this fanily by the same anthor and Prof. A. Giard.

III. GENERAL REPRESENTATION OF THE FAMILY.

IIn order to facilitate the use of this large section it is divided into three chapters, the first of which contains a general view of the structure and derelopment of the animals, the second of their labitation, biology and distribution, the thitd some general observations abont the classification. Each of these chapters contains several snb-divisions.

A. Structure and Development.

a. The Female.

This sex is known in all species. The body is nearly always a little flattened seldom more than a little; if seen from below or from above it is ovate or globular. The young specimens are generally much longer than they are broad; the adnlts are now a little longer than they are broad, now the reverse; sometimes their broadest dimension is a little in front of, sometimes a little behind the middle. Specimens which are going to lay, or have commenced laying eggs, are always somewhat - pobably as a rule much - larger than old ones which are emptied of eggs (pl. 6, fig. 3 a shotrs such a female which is going to lay eggs, fig. 3c a female (with a male) which is emptied of eggs, both enlarged to the same scale). In consequence of this evacuation the animals frequently shrink and become ragner of ontline. We often happen to see specimens which have become crooked and irregular from pressure, otherwise all the animals are maturally symmetrical. The size of the adults raries considerably; in most species the diameter of the animal seen from below is $2 / 3-1^{1} / 2 \mathrm{~mm}$.; it can even decrease to about 3 mm . (Homoooscelis mediterranea), and Choniostome Hansenii G. and B. can obtain a lenglit of 5.3 and a breadth of 55 mm . As a lule there is a certain proportion between the size of the parasite and that of its host; however, it must be bome in mind that the parasites themselves differ in size according to their habitation in the marsupimm or under the carapace; in the latter place they are comparatively smaller. As a matter of course, small Amphipoda canmot
support large parasites, whereas large species like Calliopizs: lrevinsculus Kr., Munnopis: typica M. Sars and Hippolyte, are inhabited by large animals.

In most species the regular, rounded, orate or globular shape of the body is interrupted in front or a little belind the anterior margin on the ventral side by a small protruding head, which as a rule is tolerably well defined at the hasis. In the adults it is most frequently very small, compared with the trunk; in small, and particularly in recently hatched specimens (pl. VII, fig. 2e, and especially pl. III, fig. 2c) it is of a very considerable size. The reason of this difference is that the hemd and its organs do not grow or at most grow very little, whereas the trunk greatly increases in size, in order to give room for the mighty production of eggs. In some forms there is no separate head at all, sn that its (Very small) organs: antemulæ, antemnx, mouth, maxillule, maxilla and maxillipeds, are sitnated near each other anteriorly on the ventral side of the vaulted body. In Stenothocheres (pl. I) the thorax has two rather small pairs of limbs; in the other genera these limbs are quite minute or wanting altogether. In Stenothocheres we find a distinctly marked, prominent abdomen. - In no species the body shows any vestige of segmentation.

This will give a general idea of the females. In giving a closer rlescription of their structure I think the best plan is to begin with Spleromella and kindred forms, as the genus Stenothocheres, thongh in two important points - the size and development of the trumk-legs and the existence of an abdomen - more closely related to less transformed Copepoda, in other respects is less qualified for serving as base of the description.
I. Homocoscelis, Spheronella and Choniostoma. Many species have a prominent, well defined head: the back, tiont part and sides are evenly vanlted and pretty well chitinised, and the chitinons border to the front and on the sides stands ont a little beyond the rentral side, which is partly covered by a soft membrane, and has a somewhat concave surtace. Seen from below, the sides of the head are arched posteriorly, for the abovementioned protuding lateral borders are somewhat removed from the ontline of the head; they are generally ciliated, whereas the margin of the frontal border is mostly hairless. As a rule, a narrow, arched, transversal list, or two narrow, parallel lists, proceeding from the posterion ends of the lateral margins and passing behind the basis of the maxillipeds, forms or form the posterior limit of the head. Sometimes this list is interrupted at the median line (pl . III, fig. 2 c), sometimes it does not reach the lateral margins (pl . VIII, fig. 1d).

Chomiostome (pl. XI) at first sight seems to have no distinct head at all, however, the above-described borders in front, posteriorly and on each side remain, forming a frame romid the soft area, in the middle of which the month and its appendages are sitnated. The fiont part of this frame in Chon. Hansenii (pl. XI, fig. 2 d) rises a little beyond its surroundings, thus representing the only remaining part of the anterior and upper surface of the head.

Sphar. Acanthozonis (pl. VII, fig. 5a and 5b) presents a fine intermediate form between Choniostoma Hansenii and the species that have a well defined, prominent head
(illnstr. on pl. Il to pl. V1I etc.). In all species with well-developed head, or at least with the frame left, we see behind the frontal margin and inside the lateral parts of the frame a broad band of thin, soft skin. Somewhat behind the middle of the frontal margin is the rostrum (proboscis) with antennæ and maxillułe, and from this part backward towards, or quite up to the list behind the basis of the maxillipeds, we see a system of plates or lists. This system, which I shall call the sub-medium skeleton, is partly or all the way divided into two laalves by softer skin along the median line; its strncture differs in nearly every species; as a rule it expands considerably in the middle of its lateral margins. The inner margin of the basal joint of the maxillæ touches the outer margin of the front part of the expansion, whereas the maxillipeds are articulated behind the expansion tonching the onter' margin of the narrower posterior part of the skeleton.

In several species of the genns Spheronella, namely Sphar. microcephala, S. dispar, S. insignis, S. Mrmmopsifis and S. marginata (pl. VIII, fig. 2d; pI. IX, fig. 3 f and fig. 4 c ; pl. X, fig. 4b, and pl. XIII, fig. (id), there is no separate head and no harder chitinous borders (only in S. marginata and in S. microcephath there is a low border or a transverse list in fiont of the month (pl. XIII, fig. $6 \mathrm{~d}, \mathrm{pl}$. VIII, fig. 2e)), whereas the snb-median skeleton exists, strongly developed as a solid plate in S. Numnopsidis (pl. X, fig. 4b), much rednced in S. dispar

The Antcmmulc. In all species, except the five without separate head and withont frame, the antennnle are well developed, and in these they are articnlated to the solid fiame, each at one of the angular points where the lateral margin merges into the frontal margin (comp. e. g. pl. II, fig. 1 h and fig. 3 a , pl. XI, fig. 1a). Each antennula is usually composed of three joints, of which the second is generally the shortest, the third the longest. The front angle of the first joint is mostly provided with two or three shorter or longer setæ; the terminal joint is rather well provided with bristles of different length, among which an olfactory seta (b) can be frequently pointed out. In the genus Homocoscelis the antennule become 2-jointed by the fusion of the second and third joints (pl. XIII, fig. 1d). In Spher. decorata (pl. VIII, fig. 3e) the first and second joints are coalescent. In Spher. marginata the antennulæ (pl. XIII, fig. 6 d) are constructed as in Homoeoscelis. In the other four species of Spheronella, which are devoid of separate head and of frame, the antennulx are sitnated at the same points, but fastened to the thin membrane, besides being shorter and reduced so as to show only indistinctly separated joints or no division at all.

The Antennce. These organs I have been mable to discover in the species of the genus Homoeoscelis, and in Spher. morlestr, S. dispar, S. insignis, S. maryinata, S. Mumopsidis and S. microcephala, whereas they exist in the other species of Spheronella and in Choniostoma. They are always placed on the side of the rostrm itself near the margin of its expanded basal part, and they are always short, slender, generally 3-jointed (e. g. pl. V, fig. 2d), without hairs and terminating in one shorter or longer seta. In a few species, e. g. Spher. decoratu, the number of juints is rednced to two, in Spher. antillensis (pI. III, fig. 2c) they are
rudimentary, 1 -jointed and have a rery short seta, and so they are in the seren remaining species belonging to the gromp of Sphar. Lenckartii Sal. (comp, the systematic part).

The Rostrum. It is always of good size and bluntly conical, or like a cylinder with dilated base. Its structure is rery complex, and we will begin by studying its distal part, for the representation of which Choniostoma Hansenii (pl. X, fig. 6a and fig. (6b) will serve as type. In fig. (ia the cylinder is seen sideways and withont the expanded part at its base. At the margin of the terminal face of the cylinder originates a membrane which has the shape of a kind of border or very short inverted cone. In looking at it fiom the distal end (fig. 6 b) we see that the membrane covers the whole terminal face, having the shape of a cup or perhaps rather of a flat fumel, as it leaves an oblong aperture at the bottom in the centre; this is the entrance of the month, beyond the margin of which the points of the mandibles are seen to proceed. In front of the month the membrane is divided in the middle by a deep incision; the opening thes produced is filled by an odd median plate, on each side of which is another plate which is partly covered by the membrane. In the illustration these parts are marked d. The membrane is downy at its edge (fig. 6b), and the whole inmer surface of the fumel is covered with pecnliar dots, which are smaller near the edge than towards the centre, and which probably represent tiny knots. Outvide the membrane are seen a number of cylindrical hairs which are sometimes furcate at the apex (b). They are articulated to the distal edge of the cylinder at the base of the membranons border and, being longer than its height, proceed somewhat beyond its free margin. When - as in the present instance - the rostrum is cut off, it is easy enough to see that these hairs do not exist within the membrane, but only lean against it. In some species, e.g. in Sphecronella curtipes (pl. X, fig. 2d), the membrane (viz. the fiee part of it) is considerably broader, in others narrower, than in Choniostomu Hansenii. The hairs in some species are much more numerons and much thicker than in others, and they often converge or diverge very irregularly, according to the position they happen to occupy; in a few species I was not able to discern them. My figmes as a rule are too small to allow of drawing the membrane, but these hairs are drawu as well as it could be done. It must be observed that the shape of the month raries considerably in specimens of the same species; [have fom it more or less funnel- or cup-shaped, in accordance with the angle formed by the membranous border and the surrounding hairs against the terminal face. In the systematic part of the present work the free part of the membrane together with the hairs is called the mouth-border:

The outer smface of the rostrm shows several harder chitinons lists, and when the rostrum is examined from its distal end, some harder parts are seen through the semi-diaphanous membrane as circles, which are intempted in front at the median line. In my opinion the distal part of the rostrmm monst be explained as being a highly modified Taluium, or rather hypopharymx, which forms a kind of sheath romd the mandibles and stretches so far towards the front that its edges approach rery near to each other, and that the abovementioned median part marked d. minst he considered as the labrum. However, I ann not
able to account more fully for the structure of these parts and the attachment of the mandibles. When looking at the rostrum from its distal end (fig. (ib), we see them throngh the intermediate substance, like narrow lists in appearance, the free distal points of which are visible in the month-aperture and are somewhat different in shape on the right and the left mandible. Departing from the points, they turn ontward, at the same time running down the rostrum, their basal end lying inside its walls rather far from the aperture of the mouth.

It is only the distal part of the rostrum which can be considered as formed by the hypopharynx and the labrum, the proximal part must be chitine belonging to the ventral side of the head itself, which here has become cone-shaped or forms the foot and the proximal part of the cylinder. I draw this conclusion from the fact that the antemne, where they are found, proceed from the basal part of the cone or from the foot (Choniostoma, pl. XI, fig. 2 d), and that the maxillulæ are situated on its lateral surfaces (see e. g. pl. X. fig. $6 \mathrm{a}, \mathrm{c}$, and many illnstrations of heads of females seen from below). Bnt these last-mentioned mouth-organs must he treated separately.

The Maxillule are found in all species. Each maxillula consists of a somewhat oblong plate which almost thronghont its whole length is coalescent with the middle and the more proximal part of the rostrum, and in the latter place this coalescence is so complete that it becomes impossible to distinguish the outline of the proximal part of the maxilluta (fig. 6a), whereas its distal part (c) detaches itself from the lateral surface of the cylinder. Here it divides itself into two branches, the anterior of which forms, now a shorter or fairly long. now, and mostly, a very long process, which looks somewhat like a proximally very thick and distally more slender seta. The posterior branch has a quite similar structure. These two more or less setiform processes I consider as the principal branches of the maxillula; they are never wanting, and as a rule they are somewhat curved (in the specially examined specimen of Choniostoma their terminal half was simons), and on examining the head from below, the anterior branch of the maxilhula is mostly seen to proceed beyond the toremost part of the lateral margin of the mouth-border, the posterior branch behind the posterior part of the same lateral margin, whereas the distal part of its plate and the base of the two branches are covered by the lateral part of the mouth-border, throngh which they can be seen (e. g. pl. V, fig. 2d and especially fig. 3d). Besides, in most species the maxilla possesses as an udditional manch a process shaped like a stont and nsually long seta, articulated to that part of the maxilla which is coalescent with the rostrum, and often so proximally that, in looking at the head from below, we get the impression that it is situated outside the basis of the maxilla. The basal part of this additional branch is trequently set off by an articulation. This branch is wanting only in Homoeoscelis and in the three species of Spheremella which are parasites on Cumacea, and which have no separate hearl.

The whole rostrum is movable, su that its distal part with the mouth is turned more or less forward or backward, now protruding, now receding considerably, which differences are seen most distinctly by observing the head sideways, and comparing the
position of the rostrmm with the lateral margins of the head (comp. the rostrom in the mumerons figures of males seen from left side).

The Maxille are always (except in one single species mentioned below) well developed, often very powerful. 'They are situated far from each other', somewhat behind the base of the rostrm, on the onter margin of the sub-median skeleton, the expansion of which reaches their inner margin and frequently extends behind their posterior margin. Typically they have three joints, of which the first one is very thick, often not much longer than broad; the second and third joints together are usnally shaped like a slender, distally somewhat curved cone, which can be folded up like a claw against the oblique terminal margin of the basal joint, and as a rule these two joints are coalescent, thongh sometimes we find them rery distinctly separated (e.g. in Spheronella insignis, pl. LX, fig. 4c). The basal joint is often provided with one or two protruding knots or taps, and its teminal margin at the articnlar membrane is freruently furnished with hairs, or, as in Spher: Mumopsidis, with some peculiar cylindrical bristles or fine processes (pl. X, fig. 4b); in Sphecr. decorata (pl. VIII, fig. 3e) and in S. modesta (pl. IX, fig. 2d) a part of the articular membrane between the first and the second joint is decorated with rather numerons small chitinons taps. The terminal joint usnally ends in a point; in Spher. dispar (pl. IX, fig. 3 f) the apex is blunt, but has several fine, setiform points. In Splece. marginatu (pl. XLLI, fig. 6 d) the maxille are quite rudimentary.

The Maxillipeds are well developed in Spheronella and in Homocoscelis. They are articulated on the posterior part of the sub-median skeleton and are usnally somewhat closer to each other than the two maxillæ. They consist typically of four joints, of which the basal one is thick, very long and always distinctly longer, often much so, than the other's together; these can be folded up against it in a very acute angle. The basal joint is often decorated with processes, spines, rather long hairs, shorter or very short hairs, or' very fine, conical taps; the hairs and taps are arranged in spots, stripes or rings. The second and third joints are slender, distinctly or indistinctly articnlated or quite fused together withont the slightest distinction. The third joint has generally on the imner side of its distal end a spine, which in those species of Spheronella which live on Cumacea, is provided with fine points, besides being sometimes broad and flat (pl. MUII, fig. 6d). The last joint is more slender than the others, somewhat curved and often ending in a point with one or two spines on the imer side behind the point; in most of the Spheronella living on Cumacea the joint expands a little towards its somewhat flattened and romnded extremity, along the margin of which we see mmerons fine and short, setiform processes. A somewhat similar structure is noticed in Spheronelle Mcumopsidis (pl. X, fig. 4b). In Sphar. microcephala (hl. VIII, fig. 2d) the maxillipers are weak and comparatively rather small, second and third joints coalescent and very short, the last joint rery small and stmuted. In the genus Choniostoma the maxillipeds are quite rudimentary (pl. XI, fig. $1 \mathrm{a}, \mathrm{g}$ and fig. $2 d$), and reduced to two very small or quite diminutive joints.

Before leaving the head I will mention some peculiar formations, which I am at a loss to understand. In Spher. frontalis we notice at the middle of the frontal margin (pl. VIII, fig. 1 d) a strange cmp -shaped, rather large expansion in which I have been unable to find any liole which might be the outlet from some gland. In Sphar. modesta, on the ventral side of the protruding frontal border, inside its margin we see a square of considerable size (pl. IX, fig. $2 \mathrm{~d}, \mathrm{x}$) with rounded corners, which seems to be pierced with rather numerons holes.

The Trunk. The borly - except the head - of comse corresponds to thorax and abdomen, but in the three genera treated here, the latter never appears as a separate part; we must consider it as being represented by the genital area and its smromndings, which, lowever, are not marked by distinct outlines. I beg to give notice that, as a separate abdomen only appears in the genus Stenothocheres (s. below) and in no other genns of the whole family, I shall - for practical reasons - in mentioning and describing all the genera, except Stenothocheres, always both here and in the systematic part nse the word »tronk« for the whole body, except the head.

The shape of the tronk is mentioned above, for as the hearl, at least in adult specimens of most species, is very small, I can refer to my description of the body (p. 24-25). The skin - except on the genital area - is very thin, often quite naked, sometimes covered with hairs behind the head, being naked everywhere else, sometimes hairy all over. In several species the trunk is more hairy during the early, not half-dereloped stages, than when the animals have grown to their full size, so e.g. in Spher. danica, whose young ones are covered all over with peculiar thin, flat hairs, whereas the older specimens are either quite naked or have only a hairy part behind the head. In Spher. Calliopii (pl. III, fig. 3 d and fig. 3 g) the trunk has a rather close coat of very peculiar three-branched hairs growing out from tiny knots, the middle hair being longer than the two others. In Spheer. irregularis (pl. XIII, fig. 5 c and fig. 5 d) somewhat similar two- and three-branched hairs are seen.

In most species the trunk has two pairs of entirely uniform legs, but in a good number of species (as in Sphear.microcephata, and in all eight species of the Spheronella living on Cumacea and Isopoda) legs are entirely wanting. The legs are placed on the ventral side, now at some distance within the outline, now at the lateral margin, and as a rule there is no considerable difference in the distances between the first pair and the head, between the first and second pairs and between the second pair and the leg-like caudal stylets. In Homoeoscelis the legs, though small, are comparatively conspicuous, each apparently consisting of a diminutive, short and rather thick basal part, from which proceeds a much longer, very narrow, conical, almost setiform branch and a pair of very short bristles or a short tap as an indication of a second branch. In Spheronclla and Choniostoma the legs are nearly always exceedingly small; in recently hatched or young specimens they are as a rule easy to find, but as they do not grow, they are often very difficult to point ont in adult animals. Each leg consists of a small cylindrical joint ending in two short sete. In Spher. lonyipes (pl. VII, fig. 2 a and fig. 2e) only, the legs are somewhat larger, particularly becanse one of the setit
is long. In Spher. Acanthozonis (pl. VII, fig. 5a and fig. 5b) they are relluced to romuded eminences withont setæ.

A genital area is found in all species of these three genera, and it is in some cases much smaller, in others somewhat larger than the head. In its most developed form it is a more or less thickly chitinised plate, which is sometimes nearly circular (Spheronelln curtipes, pl. X, fig. 2e), mostly considerably broader than it is long, and not unfrequently with a more or less concave anterior or posterior margin. In this plate we find the genital apertures more or less close to each other, so that the distance between them is nearly always shorter than the length of each; they are nsually placed near the posterior margin, seldom in the middle or even nearer the anterior margin. Sometimes the central part of the plate or two rather lateral parts of it are thin-skimed (pl. II, fig. 3b), and in this last case the plate is really reduced to an oval ring with a median longitudinal band. In Spher. Mumnopsidis (pl. X, fig. 4c) the plate is more than twice as broad as it is long, and a large inner part of the same shape as the outline is more thin-skinned; the genital apertures are placed transversely and somewhat further from each other than the length of each. In other species the plate is reduced to abont two thirds of a more or less oval, transverse ring, the posterior margin of which is close to the genital apertures, whereas the sides are further removed from them. A further reduction is noticed e.g. in Spher. frontalis (pl. VII, fig. 6i), where the more conspicuous parts consist only of a chitinous arch behind and outside each genital aperture, the two arches yet being comected in the median line. In Sphoer. microcephala (pl. VIII, fig. 2 f) the genital area is much longer than it is broad, and the chitinised part of it forms a semi-circle which opens towards the front, its two extremities running forward and forming two rather long, nearly parallel and partly dilated lists. The genital apertures are - as stated above - nearly always closer to each other than the length of each, besides they are curved and placed in an oblique direction, so that their convex sides turn towards each other, and their anterior ends are much closer together than the posterior ones; e.g. in Spher. microcephola, and especially in Spher. Munnopsidis, these apertures are turned so as to be almost or quite transverse; and in Spher. Mumopsidis the distance between them is greater. Each genital aperture is provided with two chitinous lists, the lips, of which the hindmost one is nearest to the median line and covers the front part of the other lip, when the genital aperture is closed. From the outer lip proceeds a strong muscle outward and obliquely forward, its proximal end being attached to the inner side of the plate or to the ring mentioned above. The contraction of this muscle pulls outward the outer lip, thus opening the genital aperture (pl. Xl, fig. 4 d). For this purpose the skin close outside the outer lip is always thin (in many figures kept in a grey tint) though the surrounding parts may be a pretty hard chitinous plate.

In front of each genital aperture, at a shorter or longer distance from it, thongh always within the genital area, is a very diminutive orifice which forms the entrance to an oval or somewhat elongate vesicle, the receptaculum scminis (pl. I, fig. 3a, r). These two
orifices are shown only in some of the illustrations of the genital region, and they are often very difficult to find, if one or each of them has not a spermatophore attached to it; this, however, is rather frequently the case; sometimes we find even two spermatophores, or at least their stalks, on each orifice ($p l$. XIII, fig. 1 e). Such a spermatophore is a globular or ovate vesicle with a stalk twice or three times as long as itself: this stalk - a thin tnbe - is attached to the skin closing on the above-mentioned orifice, or sometimes - by mistake - ontside it (μ IIV, fig. 9 c, where we find one spermatophore on each orifice and the stalk of a third one outside it). The two receptacula, when filled, have a strong refraction of light, which as a rule makes them easy to find. Their ontlines are traced with dotted lines in some of the illnstrations. - In Sphar: Mumopsidis I have fomd in the anterior part of the plate two holes ($\mathrm{pl} . \mathrm{X}$, fig. $4 \mathrm{c}, \mathrm{k}$) corresponding to those in Mysidion abyssorum and Aspidoecia (see p. 34-35).

In the species which have trmolegs there is always a pair of comfal stylets shaped somewhat like the legs. In Homooscelis (pl. II and pl. XIII) they are a little thicker and longer than the legs; in Sphecronella and Choniostoma they consist either of a cylindrical, a romded or a triangular joint terminating in two or three setæ (which rather frequently fall off during the preparation): they are sometimes longer, sometimes shorter than the seta of the legs (as e.g. pl. VII, fig. 2e). In Spheronella Acunthozomis each candal stylet las one single rather long seta (pl. VH, fig. 5d). In Splucr: modesta, which has no timb-legs, each stylet consists of a rather short, thick joint, from the imer posterior angle of which proceeds an acute »joint« twice as long kut scarcely half as thick, which must be considered as a transformed seta, and outside it are seen one or two simple setæ (pl. LX, fig. 2e). Nearly all the other species which lack trmuk-legs are devoid of candal stylets as well. The place of these stylets varies much; in most species they are situated close together, either on the plate or the ring, a little behind the genital apertnres, or close behind the posterior margin of the ring or plate, but in the species belonging to the group of Sphecronclla Lenclartio they are situated pretty far or very far from each other, and also more or less far behind the genital area (pl. IL, fig. 2e and fig. 3 b).

The remarkable fixation of Spheronclla paradoxa will be described in the systematic: part; here it may be snfficient to draw attention to it.
II. Stenothocheres (pl. I). This gemms, comprising two species, deviates considerably from the three recently mentioned genera, and in at least two important features: - larger trunk-legs with two branches and a separate abdomen - it comes nearer to the less transformed Copepoda.

The body is sub-ovate or nearly globolar; its abdomen is comparatively rather small and prominent posteriorly on the ventral side or on the hind margin itself. It has no separate head, not even the vestige of a frame (like the one in Choniostoma). The sub-median skeleton is reduced to a plate in front of each maxilliped (pl. I, fig. $1 \mathrm{e}, \mathrm{h}$ and fig. 2f), and this plate may extend forward like a list between the maxillæ and the outside of the rostrmm. Antennulæ, antennæ, rostrum, maxillæ and maxillipeds occupy a larger space on the rentral
side of the hody than in the other genera. The antemmix (fig. 1 a , a and fig. 2 g) are of medimm length, without distinct articulation, they have a few rather short seta, among them one olfactory (fig. $1 \mathrm{e}, \mathrm{b}$). The antenne (comp. fig. 1 e and fig. 2 f) are placed somewhat obliguely outside and in front of the rostrum, but not on its basal part; they are of medium length, in st. egregius (fig. $1 \mathrm{e}, \mathrm{c}^{\text {c }}$ probably 3-jointed, with a couple of slort terminal setie of mequal length; in St. Sarsii (fig. こf, c) they are weak, with indistinct articulation. The rostrim is on the whole like that in Spheronella, thongh it mast be observed that the month-border is rery narrow. The maxillula (fig. 1 e . e) are on the whole like those of Sphoronella, the principal hranches rather short or of medimm length, the additional branch wanting. The maxilla (fig. 1a, f; fig. 1 e and fig. 2 f) are powerful and do not show any important difterences from those species of Spheronella which are parasitic on Amphipoda. The same remark can be applied to the maxillipeds with regard to their structure, but these limbs, compared with the maxilla, are shorter and slenderer than in most species of Spheronella, and we may add that the second and third joints are always fused into one single comparatively short joint, which at most is a little longer than the pointed terminal joint and lacks the spine at the distal inner angle, as the terminal joint lacks a spine inside its apex.

The tronk is naked all over (so is the whole body with all its appendages). The trunk-legs are placed differently from those of the preceding genera; buth pairs being situated on the rentral side at a good distance within the lateral margin, the first pair (fig. 1a, m) somewhat behind the middle of the body, and the second pair (fig. 1a, n) close in front of the basis of the abdomen. Both pairs, though rather small, are very large compared with those of the preceding genera. Each leg consists of a peduncle with two branches not distinctly set off by articulation, and as a rule the outer branch is the longest. In the first pair the onter branch terminates in two strong setæ of mecpal length, in the second one (fig. $1 \mathrm{~g}, \mathrm{u}$ and fig. 2i) each branch apparently consists of two joints, of which the terminal one is somewhat spine-like, but it must be preferred to consider each branch as being composed of one joint with a long and very thick terminal spine.

A comparison between the figures 2 a and $2 d$ shows that in the same species the abdomen may be fomd more or less distant from the posterior margin on the ventral side of the trunk, according as the anmal is more or less swelled with eggs. The abdomen is not set off from the trunk by an articulation; it consists of a broad, rather stout basal part with archer lateral margin (fig. 1 g and fig. 2i), and a narrower terminal part with a more or less deeply incised extremity, which forms two very short and clumsy, badly defined candal stylets (fig. $1 \mathrm{~g}, \mathrm{t}$), each with four thick setæ. The abdomen seen from below (fig. 1 g and fig. 2 i), presents near the onter margins of the basal part two vely long genital apertures (g) in their whole or a considerable part of their length; in the abdomen seen sideways (fig. 1 h), the genital apertmre (g) shows its longest extent, and the muscle which opens it (m) is directed towards the dorsal side of the abdomen. Fig. 1 h also shows a receptacolum seminis (r) as a large oblong vesicle, placed a little above the abdomen. I have repeatedly
seen two such receptacula, but I canot indicate their external orifices, as, strangely enough, I have never found spermatophores on any of the rather numerons specimens I have examined.
III. Mysidion (pl. XI-NII). The head is pretty well defined from the tronk, but so feebly chitinised in front and at the sides that the frontal and lateral borders are wanting. The antemnlæ are much reduced and either 2 -jointed or 1 -jointed (pl. XII, fig. 2a, and fig. 1a, a). Antemæ seem to be wanting. Month and maxillure as in Spharonella. The basal joint of the maxillæ has at the inner edge one or two processes, and the appendage is a powerful prehensile organ. The basal joint of the maxillipeds has irregular outlines. Trunk-legs and caudal stylets are wanting. There is no genital area: the genital apertures are situated rery far from each other (pl. XI, fig. 3 b and fig. 3 e); each of them lits - besides the lips - its oun sleleton, consisting of a list which is semi-circular or forms the larger part of a defective oval, the longest diameter of which runs parallel with the median line of the animal, and the opening of which is turned towards this line. The genital aperture is situated close to the posterior part of the list, and the muscles radiate towards its foremost part. The receptaculum seminis - odd, as far as I can see - is situated in the median line, far in front of the genital apertures (pl. XI, fig. 3e). The skin covering it is closely set with many - as many as twenty-six - spermatophores (s), and between them are seen stalks of other ranished spermatophores, some of these sticking together in bulks which cover the skin so completely that, in spite of several attempts, I have been mable to find the entrance or entrances to the receptaculum seminis. In fig. 3e the letter r marks receptaculum seminis, which on each side opens iuto an obliquely backward moning duct, which I have been able to follow towards the genital aperture (comp. the following gemus). In Mysidion alyssorum I have fomd in the semi-circle surromding the genital aperture a hole (or perhaps rather a spot, covered with a thin membrane pierced with small holes (pl. XIL, fig. $2 \mathrm{~b}, \mathrm{k}$) forming the outlet from a gland which I have found, thongh I have not been able to examine it more closely, and whose function is incomprehensible to me. - Several parts of the head of this animal are frequently covered with a viscous substance, by which it fastens itself to the marsupium of the host. This substance, in the females as well as in the males and the larre, is probably secreted by glands placed in front of the month (comp. the female of the following genms).
[V. Aspitlocin (pl. XII). This gemus (one species) approaches very near to Mysidion. In this place only its most important characters will be mentioned, an exhanstive desciption being given in the special part of this work. The body is considerably broader than it is long, the head is distinctly defined from the trank and pretty well chitimised, with rounded forehead and sides. The front is covered by a large adhesive plate (fig. 3d, s) by which the animal is attached, this plate at the same time covering the 1 -jointed antenmulæ (fig. 3h, a). Antennæ are wanting; the maxilhuæ are very small, without additional branch; the mouth is normal, but I have found no hairs along the month-border; the maxillæ are like those in Spheronella; maxillipeds are wanting. Trunk-legs and candal stylets are wanting. Each
of the genital apertures - as in Mysidion - has its own list, which in this animal forms a ring (fig. 3 i); in the front part of this ling we see a rather large hole (k) which serves as upening to a gland (comp. Mysin. abysortm). The genital apertnre (g) lies up to the part of the ring which is tumed towards the median plane of the animal. Contrary to Mysidion, the distance between the rings varies between being a little greater and very much smaller than the dimeter of each. A long way in front of the genital apertmes we see two knots a little apart from each other (fig. 3 g , r^{\prime}, fig. 3 e , w) which show as it were irregular cracks in the thick chitine; no dould they form the entrances to the receptaculum seminis (fig. $3 \mathrm{e}, \mathrm{r}$) which is md, much broader than it is long, and at earl side beuds backward, thus continuing as two almost parallel ducts, which are wide, at the middle sowewhat narrowed, and rum to the genital apertures. No spematophores have been found.

b. The Male.

Out of my fortr-three species I know the males uf thirty-two, viz. of all species of the genera Stcnothocheres, Homoosechis, Mysidion and Aspidoecin, as well as of twenty-five out of the thirty-four species of Spheronelle. So in nine species of Sphaponella and in the two species of Choniostoma the males are still monkown. With respect to the latter gemus particularly the gap is keenly felt.

The male is always moch smaller than the adult female - as a rule quite disproportionally so. In three species only: Spher. frontalis, S. decorata and S. curtipes, its length exceeds $1 / 2 \mathrm{~mm}$. The largest male I know belongs to S . curtipes and measures 92 mm . in length and $3 / 5$ of this size in breadth. In most species the length is about $1 / 4-1 / 5 \mathrm{mmm}$., and the length somewhat, exceeds the breadth. The smallest normal males I have found in Aspidoecia Normami, two specimens of which were respectively 147 and $\cdot 138 \mathrm{~mm}$. long. In Mysidion abyssortm the normal male seems to be abont $16 t \mathrm{~mm}$. long, though I lave found two perfectly dwarfish specimens, of which me was 099 mm . long - and this is une of the smallest of adult Copepods hitherto discovered, howerer, it may be that these two specimens were recently hatched and had not grown to their tull size (s. below under "pmstlarval developments). The genus Homoooscelis shows least difference between the male and the female, especially H. merlitervenen, of which the largest female was 31 mm . long, $\cdot 32 \mathrm{~mm}$. broad and rather flat, whereas the male was 174 mm . long, 0.66 mm . hroad and equally thick. The greatest difference between the sexes I have found in Spherr. microcrphala, in which the largest female was 144 mm . long, of the same breadth and almust perfectly globular, whereas the male withont comong the rostrum was 18 mm .10 g , 15 mm . broad and $a b .11 \mathrm{~mm}$. thick, which gives a rolnme of between $800-1000$ times smaller than the female.

The body, as a rule, is somewhat longer than broad, and seen from below, varying from sub-globutar to an elongate oral, seen sideways, the back is strongly vanted, the
ventral side almost flat, and the animal is nearly always somewhat broader than it is thick. In the gemis Homocoscelis (pl. II and pl. XIII) as in Spherl. curtipes (p . X, fig. 2f and fig. 2 g) the body is much longer than it is broad, the length varying from $1^{2} / 3$ to a little more than twice the breadth: besides, in S. curtipes it is curved, so that, seen from the side, it presents a moderately concave rentral ontline. The length of the head varies between a little more and a little less than half of the total length, in Splecr. fronta7is (pl. VII, fig. 6a-6b) it does not take up a third part. The body is nsnally broadest somewhat behind or almost on a line with the base of the maxillipeds. In Spher: morlesta (pl. IX, fig. 2 f) the greatest breadth lies before the middle of the maxillæ; in several species it is rather far behind the head, and in this case the trunk is somewhat or much larger than the head, viz. in Spher. Bonnieri (pl. VII, fig. 1a), in S. frontafis (pl. VII, fig. 6a) and in Mysidion abyssortm (pl. XII, fig. 2e). A distinct abdomen is fomd only in the genns Stenothocheres. Antennnæ, antenmæ, rostrum, maxillnlæ, maxillæ and maxilliperls are much like those of the female, still we find a mmber of minor differences which must be mentioned. Trunk-legs and candal stylets are well developed in all the species whose females possess these organs, though as a rule they differ very much in the two sexes, and they are also found in a few species, as Sphar. microcephala and S. modesto, whose females lack both trunk-legs and caudal stylets, or only trunk-legs. In Spher. dispar, S. insignis. S. marginata, as well as in the genera Mysidion and Aspidoecia, the males have not the slightest rudiment either of tronk-legs or of candal stylets.

In the genus Stenothocheres the antemulæ, the antennæ, the rostrum and the monthappendages are sitnated on the foremost rather flatly vaulted part of the ventral side of the body. In all the other genera the surromding of the rostrum and the month-appendages in front and at the sides lie more or less deep and are limited anteriorly by an ontstanding border, which is frequently rather high or forms a slanting plate, at the sides by very conspicuons lateral borders, which usmally run nearly parallel from the front towards the base of the maxilla, whence they curve more or less ontward towards the lateral margins of the animal and ranish somewhat behind the base of the maxillipeds. The shape of these lateral borders is rather variable and difficult to describe, but the numerous illnstrations will show two ontstanding rounded plates bending like a cape towards the base of the maxillæ, and outside these protruding borders we can always see something of the slanting lateral surfaces of the head, when looking at the animal from the ventral side. The frontal border is sometimes distinctly separated from the lateral ones, but it usnally forms a direct or nearly direct continuation of them; in most forms it is evenly cmrved; in Sphere clegantula (pl. II, fig. 2f) and in kindred species it has a deep incision on each side, by which the frontal plate is divided into a large, median, almost square part and two much smaller rounded lateral lobes. In Spher. Calliopii (pl. III, fig. 3 h) the frontal margin is divided into six lobes, in S. decorata (pl. VIII, fig. 3 f) the frontal plate is much elongated, with the anterior end cont off transversely and with sereral incisions, one in the middle and two on each strde, by which it is divided into four square and two low triangular lobes, all of which.
hear small spiniform processes on their outer margin. In Spher: dispur (pl . LX, fig. 3 h) and in Spher. insitnis (pl. X, fig. 1 b and fig. 1 (c) the frontal plate expands in a most peculiar way. Seen from below, the head tapers very much towards the front, wherempon it dilates to an almost circular plate or a transverse oral with acnte lateral angles; the sides and the fromt margin of the circular plate and the front margin of the oral project into a series of closely situated spiniform little processes: on the rentral side of the plate we see a chitinons ring, from the imner edge of which four processes run towards the centre; in S. dixpor these processes do not meet, but form the suromings of a cross-shaped space, whereas in S. insign is they meet in the centre, thus forming a cross, and dividing the space into four parts, (which perhaps are pierced with small holes). The purpose of this pecoliar ring is unknown to me.

The part surromded by the protruding frontal and lateral borders frequently lies very deep, and where the lateral borders are high, sometimes, as in Spheri. curtipes ($\mathrm{pl} . \mathrm{X}$, fig. 2 f and fig. 2 g), they hide the rostrum and the maxillx, if the animal is seen from the side; as a rule a lateral view shows these organs in almost their whole, or in half of their length. Several males of the same species may slow great individual difference in this point, whereas on the other hand, there are species, as e. g. Sphar. curtipes, in which the rostrum and the maxille are always partly invisible because of the height of the lateral borders, in other species again, as in Spher. microcephata (p l. VIII, fig. 2 g and fig. 2 h), the borders are so low, that the above-mentioned organs are always visible in nearly their whole length.

The suld-median skeleton, which is found in all females and has been described as far as this sex is concerned, is also seen in all males, and in most respects shows a similar strincture, but in most species of the genus Splueronella it is produced into free processes. Three pairs of such processes may be fonul. Those of the first pair are usually rather short and broad, sometimes rounded, in S. microcephala (pl. VIII, fig. 2 g and fig. 2 h, i) pretty long, slender and pointer, being sitnated behind or below the basis of the maxillæ; sometimes, as in S. elegontula (pl. II. fig. 2 f and fig. 2 g), they extend backward over the basal part of the maxillipeds. The second pair of processes are fonnd most frequently, and may become much longer than any of the other two pairs; they proceed at a shorter or longer distance from each other between the maxillipeds, and are sometimes parallel, sometimes or mostly diverging. The third pair appears in very few species only, as in S. paradoxa (pl. III, fig. 4 hi and fig. 4 i), in S. Metopee and in S. Holloslli (both on pl. V.); they proceed between and a little behind the second pair and are much shorter than these ones. In the systematic description of the species I nse the terms: first, second and third pair, in speaking of these processes.

The Antemuler are form in all species; in Stenothocheres they are situated in front of and outside the antennæ, in all other forms they are found on the lateral margins of the head, where these merge into the frontal margin. They are constructed much like those of
the females, e. g. where the antemulæ of the females are well developed and 3-jointed, those of the males are equally so, and where they are reduced in size or in number of joints, we generally - thongh not always (Spher: microcephala, Mysidion commune) - find a similar reduction in the male. In Spher: microcephata (pl. VIII) the antenmuls of the female are very short and 1 -jointed, those of the male long and likewise withont distinct articnlation. In Mysidion commme (pl. XI and pl. XII) those of the female are very short and 1 -jointed, those of the male short and 2 -jointed. Their bristles are much the same as in the femate, and they have frequently a rather conspicuous olfactory seta. The greatest reduction is noticed in Aspidoecia (pl. XII, fig, 3 k and fig. 3 l), the antenmlæ of which consists of a very short, naked joint terminating in an olfactory seta which is several times longer than the antemnnla.

The Antenne are altogether so like those of the female that a special description of them is superfluons; where they are wanting or reduced in the female, they are equally so in the male.

The Rostrum is very like that of the female, but seems now and then to be longer and more slender; in Spher: microcephete it is much longer than that of the female (pl. VIII). In several species, e. g. in Spherr. morlesta (pl. IX), the month-border is much broader, its hairs at least are considerably longer in the male than in the female.

The Maxillula are always fonnd and are constructed like those of the female. In dissecting the head of a male of Sphere frontalis I fom that, in addition to the two long thongh mequally long - principal branches and the long additional branch, the maxilhula of this animal possesses a fomth shorter one (pl . VII, fig. 6 d), which proceeds within the base of the anterior principal branch. As this smpplementary branch is not likely to be discovered without undertaking a dissection expressly for this purpose, I cannot tell whether it is fomd in the female as well; withont dissecting the rostrom I have looked for it in vain in the female as well as in both sexes of other species of Suharonellu. Fig. 41 in pl. I[I. will give a good idea of the rostrum with antenne and maxillule in a male which possesses all these organs in their typical form.

The Maxillce are well developed in nearly all species and are in the main constructed like those of the females; sometimes they are somewhat smaller, sometimes rather larger, in Aspidoecia (pl. XII) much larger. Occasionally we find differences of detail in the two sexes; in Spher. comensis the basal joint of the male has at its distal end, where the inner and the posterior side meet, a rather high, prominent plate, the margin of which runs out into spiniform processes (pl. VI, fig. 1 c and fig. 1 d); this excrescence is wanting in the female. In the male of Spluer. insigmis the posterior side of the basal joint is provided with a considerable number of peculiar processes ($\mathrm{pl} . \mathrm{X}$, fig. 1 c) which the female lacks. In Sphar. maryiunta (pl. XIII) whose female has rudimentary maxillæ, these organs in the male have about the same general shape and size as in kindred species, but all three joints are fused together.

The Maxillipeds are well developed in all species and essentially like those of the females, thongh in the male the basal joint is frequently provided with hairs, and also some-
times with processes. whereas in the female there are no processes and fewer or no hairs etc. In Mysidion commune the male possesses on the onter side of the basal joint a knotlike excrescence and a process of very considerable size ($p l$. XI, fig. 3 g and fig. 3 h), and its second joint has a conspicuous process, all of which are wanting in the female. In Aspidocciu (pl. XII) the female lacks maxillipeds; in the male, thongh somewhat smaller than usual, they are well developed: the basal joint is much as in Stenothocheres, but the second joint, which as in several other forms consists of two completely finsed joints, is exceedingly short, somewhat shorter than the terminal joint.

Trunklegs: and coudul stylets. The occurrence of these organs is mentioned above on p. 36. In Homoorcelis (pl . II and pl. XIII) there is but a slight difference between the two similarly shaped pairs of trmb-legs and the candal stylets, and as both are like those of the female, they do not reqnire further mention; we shall only add that they are sometimes rather larger than, sometimes of the same size as those in the other sex. In Stenothocheres (pl. I) the trunk-legs are very similar to those of the female and of almost equal size, however, as the trunk of the female is large, that of the male small, of comse the legs of the latter are much more conspicuons and appear larger. In the male the basal part of the legs stands more out trom the body, and the longer robust terminal spine on the outer branch is longer than in the female; the other differences are insignificant. Thns, in Stenothocheres Sarsii the spine on the immer branch of the second pair of legs is curved like a hook, in Ston. egregius it is less curved, and in the illustrated specimen the right and the left spine curve differently. Behind and above the basis of the secoud pair of legs both species show two considerable spines which are sitnated close together on a small projection; I should think they might possibly be considered as rudiments of a third pair of legs, but I do not presume to have any definite opinion about the matter: The abdomen is small, with short, distiuct, rather broad strlets, not set off by an articulation, and each provided with four spines, of which the two innermost are the longest and thickest.

In Sphicronella, as a rule, there is a great difference between the two pairs of trunklegs and between each of these and the candal stylets. The shape and size of the trinklegs vary much according to the species, and the appearance of the legs as well as of the stylets presents very great variation on accomst of the very different length of their terminal setre. In this gemus the first pair of legs usually originates ontside and behind the basis of the maxillipeds, nearly in the middle between the lateral margins and the median line of the trunk, at the bottom of a pretty broad transverse depression. Each leg consists of a basal part, a peduncle, differing much in length and breadth (sometimes, as in Spluer. intermedia (pl. V, fig. 3 f and fig. 3 g), this part in exceedingly large), and of two branches, one of which is grenerally longer than the other, sometimes the one is wanting altogether. As a rule, none of the branches are articulated on the peduncle, and frequently one or both of them terminate in setr, one of which is longer than the others, the one on the onter branch often exceedingly long, occasionally half as long as the whole animal. The second pair of
legs is sitnated at or behind the middle of the tronk, and if seen from below, near or on the lateral margin; as a rule it is shorter than the first pair, the peduncle is not much thicker than the rather short inner branch, whereas the onter branch - if there is one is triangular and often ends in a short seta. The terminal sete of the imer branch vary as much in length as those of the onter branches of the first pair of legs, and one of them can attain to half the length of the animal. The candal stylets are usually sitnated rather close to each other, most frequently near the posterior end of the body, sometimes very much to the front abont at the middle of the tronk, especially where it is very large, as in Sphor. Bonnieri and in S. frontalis (pl. VLI); in the latter species they even appear in front of the second pair of legs. Both stylets as a rule are rather short, sometimes very short, nearly cylindrical; one terminal seta on each stylet is often rather or very long, occasionally exceeding in length the above-mentioned long setæ on the trink-legs. - Several species of Spheronella deviate now in one, now in more respects, from this description which is based on the main bulk of the species. In Spluer. morlesta (pl. IX, fig. 2 f and fig. 2 h) the first, and especiaily the second pair of legs are considerably reduced in size etc., whereas the candal stylets are comparatively large and constructed like those of the female (see above). In S. decorata (pl . VIII, fig. 3 f and fig. 3 g) the two pairs of trunk-legs are very much alike, each leg consisting of a short basal part with two short branches, and each branch ending in a thick, but rather short seta; caudal stylets are wanting. Concerning S. microcephala (pl. VIII, fig. 2 g and 2 h) which deviates considerably and is difficult to muderstand, I refer to my description in the systematic part of this work. In S. curtipes (pl. X, fig. 2 f and fig. 2 g) both pairs of legs are very small, slender and 2 -jointed, the candal stylets are quite minute and situated far from each other on the posterior margin of a long and broad, but not much projecting eminence, the posterior angles of which are decorated with peculiar rounded processes and knots (might the whole formation possibly be a rednced abdomen?). It has been mentioned already that trunk-legs and caudal stylets have disappeared altogether in several species of Spheronella as well as in Mysidion and Aspidoccia.

In the species belonging to Stenothocheres and Aspirloecita the body of the male is quite naked, whereas all the other species are more or less clothed with hairs. In not a few species the frontal margin is furnished with very short hairs or with fine spiniform processes (the species of Spheronella which live as parasites on Cumacea). In nearly all species the margin of the lateral borders of the head are trimmed with a series or a stripe of hairs usnally of medimm length, which as a rule extends towards the front in a curve round the base of the antenumlæ, ending just in fiont of it; posteriolly it follows the lateral margin up to its curved extremity, whence (or a little in front of it) the stripe continues across the sides and the back, now straight on, now curving or in a broken line, now advancing, now receding obliquely. This line I consider as forming the boundary between the head and the trunk, its hairs being now very long (pl. III, fig. 3 j ; pl. VI, fig. 1 d), now of the same length as those which cover the sides of the tronk. Sometimes (e.g. pl. IV, fig. 3 h)
we see instead of a single line a wider or narrower band of hair going from the posterior extremity of the lateral margin up across the back, and behind this line or hand is a larger or smaller transverse naked area, whereas the other parts of the trunk: the back, the sirles, the posterior extremity and the ventral surface, are closely covered with shorter or longer hairs, with the exception of a transverse band in fiont between the first pair of legs - and frequently their surroundings - which is naked. These hairs are usually simple; in Spher. frontalis (pl. VII, fig. 6 a , fig. 6 b and fig. 6 h) and in Mysilion commene (pl. XI, fig. 3 g and fig. 3 h) the trme is closely covered all over with transverse minute knots, each of which hears several (in S. frontalis at least many of them ten) fine hairs. In Spher: Giurclii the trunk is corered with 2 - or 3 -branched hairs similar to those mentioned above in the female of S. Calliopii and in S. irregularis. In the male of S. Catliopii (pl. III, fig. 3 h and fig. 3 i) the hairs of the bomdary line between the head and the trunk are particularly long, whereas the dorsal smface and the posterior extremity are covered with fine dots resembling the roots of hairs, though I have been mable to find any hairs, and across the back to thie exterior angles of the first pair of legs we find a narrow, naked band; the ventral surface behind the candal stylets is provided with ordinary hairs. In Spher. microcephata (pl. VHI, fig. 2 g and fig. 2 h) the hair-covering is less developed than in any of the other species, as only the hindmost part of the lateral borders of the head and the ventral surface of the trunk are covered with hairs, the other parts of the body being naked. In a few species we find hairs in front of the base of the maxillipeds, and in Spher. chinensis (pl. ПL., fig. 1 a) and kindred species there is a bunch or a short band of hairs ontside the base of the maxillulæ.

As to the internal structure of the male I confine myself to the following observations. In a well-preserved specimen we usially perceive throngh the transparent skin two larger or smaller globular bodies in the middle of the trunk or somewhat more to the front; in Stenothocheres they are situated close to the front of the abdomen belind the base of the second pair of legs. I will call these bodies spermatothece, though I cannot make out whether they have really the function of such organs, or whether they are the testicles themselves. I have illustrated them in several forms, as Spher. paradoxa (pl. III, fig. $4 \mathrm{~h}, \mathrm{q}$), S. capensis (pl. VI, fig. 1 c), S. Bomnieri (pl. VII, fig. 1 a, q), S. frontalis (pl. VII, fig. $6 \mathrm{a}, \mathrm{q}$) and Mysidion commune (pl . XI, fig. $3 \mathrm{~g}, \mathrm{q}$); in this last species the spermatothcece are particularly large and obliquely sitnated (probably a case of anomaly or of accidental pressure in the figured specimen, for in the next species: Mrysidion aby:sorum (pl. XII, fig. 2 c, q) they are normal). In Aspilloccin Normani the specimen illustrated (pl. XII, fig. 3 k) showed a single, but very large spermatotheca (q), but in a couple of other specimens I saw two considerably smaller and normally sitnated spermatothecæ. In Splier. paradoxa I succeeded in finding the genital apertures very close to each other on the posterior wall of the depression which rums across the front part of the trmok on its ventral surface. From each spermatotheca a rather short duct goes forward and obliqnely towards the median line to its apertnee.

In Homoeoscrlis minuta (pl. LI, fig. 1 i and fig. 1 k) I have found the rather small spermatothece (though they are not illustrated) close together in the line between the hindmost pair of trunk-legs, and I think I have found the two genital apertures in close proximity in the posterior wall of the rentral depression - which is particularly conspicnons in fig. 1 k in a line between the first pair of legs.

In a number of species belonging to Spheronella I have fomd a most peculiar structure beneath the larger part of the skin of the head at its back and sides. It appeared most distinctly in S. parafloxa, where I saw very plainly beneath the skin a single layer of rather large hollow spaces; fig. 4 k in pll. III is drawn to the same scale of enlargement as fig. 4 i and shows the skin and two rows of the afore-mentioned hollow spaces beside each other: In S. Metoper (p]. [V, fig. 3 i) the spaces were filled and appeared in outline as shown in the illustration.

The males are sometimes hinged on the females, hat much more freqnently on the gills or on the marsunial plates of the host by a thread which proceeds from the median line of the front close in advance of the rostrm. This thread is secreted by a gland or glands and can presumably be produced by the males of all species. The shortest thread I found in Homocoscelis minuta, in two specimens, in one of which its length was similar to that of the first joint of the maxilliped, in the other somewhat shorter. In e. g. Spher. paradoxa ($p \mathrm{l}$. III, fig. $4 \mathrm{~h}, \mathrm{~s}$) the thread is about $3 / 8$ of the length of the animal, in Stenothocheres Sarsii (pl. I, fig. 2 k , s) a little shorter and in S. abyssi (pl. IV, fig. 2 d) even a little longer than the whole animal. I found the longest thread in a specimen of Aspidoecia Normani, where it was between twice and three times as long as the animal, whereas in the specimen illustrated in pl. XII, fig. 3 k it was scarcely half as long as the male. This last instance shows that the length of the thread can vary very much in the same species, but this is not usnally the case, as in some species a shorter, in others a long thread is always found. In all the above-mentioned and in several other species the thread is always simple and cylindrical, generally a little dilated towards the distal end by which it attaches itself, and not unfrequently the end is expanded into a disk. Deviating forms of this thread are met with in the species of the genus Mysidion, and especially in the species which I have placed together below under the heading of the Sphesonella Leuclartio-group. In Mysidion the proximal part of the thread is simple, the distal part appears in two varieties; either, as in Mysifion alyssorum (pl. XII, fig. 2 g), it shows two considerable fusiform expansions, the middle parts of which are each surrounded by a peculiar collar-shaped ring, or, as in Mysidion commune (pl. XI, fig. $3 \mathrm{~h}, \mathrm{~s}$), the apical part is very thick and above it the thread dilates still more and becomes fusiform; its widest part has a collar-like ring, and a similar ring surrombs it somewhat higher up, where the thread is only half as wide. In the species belonging to the Splucr. Leuchartii-group we often find the male hinged by a thread which varies in extent between nearly half and almost the full length of the animal, and is constructed in the following way: it is divided into two parts, either of equal length, or
the proximal part longer than the distal one, the former ending in a thick, bell-shaperl and thick-skinned, hairy expansion (pl . II, fig. 4 b); the distal part comes ont of the bell in which its extremity forms a little ball; its other extremity expands into a disk which is gined on to the Amphipod. I have found several of such threads and examinerl them as carefully as possible, but it is quite incomprelensible to me how the animal has been capable of producing them.

c. The Ovisacs and the Development of the Eggs.

1. The Ovisucs. Of forty-one species the ovisacs have been found, and only in two species of Spheronella they are nuknown to me. In the two species of the genns Stenothocheres they differ so much from those met with in the other genera, that I prefer to leare out this gems for the present, setting it aside for separate treatment.

In Homoeoscelis, Sphucronellu, Choniostoma, Mysidion and Aspidoccia each female deposes several - no donbt at least fom or five - or many ovisacs, which, if not deformed by pressure, are sub-globular, oval or, in Mysidion, of a short pyriform shape. In Homoooscelis minuta, of which I have examined a large material, I can assert that the female deposes at most eight ovisacs, though nsmally but five to seven are found; in Choniostoma the maximm seems to be twelve, in Aspiflocia thirteen to fomrteen, in Mysidion seventeen or still more. In the mumerons species of Spheronella which live in the marsupium of Amphipoda, I cannot indicate the maximmm of the ovisacs, partly becanse my material of each particular species is too small, or becanse not mfrequently a couple or more of females are lodged in the same marsupium, partly because, in many cases, one camot be certain that some of the sacs have not been washed away. Better information can be given about some species living in the marsupium of Isopoda and Cumacea: in Spher. Mumopsidis I found one female with twenty ovisacs, in S. decorata the same number, in one specimen of S. morlesta twenty-two, in another twenty-eight oxisacs, all laid by one single female. This latter number may be supposed to be about the maximmm, not only in the abovementioned species, but in the whole family. It is rery difficult to indicate the smallest number of ovisacs made by normal females of the different species, as, for one thing, it has to be ascertained, whether the specimen in hand has altogether finished laying egg's, and a considerable material has to be examined for this purpose alone; still, thongh I have not done this, I think I can say that the number is never less than forr or fire, perhaps seldom less than five or six. In all five genera each ovisac is smoothly rounded, its egg' being as nsual enclosed in a common membrane. In Homoeoscelis, Spheronalla and Choniostome all orisacs are deposed freely without being attachert to the fomate or haring any real connection with each other. Indeed, we see rather frequently some, or many, of the ovisacs sticking together, or one, or several of them, adhering somewhere to the body of the female; however, this kind of adhesion is of a secondary. (unite mimportant natme,
and is certainly owing to the fact that the membrane smroming the ovisac was not sulficiently stiffened, when - or shortly after - the ovisac was laid. In Mysidion and Aspidoecia all ovisacs, from the moment they are laid till the larvæ have swum ont, are hinged to the lips of the genital apertures by stalks, which are rather short (in Mysidion), or very short (in Aspidoeciu), so that we see pretty frequently six to seven, or sometimes more ovisacs hinged at one genital aperture (pl. XI, fig. 3 b); fig. 2 b in pl. XII shows how the lips of the genital aperture and the part behind them are covered by a plate formed of a coagulated viscous sulstance, from which the stalks of the ovisacs proceed; the plate must be considered as the coalescent basal parts of the stalks.

The genus Stenothocheres deviates considerably from the other genera, but unfortunately I am not prepared to represent its conditions as precisely as I shonld like to do. Of one of its two species I have seen but one single female with eggs, of the other (St. egregius) my material is indeed very abundant, but not particularly good, some of it being very old, and most of it, though of later date, having shrmink somewhat, becanse its hosts - while still alive - had been put into too strong spirit. In many cases I ouly found a single lump of eggs, which was rather larger, or considerably larger than the female, had no regular form, and was not surrounded by a common membrane. Sometimes, but not always, this lump seems to consist of two - seldom three - smaller coalescent lumps; four instances were of a more instructive nature. A female of St. Sursii slowed two lumps of about equal size, one of which was free, the other (no doubt accidentally) adhering to the female. One of them is illustrated in pl. I, fig. 2 c , which shows the irregular shape and want of a common membrane, as well as the size in proportion to the largest female which is illustrated in fig. 2 a and magnified to the same scale. The three other cases have been observed in St. egregius; in all of them the female had doubtless finished laying eggs. In one case two smaller, short oval hmps were glued together at their extremities, one containing seven, the other mine eggs; in the second there were two lumps, one of them a little larger, the other a little smaller than the female; in the third case there was an oblong lump containing ten eggs, the young animals of which were a little more than laifdeveloped, six to seven larva which were about to break out of the shells, and thirteen free larva; all this indicated that the eggs had been laid at intervals. It seems probable, on the whole, that the eggs are not laid all at the same time, but successively, though the intervals must be rather short, whereas the ovisacs, at least in most and probably in all the other genera, are deposed at rather considerable intervals; this is easily seen from the fact that among ovisacs deposed by the same female, we often find one or two which lave evidently been laid recently, whereas some others contain more or less developed larva. We sum up our observations in the following statement, that in Stenothocheres the eggs are deposed in one single large and free lump, or in a coutle of smaller and free lumps of invegular form and withont the common membrane which belongs to a proper ovisac; and finally, it seems rather probable that the eggs are not laid all at the same time.

We have now to deal with several other questions, some of which are difficult to answer definitely, namely: the size of the ovisacs compared with that of the females in the different species, their relative size in temales of the same species and of different species, the number and size of the eggs in the orisacs of the different species, and the fertility of each species. Here, however, we at once meet two diffeculties: the one mentioned above on p. 24 , that shortly before her laying eggs the female is always somewhat (and no donbt usually much) larger than after it, and in most cases it is quite impossible to procure specimens which are going to lay eggs, sheh as have half done and snch as have quite done laying eggs; most frequently one only finds from two to five specimens altogether, all of which have half done or quite done, or else one or two of them are not full-grown; besides, an ovisac is somewhat smaller when it has jnst been laid, than later on, when the larva break out of it, for during the development the ovisac increases somewhat in size, getting at the same time less firm, as each egg, which is always globular or polyhedrons at the beginning, becomes elongated. Making allowance for this fact, it is seen that in most species there is not ustally much difference between the sizes of the ovisacs deposed by the same female, whereas in some species the ovisacs olten, thongh not alway's, differ very much in dimension (pl . X, fig. 4 a ; pl . XI, fig. 3 c). . There is a great difference, on the other hand, between the average size of the ovisacs compared with the adult females of each species; comp. e. g. the proportion between fig. 3 a and fig. .3 c in 1 . III with that between fig. 4 a and fig. $4 d$ in the same $p l$. Of comse, we may say that as a rule the ovisacs are comparatively smaller in the species which depose a very large nmber of them than in those which lay rather few, yet even in these the ovisacs sometimes do not exceed middle size. In the species whose females are large, as a matter of comse, the ovisacs are much larger than in the small species.

The number of eggs contained in the ovisacs natmrally depends on the size both of the eggs and of the sacs. It is true, I have not measured the eggs of varions forms, but as I know the larvat that come ont of the eggs in more than halt of my species, as the length of these larva varies between abont 15 mm . and $\cdot 30 \mathrm{~mm}$. only, and as they show no relatively great difterences either of breadth or thickness, I possess a pretty accurate standard for judging the relative size of the eggs, for, evidently, the largest eggs (judging from the larræ: those of Spher. decorata and of the genus Choniostoma) camnot be much more than donble the diameter of the smallest (in the genus Homocoscelis). The further result is, that in the species whose females are very small, as Stenothocheres eyregins (p . I), Homoooscelis minuta (pl. IL), and especially in Hom. mediterraneu (pl. XIIL), the eggs must by very large compared with the females, whereas the egrs mmst be proportionally small where the feurales are very large, as in Spher. Calliopii (pl. III) and in the two species of Choniostoma (pl. X and pl. XI). That these statements agree with facts appears very clearly from the illustrations of the eggs and females of the above-mentioned species; - it must be borne
in mind that the female and eggs of the same speries are always illnstrated enlarged on the same scale.

As the difference of size between the very small siecies (or rather those whose adult femates are very small), as Homooscelis minuta and H. mediterranea, and the very large ones, as Choniostoma mimbite and Ch. Hansenii, is exceedingly great (s. above p. 24), and the difference between the eggs not being greater as just stated, it follows that, with equal proportion between fertility and volume, the large species lays manifold more eggs than the small one. To abide ly onr example: the number of ovisacs in Homocoscels amounting to abont eight, in Chomiostoma to abont twelve, it is evident that in the small species we find fers, in the large ones nmerons eggs in each ovisac, and this fact is indeed proved by the following fignres: in an ovisac of Homocoscetis minuta are found only about 14 to 18 eggs, in H. meliterrance no more than abont 6 to 10 , whereas in a middle-sized ovisac of Choniostoma miralite I have comted $10 . i 7$ eggs. If, in a smaller species, as e. g. Spher: dispur and S. modesta. the number of ovisacs increases to abont twenty, or, as in the latter species, to about twenty-eight, the quantity of eggs contained in an ovisac is natmrally rather small (pl. LX, fig. 3e, fig. 3c and fig. 2c), whereas in the gigantic Spher. Mumopsidis, of which species one specimen - consisting only of a half-mptied skin - was about 5 mm . in diameter, the mmber of orisacs may indeed amonnt to twenty, still the average number of eggs in each ovisac (in this species I have found great variety in the size of ovisacs of the same specimen) is nevertheless very great, as is shown quite distinctly in fig. ta on pl. \mathbf{X}.

The entire bulk of eggs deposed by a female - as stated above - is always larger than the animal itself after it has laid them, and it is often so marvellonsly large, compared with the female, that we hardly moderstand the pussibility of it (s. pl. XI, fig. 3a). This state of things, however, may be partly explained by the fact that the ovisacs are deposed at certain intervals (about a possible deviation in Stenothocheres, see above), and that consequently the eggs can be gradually developed in the female. If we find seven or eight ovisacs in a female, the development of at least one or two of these is nearly always so far advanced, that the larve are in the Nemplius stage; where ten or eleven, or still more, ovisacs are fomb, one or two of these nsually contain almost or quite full-grown larva. The length of time which elapses between the laying of the first and of the last ovisac in specimens containing a large mmber of these sacs, as spher. decorata and the other species living in the marsmpinm of Cumacea, seems to be about equal to that which the first laid ovisac requires for its development: the division of the germ, the Nammius stage, and the development of the larva with numerous limbs, thongh I cannot tell how many days are required for this process. The two species which lay the smallest number of eggs are the dimimutive forms Homooscelis meditcrranea and Stenothocheres eqfregius, the former has as many as eight ovisacs containing in all 60 to 70 eggs, whereas St. egregius, as a rule, only lays about 30 eggs (I have found between 16 and 42 eggs, the latter number in an excentionally large specimen). The largest species,
viz. Sphor. Mumopsithis and the two species of Choniostomu, lay the largest number of eggs. In a specimen of Ch. mirabite with eleven ovisacs 1 counted the eggs in one of these presumably of middle size, and 1 found 10 an egres, so the number of eggs laid by this specimen may be said to amomet to 11,620 , and if we take this figure as the normal quantity in Ch. mirobile of the Kara Sea, at any rate we do not exaggerate. In Spher. Dumnopsidis the nmmber of eggs seems to be even much higher, however, it would scarcely be possible to calculate the exact amomnt. Between these last-mentioned species and Stenothocheres cyregius the other species present a variety of transitions, as far as fertility is concerned. In a following chapter about distribution etc. I shall have an opportunity of making some further observations on these rather remarkable differences.
II. The derrlopment of the cgys. As for the division of the germ and the earlier part of the embryological development, which I have not stndied myself, I shall refer to the representation of Salensky. As in all Copepoda a Nauplius stage is developed (pl. XI, fig. 1c and fig. 1 d); but this stage never becomes fiee, it evolves itself into the stage of a highly organised larva, of which a detailed description is given helow. When this larva, which corresponds with the first Cyclops stage in other parasitic Copeporla, is full-grown, it breaks ont of the egg-membrane and of the orisac. As for the details concerning the development of the Nouptins stage and of the larva, I must again refer to Salensky.

It may be added that in material preserved in spirit (and I bave seen no other) the orisacs, when younger, are of a light yellowish colomr, but they gradually get whiter, as the larve are developed.

d. The free Larva.

I. The Materich. Of several species 1 have found free larve, which were either swimming ont of, or had recently swm into the marsupimm, and these specimens, of course, were excellent, showing the normal shape of the larve. Of a number of species I have procured a rich material of larva by pulling them out of an ovisac; they were good enongh when taken while about to break ont of the egg-membrane, thongh the body might be somewhat soft and not extended in its full length, thus slowing a vaguer ontline which did not quite correspord with that of the swimming specimens. Sometimes I had to content myself with younger animals, which had to be pulled ont of their egg-membranes, and which had indeed a well-developed month, maxillie, maxillipeds etc., but whose cephalothorax was decidedly shorter and stonter than those of the full-grown larvo, and which also showed other signs of mnfinished development, so that no reliable observations conld be made of difficult parts, as e.g. the branches of the maxillnlæ. Finally, of a few species I had only laree which had swum into the marsupim of a new host, where they had attacher themselves (0 : below), and in these the cephalothorax, as a rule, was shorter and broader than in the free specimens. Of some species I had larvit of this kind as well as of others,
that had been taken in a free state, or had been pulled ont of an ovisac. All this put together gives the result, that I have been ahie to examine the larve of twenty-three species, lacking only the larva of Stenothocheres Sarsii and nineteen species of Spherronclla; thus I possess the larva of Sten. cyregius, of fifteen species of Spluronella and of all seven species of the four remaining genera. Fortmately the fifteen species of Spheronclla represent nearly all the more important types of this large gemus.

As for the illustrations. I beg to notice that I have frequently omitted the two pairs of natatory legs, or at least their branches, as their representation, as a rule, would have been exceedingly difficult, and the omission is of little conseruence, as the number and the arrangement of the natatory hairs are very mach alike in the different species. In some cases the abdomen is also left out. My representations of the maxillula include all that a careful stndy enabled me to observe; however, I am inclined to think that a better material would sometimes have allowed me to discover one - occasionally two - more branches.
II. Structure of the Larres. The length of the body usually varies between 20 and 25 mm . the longest larva I fomd belonged to Spher. decorata, and it is 30 mm . long, the shortest, 15 mm . in lengtl, belongs to Homoooscolis minutu. The body is divided into two parts: the cephalothorax and the abdomen. The cephalothorax is somewhat depressed, nsually oval and abont $1^{1 / 2}$ time as long as it is broad, sometimes (Mysilion, pl. XII, fig. 2 h) more elongated, almost domble as long as it is broad; it consists of two divisions, namely, the cephalothorax properly speaking, and a single trunk-segment (pI. III, fig. 3 k), which are joined by a rather sinuate articulation, whereas the trme-segment is between five and eight times (in a single case about eleven or twelve times) shorter than the anterior division. I have found behind the segment mentioned a very short portion which looked like the mudiment of a second free segment (p IIII, fig. 3 k) and belonged to the cephalothorax, not to the abidomen; I camot, however, say anything definite about this part and will content myself with stating what I have observed. The abdomen is narrow, and its length varies between a little more than one sixth and rather more than one third of that of the cephalothorax; it always consists of three distinctly separated segments and has two candal stylets, which as a rule are plainly articnlated on the third segment, but sometimes are coalescent with it (e. g. pl. I, fig. 11).

The foremost half of the large anterior division of the cephalothorax is always provided with antenmuæ, antemæ, rostrm with mandibles, maxillulæ, maxillæ and maxillipeds; the hindmost half has a longer or shorter odd pouch, which turns backward, decreasing in width towards its distal end (pl. I. fig. 11, 1); its posterior part forms a free, either pointed or rounded bag along the rentral swface, often covering the transversal band which unites the first pair of natatory legs (pI. III, fig. 31), sometimes even the band between the second pair of natatory legs (pl. II, fig. 11). The first pair of natatory legs is sitnated at the posterior extremity of the first division of the cephalothorax, whereas the second pair proceeds from the free trunk-segment. It may be mentioned finally, that Salensky has
shown the existence of an eye (op. cit. p. 314, Taf. X. fig. 21 and 23 , oe), which in the ilknstration is drawn as situated on the ventral side of the forehead oin Form von zweien am oberen Theile etwas rerdickten sichelförmigen Pigmentflecken, welche in der Mitte sich berihren und eine x-furmige Figur darstellen«. As a matter of course, the eye must be found on the dorsal surface, but I have been unable to find it on my larva, probably bécause the spirit had dissolved the pigment.

The Antemmice are always rather short; they consist typically of three joints, the second of which is nsually short and not unfrequently coalescent with the first, in which case we only perceive two joints. The first, and particularly the third joint, are provided with pretty long setre; the terminal seta of the third joint is very long, and from the lower side of this joint proceeds always a single, particularly long olfactory seta (pl. I, fig. 11, b), which is at least double, usnally several times, the length of the whole antennula; sometimes this seta is exceedingly long, as e.g. in Spher. dispur (pl. IX, fig. 3 k) and in Spher. insignis (pl. X , fig. 1 e), where it reaches firther than the middle of the abdomen, nay in the lastmentioned species the olfactory seta in itself is longer than the whole cephalothorax. The antemnule are always attached pretty far from each other at the edge of the cephalothorax, the area betreen them forming what I call the front. Close to the imer margin of the hase of the antemnnla we often see an oblique list; moreover, in nearly all species of Spheronella which are parasitic on Cumacea, the front is decorated with one or several rows of delicate and peculiar processes, which decoration reaches its highest development in Spher. decorata (pl. VIII, fig. 3 i and fig. 31). In Spher. morlesta these processes are replaced by transverse lists (pl . IX, fig. 2 i).

The Antenme proceed behind, and usually at the same time somewhat obliquely inside the antemula, but never from the base of the rostrum. Sometimes they are considerably shorter than the antennulæ, sometimes abont the same length, and in the genms Homocoscelis (pl. II, fig. 11 and pl. XIII, fig. 1 h) more than double the length. In Spher. marginate (pl. XIII, fig. 6 g) only two joints are found, in all other species they consist of three or four joints, three of which are always distinct, but it is often difficult to make out for certain, whether the eminence from which the supposed second joint proceeds, is a real joint, or in other words, if the apparent basal joint consists of two joints; as, however, Spher. rutillensis has fom rery distinct joints (pl. III, fig. 2e), this is probably the typical number. The terminal joint is nearly always short and nsually ends in a long, thick seta, beside which we frequently find a shorter one. The next joint is now rather short, now long, or very long, and where the antenna is long, it is on account of the length of this joint, as the hasal joint, or where there are fonr joints, the two first of these are never elongate, but sometimes (pl . IX, fig. 2 i and fig. 3 k) comparatively broad. In Mysidion (pl. XII, fig. 2 h) the antennæ are very small, and in Spluer. microcephata (pl. VIII, fig. 2i) almost rudimentary, in hoth cases 3-jointed, with an exceedingly short terminal seta.

The Rostrum seems to correspond only with the more distal part of this organ in
the female aud the male, for not ouly are the antemne situated a little outside its base, but the maxillulæ are found quite, or nearly quite, outside it. The general structure of the month is like that of the adnlt animal; the mandibles are trequently seen in the opening, but the hairs of the mouth-border are always short, frequently so short, that they can only be discovered with the greatest difficulty.

The Maxillula are difficult to moderstand, and it is very difficult to discover all their setix. As mentioned above, in the rarions illnstrations of the larve I have drawn what I have fomd, but I am pretty sure that I have not everywhere fonnd all the elements. The highest development I met in Splecr. Calliopii (pl. II, fig. 31) as well as in the species which are parasitic in the marsnpinm of Cumacea, as Spher. Atcorata (pl. VIII, fig. 3i), S. morlesta (pl. LX, fig. 2i) and S. dispar (pl. LX, fig. 3 k). In these figmres we see obliquely behind and outside the rostrum on each side four setr, the two hindmost of which are coalescent or adjacent at their base, one or both of them being phumse. Obliquely from these and somewhat nearer to the rostrum proceeds a third seta, which turus straight towards the front, and obliqnely before this one again, there is a fonrth, shorter seta. I suppose that all these four setæ belong to one maxilhula, the basal part of which is not separated from the rentral side of the hearl. In Spher. marginata (pl. XIII, fig. 6g) the immemost seta is reduced to a short process. In most of the other forms I have only been able to find three setæ, e. g. in Sphrer. microcephalu (pl. VIII, fig. 2i) and in Choniostoma miralile (pl. XI, fig. 1e), or two, or only one. In Stenothocheres egregins (pl. I, fig. 11) I have fonnd a maxilhula (e) which reminds me much of those in the adult animals, as it consists of a short, basal part, from which proceed two thick setæ, of which the hindmost is shorter, the foremost very long. In the genus Homoooscelis (pl. II, fig. 11 and pl. XIII, fig. 1 h) I have been mable to find vestiges of maxillulæ.

The Maxille nearly always consist of three distinct joints, and are very mnch like those of the adult animals, thongh the stont basal joint, as a bule, is narrower and the two next joints are longer than in the adult; these two joints are slender, and the last one somewhat curved and claw-like. In Homoeoscelis only the two last joints are entirely coalescent, forming one curved joint, which moreover along the larger part of both margins is provided with exceedingly fine and short setiform processes (pl. XIII, fig. 1 h). As a rule all three joints are simple and smooth, but in those species of Sphoronella which live in the marsupium of Cumacea, the imer margin of the third joint is coarsely or finely servated, and the first joint has on its inner margin, against which the second joint can be folded י1', a double row of fine cylindrical processes (pl. VILI, fig. 3 n and fig. 30), and a similar decoration is seen in Spher. Munnopsidis (pl. X, fig. 4d). - The two maxillæ are always situated at some - usually at a considerable - distance from each other.

The MLuxillipeds, as a rule, are placed close behind the maxillæ, and also generally somervhat closer to the median line than these; in Homocoscelis only (pl. II, fig. 11 and 11. XIII, fig. 1 h) there is a great distance between these two pairs of appendages. The
maxillipeds are always of comsiderable size, they are rery like those of the males, and always consist of four distinct joints. Their rather stout basal joint is nearly as long as. or somewhat longer than, the three following joints together; the second and the third are very slender, and their joint length is a little longer, or somewhat shorter, than the last joint, which is extremely slender, almost setaceons, slightly curved and pointed. All the juints are nearly always smooth and naked; in Spluer. Mumopsidis the fourth joint has towarts its apex three spinifom processes ($\mathrm{pl} . \mathrm{X}$, fig. 4d), and in Mysidion chyssorum there are five or six somewhat similar processes along the more central part of the inner margin (pl. XII, fig. 2 h); the third joint at its extremity is always fmonished with a spine inside the articulation of the fourth joint.

In most fignres I have carefnlly illnstrated the suld-mertian skeleton, which consists of lists ruming backward from the base of the rostrm and the maxilnle, surrouding the base and forming the articulation of the maxillæ and the maxillipeds.

The tro puirs of natatory leys of each specimen are very much alike, and they differ very little, comparatively, in the varions species. Each leg consists of a good-sized peduncle, which is particnlarly broad in Stenothocheres corregius (pl. I, fig. 1], m and n), somewhat narrower, or rather narrow, in the other species (see particularly pl. VIII, fig. 2 i); from the posterior margin proceed at some distance from each other two one-jointed, about equally long branches, and the onter branch, which proceeds from the end of the perduncle, is broaderthan the imer one and rather dissimilar in ontline. The onter branch of the first pair of legs, as a rule, has fom rather short, naked setæ on its outer margin, two rery long plumose setæ on its terminal margin; on the inner margin it has either two rery long plumose seta (pl . IX, fig. 3 k) or one of this kind and one much shorter, maked seta (pl . I, fig. 11). The onter branch of the second pair of legs is very like that of the first pair, but its onter margin has only three shorter, simple sete, its terminal margin two, and its inner margin two exceedingly long plumose setæ, all four of which are longer than in the first pair of legs. The immer branch of the first pair of legs has fomr, of the second pair three very long, plumose setæ on its inner margin, and in both pair of legs two similar setæ on its terminal margin (all these setxe are longest in the second pair), whereas the outer margin has only one single seta, which is either short and naked, or very long and plumose. These are the results of my researches in the few species whose matatory legs have been examined with special care, but it must be observed that these species belong to three genera: Stenothocheres, Spheronella and Chomiostoma. Even if an examination of more species shonld show greater variety in the number of seta, such differences are not at all likely to be comsiderable, and furthermore, it is in most cases exceedingly difficnlt to comnt the setie accurately, as the legs are very frequently folded up or standing on edge; therefore it would be all but impossible to make any practical use of the presence or absence of such a seta as characteristic mark of species or genera. - The two legs belonging to each pair are, as usnal, mited by a prominent, movable transverse band (pl. I, fig. 11, m' and n ').

The first abdominal segment always dilates considerably from its base towards its end, and the free posterior angle has a powerful, often spiniform, seta, the length of which varies between being a little longer than the following segment (Stenothocheres, pl. L, fig. 11) and being longer than the whole abdomen, and plumose in its distal half (Choniostoma, pl . XI, fig. 1 e). Inside or outside this seta and close to it there is almays another seta, which, as a rule, is much shorter, and only in Spherer. microcephata (pl. VIII, fig. 2i) is remarkably long, though somewhat shorter than the first one. The second segment is sometimes shorter, and in this case not mufirequently somewhat narrower, than the first one, e. g. in Choniostoma, sometimes quite as long, and always without setæ. In Stenothocheres (pl. I, fig. 1l) the third segment, together with the not separated caudal stylets, forms a large and broad, elongate segment, much larger than any of the preceding ones, and incised posteriorly in the median line. In all other species the third segment, together with the caudal stylets, is nearly always somewhat, and generally much, smaller than the second segment, and the stylets are sometimes not set off from the segment, but most freruently distinctly articulated on it as two short, almost cylindrical joints. Each stylet has always a very long and thick, sometimes phmose, seta, which in Stenothocheres egregius is only a little longer than the abdomen, in Mysidion and Aspictocia somewhat longer, thongh not nearly half as long as the cephalothorax, in Homocoscelis, Spheromella and Choniostoma longer than half the length of the cephalothorax, and sometimes attaining to three 'fuarters the length of this mart, e. g. in Spher. dispar (pl. IX, fig. 3 k). Outside this long seta each stylet has in Stenothocheres four, in the other species two or three, comparatively short setæ.

Whereas there were great differences between the females among themselves and between the males among themselves in the different genera and species, we see from the detailed description given above, that all larva I know are surprisirgly nuiform, so much so, that I have been able to find rather insignificant generic characters only in Stenothoeheres and Homoooscelis, as distinct from the four other genera; at the same time the larre of Bysidion and Aspidoeciu - whose females deviate much from those of the other genera with regard to receptaculum seminis, the position of the genital apertures and the hingement of the ovisacs - deviate less from various larvæ of Spheronella, than these differ from each other.
III. Further Development of the Larre. The larve, after making their way out of the orisac, - at least as a rule, swim out and seek a new host. I cannot deny the possibility that one or a few of the larva may remain in the branchial cavity or in the marsupium of the mother's host, though I donbt it very much. In a marsupium which was infested beforehand I have repeatedly found one or several larva, which were decidedly invaders. I met with the greatest invasion in a specimen of Hippolyte Gaimardii, Where in one of the branchial cavities I discorered a very young female of Chomostoma mirabile and certainly more than fifty larvæ and pupæ hinged on the gill-fibres (s. the special description below).

When the larva has fomd its new host, it attaches itself either leeneath the carapace to the branchiæ or in the marsupinm to one of its plates, to one of the gills, or simply to the rentral surface of the body, or to the hasal part of a leg, and in case it attaches itself to a not full-grown female of Amphipoda, of comrse it must content itself with one of the three last-mentioned places. The larve of Aspidoccia fasten themselves either outside on the dorsal surface of the host (an Eryfhrops), if they are growing into females, or on a female of their own species (pl. XII, fig. 3 b), if they are going to be males. The fixation, which is rery solid, is effected by a viscons substance, which expands itself so as to form a larger or smaller plate on the front ($p \mathrm{l}$. IV, fig. $1 \mathrm{e}, \mathrm{s}$; pl. VIII, fig. 2 i ; pl. XI, fig. $1 \mathrm{e}, \mathrm{s}$). This riscons snbstance must be secreted of a gland in the front part of the head, the orifice of which, however, I have tried in vain to find; the gland itself must be stndied from fresh material. (It was pointed ont long ago by several authors, that the larva of varions Caligidæ. of Achitheres etc., in their first stage fasten themselves in a somewhat similar mamer by a "Stirmband" (Clans).) The larva, after hinging itself in this way, relaxes the grip of its limbs and hangs quite free; therenpon it begins to change form, bending forward the last joint of the maxillæ, and its cephalothorax getting gradually shorter and broader (pl. NI, fig. 1 e ; pl. IV, fig. 1 e ; how short and broad it may occasionally become, may be seen on pl. IV, by comparing fig. 1 c , which represents a free larva, and fig. 1 d , which represents a larva that has reached its full breadth, and which no donbt is going to derelop into a male; fig. 1 e is an intermediate form shortly after the fixation. Then the muscles etc. in all the limbs and in the abdomen dissolve themselves, and the contents of these organs are transferred into the cephalothorax, the muscles of which have also been dissolved, and finally this nnited substance is smromnded by a new skin mader the old one. The smbsequent development will be treated in the next division.

e. The post-larval Development; the Pupæ.

The post-larval development, which takes place between the larval stage just described and the appearance of adult males and of females (which, thongh rery small, in all important features resemble the egg-laying specimens), offer the greatest deriations between the different forms, but, unfortunately, the representation I am capable of giving is rery fragmentary. The larva in many cases develops into a pupa, ont of which evolves the female, and, in some cases, the male; in other cases the male is developed inmediately from the larva etc., and in Mysidion the metamonhosis is more complicated. I know the complete derelopment only of two species of Splifronella and of Homooascelis mimuta, but the two first-mentioned, in particular, are fortunately very different from one another; I know, moreover, the development of the male in Aspidoocirt, and of the females belonging to the species of the Spher. Leuckartio-group. Finally I have found a pupa of each of fonr other species of Sphiseronella
(S. Aryiscre, S. lonyipes, S. microcephele and S. imsignis), numerous pupx of Choniostome mirabile, and three different stages of development of Mysition commune.

Let nss hegin with the simplest form of development. On a completely adult female of Aspidorcia Normami, sitting on the dorsal surface of the abdomen of Erythrops servatus G. O. Sars, I fomd fom larva attached (pl. NII, fig. 3 b , where one of the larve is left out and two of the others designated by a v.) One of these came off easily, when touched, and it appeared that its skin had begm to bust along the lateral margin; on a closer examination it burst somewhat more, and it proved to contain a full-grown male. In this state the preparation is illustrated in pl. XII, fig. 3 m . The spermatothece of the male were filled, and it had a very short and very thick frontal thread (s). This instance sufficiently proves, that the male Aerelops itself directly in the larea, without the intermediate pupa stuge und without asecomb moutt. I also found a single larva, which had placed itself directly on the carapace of the host, but its examination gave no result, its development not being fill enongh advanced. However, I have fomd exceedingly small females sitting on different parts of the host, and I have not the slightest doubt that the larrae which are going to become females, attach themselves directly to the host, though I do not know, whether they pass throngh the pupa stage or clange directly into females, yet I feel inclined to accept the latter alternative, seeing that the parasite sits on the outside of its host, thereby rmming the risk of falling off very easily.

We now come to a species in which both sexes pass through a pupa stage, nomety Sphrer. Giardii (1 l . VI. fig. 3 i , fig. 3 k and fig. 3 l). I have found three male pupæ and not a few female ones. The body is of a short ovate shape; the males are more oblong and smaller, 125 mm . in length (fig. 3 k), the female pure stonter and varying in length between $\cdot 125 \mathrm{~mm}$. and $\cdot 142 \mathrm{~mm}$. (fig. 3 l , which is drawn on the same scale of enlargement as fig. 3 k). In the female the foremost two thirds of the ventral smface form a broad, naked, odd area, whereas the whole remainder of the body is closely covered with rather short hairs. The male pupa is covered with hairs like the female, except that part of the back which corresponds to the head and the mpper parts of its lateral surfaces, which are naked (fig. 3 k). Fig. 3 i shows a male pmpa from below, fig. 3 k from the side; the antemnlæ (a), the, antennæ (c), the maxilhule, the maxillæ, the maxillipeds, the trunk-legs and the caudal stylets are seen as naked, smouth, ponch-shaped processes, whereas the mouth is developen as in the cudult animul; in front of the month we notice a semicircular, rather vanlted and prominent area, and between the maxillæ and the maxillipeds two pairs of oblong, somewhat prominent knots, corresponding with the sub-median skeleton. The female pupa has also a free mouth and all the same processes and projecting parts as the male, from which, however, it is easily distingnished, not only by the above-mentioned difference in the extent of the haircoat, but also by the size of the processes which stand in the place of the tronk-legs, and which are very small, whereas in the male pupat these organs - especially the first pair - are much larger and furcate at the end This difference between the trunk legs, which
entirely agrees with that in the adult animals, proves in a satisfactory way that my suggestion with regard to the sexes is correct. One of the illustrated male pmp (fig. 3 k) is fastened by a frontal thread, which is about one third the length of the body and considerably dilated towards the end, but its extreme expanded part is of a different puality and forms a disk-like plate. In the other male pupa (fig. 3 i) the thead is shorter and someWhat thicker, but its distal end is broken off. The fixation of the female pupa is effected by a thread, which is so short that the front part of the animal is pressed against the gill, or the plate of the marsupimm, to which it is attached. - It is stated above that the purz have a well-developed month, and it would seem probable that at least the female puræ take food and grow a little. Undonbtedly the males and females come ont directly of their respective pupr, like the females of the species belonging to the group of Sphor. Lumplattio, in which [have observed the fact myself. Only one point seems to present some difficulty, namely, that my male pupæ are only 125 mm . in length, whereas the male animals are between 17 and 21 mm . Iong and of a similar shape. With regard to this point I refer to my observation of the growth of the male of Spher. pararloxa mentioned below on p. $57-58$.

Homocoscrlis minuta. A single prpa (pl. I, fig. 3 b) was found hinged by a frontal thread to the gill-bearing epipod. The pupa is 18 mm . long, of an elongate oval shape and maked all over. We see the ponch-shaped processes in which the antemnlæ (a), the antemæ (c), the maxillie (f), the maxillipers (g), the first pair of tromk-legs (m), the second pair (n) and the caudal stylets (p) are developed; but besides all these, we notice between the second pair of trunk-legs and the candal stylets a pair of very small, most peculiar processes (x), which are possibly a rudimentary third pair of legs that do not develop any further, and which disappear again. The month with the mandibles is like the pula of Spher. Argisse (s. below); the frontal thread is scarcely a fourth of the length of the animal, it is simple, with a discoid expansion at the end. This pma was hinged in the branchial cavity between two adult males attached in the same way, but there was no female, and these two circumstances make it more than probable that the pupa was a female, especially, as in a large material of this species I have seldom found more than one male. and never more than two males and one female in the same branchial cavity. Later on I found in two specimens respectively two and three pupæ, one among the latter of which - being no doubt younger than the others - was somewhat smaller and had less developed rudiments of limbs, though otherwise it was similar to the other four, all of which agreed with the above-described specimen. (The frontal thread in one of the specimens was half as long as the body). Considering that (as stated above) I have never found more than one female and two males in the same branchial cavity, the fomr large pupe must either all be males, or - which is probable - be male and female pmpæ. So, jndging from the sex of the minntely descrihed pupa. there is no difference between the derclopment of the two sexes, and this agrees very well with the fact that recently hatched females can sometimes be distinguished from the males only by possessing genital apertures, as in several mates the spermatothece are not distinctly seen.

At least with regard to the structure of the pure we know, Spheronella Argisse, Spher. insignis and Choniosioma mirabile come rather close to the two preceding species; each of them will now be treated separately.

Spharonella Argisse. Of this species I have found a single female pupa (pl. IV , fig. 31 and fig. 3 m), which in the most important features agrees with the female pupa of S. Giarlii. The body is ovate, naked all over, 15 mm . in length, and, like the last-mentioned species, provided with the ponch-like processes, in which antemmla (a), antema (c), maxillnæ (e) maxillæ (f) maxillipeds (g), trunk-legs and candal stylets (p) are developed, and all these processes show abont the same relative size as the corresponding organs in the females compared with each other; moreover, the month is distinct, and the mandibles are also seen in fig. 31. The animal is attached by a very peculiar crooked funnel of considerable size (s), which is of comse made of a viscons snbstance, and its narrower, thongh comparatively thick, base proceeds from the front.

Spheronella insignis. Of Diastylis cormutu Boeck a single pupa was found (pl. X, fig. 1 h$), 14 \mathrm{~mm}$. in length and sub-globular in shape. The month is well developerl, as in an adult female; antemule, maxillulæ, maxillæ and maxillipeds are seen as protruding naked pouches of somewhat irregular shape; in front of the month are found two rather large, odd, connected areas, and close behind them a smaller spot on each side of the median line; in front of, and in an oblique direction from, the maxilhle, there are several small areas, and finally a large transverse area, expanded in the middle, which joins the bases of the maxillipeds. All these areas are naked, and more or less prominent compared with the surromding skin. Except these organs and areas and the surface between them, the whole rentral surface of the pma and its sides are covered with hairs of medimm length; the back is covered in the same way on its most anterior part and on its posterior half, whereas a broad, transverse area extends over the larger part of its anterior half; this area is naked, and closely covered all over with irregular projections of a comparatively rather considerable size, the real shape of which can only be recognised when seen obliquely, whereas a perpendicnlar view gives the impression that this surface is covered with numerous irregular lines, forming ovals, oblong spots or simply flourishes. I have heen unable to find ont with certainty the sex of this interesting pupa, as the adult male of this species is devoid of tronk-legs; however, I consider it to be a female.

Choniostoma miralite. On the gills of a Hipmolyte Gaimardii M.-Edw. I have found a number af larve, which showed all the stages transitional to that of the pupa, besides numerons fully developed pupe (pl. XI, fig. $1 \mathrm{~g}-1 \mathrm{k}$). A comparison between the figures $1 \mathrm{~h}, 1 \mathrm{i}$ og 1 k , which are drawn to the same scale of enlargement, will show that the pupæ differ much in size and somewhat in shape; the largest specimen I have measured is 38 mm . broad and $\cdot 27 \mathrm{~mm}$. long, the smallest only $\cdot 27 \mathrm{~mm}$. broad and $\cdot 19 \mathrm{~mm}$. long, and one specimen, which was still enclosed in the skin of the larra, is only 19 mm . broad and 18 mm . long. So the mupe grow very considerably after breaking out of the larcal
sking, and there can lie no doult that they take nowistment through their well-deceloped month (s. later on under Sphar. danicn.) They are always considerably depressed, the anterior margin is long, now quite straight, now a little concave, in the younger specimens occasionally a little couvex; the lateral margins converge rather considerably backward and merge more or less evenly into the posterior margin. The mouth is pretty well developed, with distinct mandibles (fig. 1 g), and is sitnated murh to the front on the ventral surface; it is surrounded by rather small pouch-like processes: antemulæ (a), antemme and maxillæ, and behind it is found a rather large, peculiar area. Near the anterior margin on the ventral surface is seen a body with an irregularly curved posterior margin, and this is the adhesive plate (s), by which the animal is hinged. The parts just described on the ventral surface are surrounded by a naked area, whereas the greater part of the remainder of its surface is provided with hairs, which are sometimes arranged in rows of two or three or more, sometimes are more scattered, and the hairs which grow close to the edge are rather long, the more central ones are short; the larger part of the dorsal surface is naked. Fig. 1 i and fig. 1 k reveal that the contents of the pupa - perhaps on account of alcololic influence - do not reach the outer skin, whereas fig. 1 h shows a very large and entirely filled pupa; fig. 1 i , the specimen represented on a larger scale, so far shows the same as the two illustrations just mentioned, but it reveals at the same time that the inner body has its own skin with distinct setæ at its margin. The male of Choniostom, being mknown, I cannot decide how far all the specimens found are only female, or both female and male pupx.

We now come to a species - Spheronella purculoxa - whose development differs very much from that of Splecer. Giurdii, or that of Homocoscelis minuta, and the forms which, according to my just stated (thongh rather defective) knowledge, are related to these species. In Sphar. paradoxa both sexes devetoy themselves without passing through the stage of an independent pupa properly speaking, nercetheless there is a considerable difference of aspect between the decelopment of the sexcs. Let us first, examine the development of the male. I had a very considerable material of larva, which were hinged by their front, and in which the cephalothorax was nearly as broad as long, besides being rery thick (pl. IV, fig. 1 d); however, as it was impossible to me, in spite of carefnl searching, to find a single male pupa, I conceived the idea of submitting my big larva to a thorongh examination, and in a single specimen I fancied that I saw two spermatothecre through the skin. I succeeded in taking away the skin of this larva, and I fomd a yonng mate with lairs on its abdomen, rather short caudal stylets, and two spermatothecæ, whereas the limbs were still for the most part rather indistinct. Hereby, then, we hare got the prof that the mates come out directly of these big larre (comp. Aspilloccite, 1.54), still there remains a single point which is not fully explained. My rather numerous males are - with rery rare exceptions - about 245 and $\cdot 27 \mathrm{~mm}$. in length, though one of the big larree is only 19 mm . long, the empty abdomen included, and the cephalothorax of one of the largest of these larve is only $16 \mathbf{m m}$. in length (in pl. III, fig. 4 c I have represented a male, in fig. 4 e such a larva enlarged on
the same scale, and a comparisom between these two figures offers a pretty good illustration of the different sizes seen from below). Fortmately I have found a single male which without any doubt, judging from its inward and outward condition, is quite recently hatched, and Which is ouly 18 mm . in length, consequently 02 mm . longer than the above-mentioned cephalothorax; now, if we consider the prominent frontal border in the male and its rather more elongate shape, this slight difference is accomnted for. The result is, that immerdiately after hatching, the male must grou to some extent, for, as males of small size in this (as in other) species are pretty rase, we have good reason to suppose that this growth is comparatively rapid.

The female apparently pusses through a muna stage. I have found three such "pupæ" altogether, which were all abont the same size; the specimen illnstrated in pl. IV, fig. 1 f is 174 mm . long. The body is ovate, somewhat flattened and attached at the front by a broad adhesive plate (s). In the illustration several limbs are seen, but, on closer examination, it appears that all these organs are those of the larva: antemmiæ (a), antemæ (c), maxillæ, maxillipeds (g), first pair of natatory legs (m), second pair of natatory leg's (n) and abdomen (o), in other words, the animat is enclosed in the stim of the larra, whose appendayes and abdomen are not only emptied of their contents, but have shrmen, so as to be almost unrecogmisalle. There is no month. Under the stim we see the scarcely developed mouth, the maxille und the folded maxillipeds of the young frmate. So the shin of the larva has aequired the appearaner of a pupa; a real pupa does not erist. The animal cannot possibly take any nourishment. Fig. 1 g in pl. IV represents a yomg female that has just burst the ventral side of the "skin of the pupa, whereas its ragged dorsal part still hangs on to it; this specimen was only 207 mm . in length, consequently only $\cdot 034 \mathrm{~mm}$. longer than the pupa represented. This young female was still attached by the adhesive plate (s) of the skin of the larva.

A pupa deviating from those of the above-mentioned types is fomud in Spliceronella drmiea, Spher. elimensis and closely allied species, which, together with Spherr. Lenelurtii, form a small group, which I have named after this species. Salensky (in his op. cit.) has desrribed and illustrated several stages of development of Spherr. Leuckartii, and his observations agree very well with mine, only I have heen able to make some additional statements. The prom is ovate, sometimes naked on its anterior part (pl. ILI. fig. 2 f), thongh, as a rule, it has omly a smaller naked spot in the midst of the ventral surface ($p \mathrm{p}$. I , several figmres); otherwise it is all over pretty closely covered with rather short hairs; from the anterior end, which is always narrower or more pointed, proceeds a tuft of longer hairs, and in the midst of these is a rather short thread, which ends in a disk (pl. II, fig. (ie), by which the pura is hinged, either to me of the plates of the marsupimm, to the immer side of the bisal joint of a leg, on to a gill. (Usially this tiontal thread proceeds from a small depression with flat bottom, however, in one case, I have noticed that it proceeded from a stonter, short, cylindical eminence (pl. II, fig. $4 d$ and fig. 4 e). On the posterior half of the above-
mentioned naked spot we find a somewhat prominent month (pl. II, fig. 6 e and fig. 6 f ; pl. III, fig. 2 c), which is supported by some chitinous lists, the two longest of which point straight forward, are as long as, or somewhat longer than, the diameter of the month and enclose the anterior half of the naked spot. Of month-appendages we only see the welldeveloped mandibles, the points of which project in the orifice of the month; the hairs romd the mouth-border are apparently wanting (but perhaps the magnifying power of my microscope does not suffice to discover them). Outside the anterior half of the month, and beneath the naked area in front of it, several muscles are seen, which evidently serve the action of the month. The pmpa of the same species show great difference of size. In Spher. chinensis a small priat is 146 mm .. a large one 24 mm . in length, and both are illustrated in pl. II, fig. 6 c and fig. 6 d magnified on the same scale. But I have fomd a much greater difference in Spher. danicu, of which species I have seen nine pupæ: the smallest (pl. II, fig. 4 d) is only $\cdot 115 \mathrm{~mm}$. long and 085 mm . broad, an other (fig. 4 c) is 185 mm . long, and the largest is ${ }^{2} 5 \mathrm{~mm}$. long and 194 mm . broad, thus somewhat more than donble the length and double the breadth of the smallest specimen. In the smull pmpre I have not been able to find thee restige of amy organ, and their contents - excent the museless of the mouth -- consisterd of a gramular substance. Salensky writes (op. cit. p. 317): "Werler imere Organe, norl sellst irgend welche Formelemente liessen sich im Imen wahnehmen; doch könte möglicher* Weise der Darmkanal vorhanden sein und mur durch die zahheichen Körnchen rerdunkelt werden« - ; later, on p. 318, he describes the month, but he has seen neither the mandibles nor the muscles, nor has he been aware that he had a month before him, and he concludes his statement abont his youngest specimen, which is 12 mm . long, in the following words: "Das Wachsthm gelit in dieser Periode sehr rasch vor siche. This last observation I consider to be correct, and as it appears fiom the abore-statel measmements, that the pupa during its development grows to a manifotd larger volume, it is clear that it mast tulie nourishment through its mouth, of which we have given a description, but it must be left to new examinations of fresh material to explain how this is effected, if there really exists an intestinal tube - which we must natmally suppose - but the contents of young and halfgrown pupe preserved in alcohol have made the impression on me of being eventy granntous, withont organs. In the above-mentioned largest ($\because 24$ mm. long $)$ pupa of Sphere. chinensis: (pl. II, fig. 6 b) and in the largest (25 mm . long) pupa of Sphore. danien I found young females, and Salemsky writes (p. 319): "Das letzte von mir gesehene Stadimm zeigte das monter der Puppenhant schon vollkommen ansgebildete 'Ihier mit aflen Anhängen. Die Puppe hat eine Länge von $0,27 \mathrm{Mm}$. erreicht....; an ihrer Obertiache sind keine Verändermgen sichtbar"; wherempon he describes the animal, thongh withont mentioning that it is a female, however, this is easily seen from his ilhstration. My specimen of Spher. chinensis (pl. II, fig. 6 f) shows antemulx, mouth, maxilli, maxillipeds, the two pairs of trmk-legs, the not yet fully developed genital apertures and the caudal stylets, which are seen through the hairy skin. It is seen that the month of the young female is sitnated far more to the fiont
than that of the pupa, and is much larger. The largest pupa of Sphrer. denica agreed entirely whith fig. 6 f , except in one remarkable point: the mouth of the female projected freely through the shim of the pmpu (though I was malle to discover any rent or larger opening in the skin), thus presenting the extraddinary sight of two months protruding beyond the ventral smface of the pura; the mouth of the female is situated a little behind the front extremity, that of the pupa nearly in the middle of the surface; the diameter of the latter in moportion to that of the former leing as seven to ten. - Fig. 2 e in pl. III illustrates surch a foung female belonging to Spher. untillensis, which has rent and thrown off abont the front third of the skin of the pupa, whereas the hindmost part of the body is still enclosed in the larger msterior part of the skin, inchoding the month of the pupa, and as the same animal is illustrated in fig. 2 a magnified on the same scale as the ovisac exhibited in fig. © 2 b, a comparison of these two figmes will show clearly, how much the animal grows from its stage as an egg up to the moment when it comes mof of the pura.

But what about the male? The amimal which Salensky fomm in its earliest stage as pupa, and of which he has had several specimens, according to his description and illnstration is only the female, and of the pupae I have seen, the smaller ones contained no anmals, and the very large ones contained females. As mentioned above, a pupa containing a female of Spher. ranicu is 25 mm . long, but a male which, judging from its appearance, seemed to be recently hatcher, was only 15 mm . long, whereas a full-grown male of the same species was 24 mm . in length. So we notice here the same growth of the young male as mentioned above in Splofr. pararloxa, but at the same time we find that the fullgrown male is somewhat smaller, and the recently hatched male only a little more than half as long as the large pupa (25 mm.). As the small pupæ examined by Saleusky and by myself never contained any animal, it is very probable that the mate of this species, as well as that of Spher. paradoxa. is deceloped directly from the larva, and the size of the recently hatched male agrees perfectly with this supposition. Unfortunately, of all my eight species of this group I have only seen rery few larve, however, the contents of a single specimen of these seemed to indicate that a male, not a pupa, was developing in it, still its growth was not sufficiently advanced to decide the question with absolute certainty.

Of Spher. longipes I have found a single specimen of a pupa (pl. VLI, fig. 2 g), which essentially coincides with those belonging to the group Spheer. Leuckartii. This pupa is ab. 17 mm . long and 11 mm . broad, rather elongate, as we see; the lateral margins rm almost parallel in part of their length, the front extremity is somewhat pointed and has a small orifice, out of which a short broken thread is protroding. The pupa is quite naked and possesses in the centre of its ventral surface a small, but well developed, projecting month, at the front and at the sides of which some chitinous lists and muscles are noticed. Its contents consist of a gramular substance, in which no organs are indicated; only towarts the fiont extremity we see - as shown in the illustration - some vague indications of an organic structure.

In this place I will brietly mention an organism, which I fomm on the glass after having prepared Sphere microcephoth, and which, I suppose, is the pmat of this rather deviating species. It is somewhat depressed (1 ll . VIII, fig. 2 k); its ontline is ovate with a straght posterior margin, whereas its romoded front margin bears a somewhat protroling adhesive plate (the stripes of which are too stomgly marked in the illustration); its dorsal surface is provided with some short hairs, the rentral surface is maked. It is $\quad 20 \mathrm{~mm}$. long, has neither month nor other wher organs, nor do we find distinct indications of internal organs.

In Mysirtion commune the metanophosis is more complicated than in the preceding forms, but, mofortmately, my material is mot large enongh to allow me tolncidate it in all details, besides, the forms in hand gresent several featmres which I do not moderstand. I have fond altogether three stages of development, two instances of the earliest, whe of the medium, and two of the last and largest stage. I will begin with this last stage, which indeed presents a kind of semi-pupa, or "young female in possession of foutures which it afterwards: loses. The two specimens fomul are of about equal size, the one illustrated in pl. XII, fig. 1 d is 31 mm . long. The borly is elongate ovate, rather pointerl at the firont extremity, which has a month provided with a border and its smomoling hairs; on its sides are the maxilhua, and on the ventral surface, a little behim the momth, are the maxillie and the maxillipers, which, thongh well developed, in some small, mimportant points deviate from those of the adnlt female; on the dorsal side, at a rather gond distance fiom the mouth, we find the one-jointed organs, which for a long time I considered to be the antemmae (a), but which no donbt are better explained as being the antemue. On the ventral suface, at a considerable distance from the posterior extremity, we see an old, strongly protroding, elongate and somewhat pointed process (x), and nearer the posterior margin, somewhat up on the back, the scarcely fully developed crescent (r) which smromols the future genital aperture. In the middle of the back appears an odd, rather low, blunt excrescence, from which proceeds a most peculiar fixation-thread, consisting of two divisions. The first part (11) is somewhat shorter and thimer than the basal joint of the maxilliped, and its distal part is tubular; from the inside of this tube the second division comes ont as a thread, which is thin in a considerable part of its length, then dilates rapidly and widely (v), forming a low collar at its widest expansion; it contimes beyond the collar sather thick, in the middle somewhat thimer; this part is hollow, very light and is no doubt fumished with very thin walls, and its end is fastened to a plate of the marsupium of the host. Can this singular fixation-thread be considered as homologons with the froutal thead of other pupe? This would seem probable, though it is placed rather far hackward; how it is produced is incomprehensible to me, but its distal end is very like the thread I have described in the male of Mysition abysorm, and its proximal part exhibits great likeness to the frontal thead in the male of Spher. demicu. Somewhat in frout of this thread, on each side, at a short distance from the outline of the back, we see a conical process (t), which for a long time was inexplicable to me, but which I suppose must be explained as the
antemulæ; according to this interpretation they onght to have been maked "as in the illustration, and the antenme not "a«, but "c«. Somewhat belind the fixation-thread I found a pair of bodies (z) which were situated at a short distance from each other and looked as if they were pasted on; whether they belong to the animal I to not know, thongh I suppose they do, as one of the specimens was provided with both these small bodies, the other with one of them. The hindmost part of the body and a smaller part of the surface surounding the large ventral process, are provided with a number of rather short hairs.

Fig. 1 c in fl. XII shows the stage of development which immediately precedes the afore-describer stage. The only specimen fond is $2 t$ mm. long; the scale of enlargement is like that of the last stage. The body has abont the same shape, and the month, the maxillulæ, maxillæ (f), maxillipeds (g) and antemne (a) have a similar structure and position; hot the antemma (t) are placed finther backward than in the more adranced stage, almost behind the middle of the animal; their form is somewhat vague. The dorsal fixation-thread (II and v) proceeds at some distance belind the middle of the median line of the back; it is almost constructed as in the older stage, lut is considerably longer, and its distal part is much less stont. The crescent of the genital aperture (10) is not found on the dorsal, but on the ventral surface, near the posterior extremity of the borly. The odd ventral process (x) is situated almost in the middle between the base of the maxillipeds and the posterior end of the body; it is rather shont and rery stont and broad; it is indeed a projection, which has on its top a well-developed month (y) with mandibles, and whose sides and front part are provided with chitinons lists, like those which suround the month of the pupa in the gromp Sphor. Lendiartii; on the side this skeleton forms a figme (y '), which, seen as in the drawing oblipuely sideways, looks very much like a maxillula; however, on clused examination it tums ont not to be any appendage. Now we should feel much inclined to think, that the pma just described does indeed renresent an animal provided with an apical month in the act of breaking out of the skin of the pupa, the month of which is marked $\Rightarrow y<$, however, repeated and caretul examinations of the admirably preserved pula, which I have been able to roll under a glass-cover, and to study firom all sides, give the result, that it is reafly an animal with a larger apical and a smaller, but very well dereloped ventrel mouth, the latter of which disappears in the following stage, only leaving the odd ventral proess x in fig. 1 d . That the existence of two months in the same amimal is perfectly incomprensible to me, goes without saying. - The whole animal is naked.

Finally I have fomd two badly preserver, infinitety small pure of about efual size, one of which is illustrated in $\mathrm{p}^{\prime \prime}$. XI, fig. 3 i . The body is 136 mm . long, shortly ovate, with a well-developed mouth at the rather pointed front extremity, and a little more backward on the ventral side maxillie and maxillipeds, the former of which being of pretty gool size, but with thin walls and of a somewhat vague form, whereas the maxillipeds are almost smaller than the maxillæ, 2 -jointed, and very weak. Beneath the skin, between the maxillæ, is seen a pretty large, anteriorly inflexed ling (x), which seems to be the beginning of a
month. The pupa appears to have been attached by a dorsal thread, as in the preceding stage, however, it is too badly preserved to allow of a more precise definition. I am nuable to give any more details abont this stage; 1 do not see at all how it can be an earlier stage in the development of the female, and consequently be followed by the two above-described stages; so it may mossibly be a male pma; however, it must be left to the fiture to solve these and other problems in the remarkable development of Mysidion conmme.

I have now commmicated in detail all I know abont the post-larval development of the finms of this fanily. Being mable, on account of the great galps, to generalize very much, I have preferred to collect all I know in this place, insteal of contenting myself with making a shorter extract and distribnting the greater part among the forms in fultestion in the later systematic representation. Thongh I think I have fomid a series of rather interesting facts, this is only the begiming of a complete elucidation of the rery peculiar metamophosis of these animals with their extraordinary variations in the different species. It wonld indeed repay the tronble to ciny out such in investigation in numerons representatives of this family, but it would at the same time present enomons difficulties, on accomut of the nature, as well as of the rarity, of the material.

B. Habitation, Biology and Distribution.

a. The Place of the Hosts in the System and the Habitation of the Parasites.

Of the forty-three species examined by me, two (the gemus Choniostoma) live in the branchial cavity of two species of the gemns Hippolyte leach, which belongs to the tribe Caridea of the order Decapoda; two species (the gemus Homoroscrlis), live in the branchial cavity of two species belonging respertively to the genera Dicstylis Say and Iphimö̈ Sp . Bate, which two genera belong to widely differing families of the order Cumacea; one species (the gemus Aspidoccir) lires on the outside of the body (on the carapace, on the back and the sides of the last free thomeic segment and of the six first abdominal segments, as well as on the eye-stalks) of the species of the gemus Erythrops G. O. Sars, which belongs to Mysidxe ver.e. All the remainder - thirty-eight species - live in the marsupimm of species belonging to the following orlers: Mysidacea, Comacea, Isopoda and Amphipora; however, their distribution within these orders is rather interesting. In Mysidacea I have only fomm two species (the genus Mysition) on the genera Erythops G. O. Sars and Purerythrops G. O. Sars, belonging to Mysidæ verx, and the three species on which they are found live - according to G. O. Sars - in a depth varying from 30 to 300 fathoms. An examina-
tion of a very large material of Danish species of the genus Mysis Latr. (sens. Sars in 1879), and of Macropsis Slabberi (v. Ben.), as well as of a number of specimens of Gastrosuccus Norm. - all shallow water species, - gave a negative result, neither did I find any parasite on mumerons specimens of a species of Mysidæ taken in shallow water in the WestIndies, nor on a great number of specimens belonging to two pelagic species of the gems Siriella Dana. In Cumacea I have fomd altogether five species of the gems Spharonella on six species belonging to the genera Diastylis Say, Eudorella Norm. and Ipleinoë Sp. Bate, which three genera belong each to one of the eight families established by G. O. Sars, whereas an investigation of mmerons other species, among which a very large material of several species which were taken in Denmark in very considerable quantity, as Cuma scorpiö̈des (Mont.), Lamprops fasciata G. O. Sars, Leucon nasicus Kr. Leucon nasicö̈des Lilljbg., Lencon acutirostris G. O. Sars, Eudorellopsis defonmis (Kr.) Dicstylis resima (Kr.) and Leptostylis ampullaceu (Lilljbg.), gave a negative result. Within the order Lsopoda, these parasites - altogether three species of the genns Spheronella - are only found in two species of the genus Jamira Leach and in Mummopsis typica M. Sars, all three forms belonging to the large tribe Asellota, whereas an investigation of numerons forms belonging to other families, among which some species of Ifothea F., Astacilla Cordiner, and Guathia Leach, were represented by a great number of specimens, gave no result. (Of the small order Tanaidacea I have examined a good number of specimens from Demmark and mumerons specimens of several species from Sicily, without finding a single parasite). The chief quantity of the parasites, namely twenty-eight species (the gemus Stenothocheres and about three quarters of the genns Splucronolli), were found on Amphipoda, and within this order exclusively on Gammaridea (on twenty-eight species). An inspection of a great number of specimens of different species of Caprellidx and of some specimens of Cyamidæ gave no result. (Among the material from the "Ingolf" expedition I fomd in $18!5$ on an Eyina Kr. a species, which will be described in the report on the resolts of this expedition). Of Hyperiidea I have only examined a few species. In giving a short gentral view of the occurrence of the parasites within the Gammaridea-group, I will avail myself of the twentyfive families adopted by G. O. Sars in his new important work: "An Accome of the Crustacea of Norway, Vol. I, Ampliporla"; they are found in one or more representatives of the following forrteen families: Pontoporeiide (the genera Buthyporeia Lindstr. and Aryissa Boeck), Ampeliscidæ (the gemus Ampelisca Kr.), Amphilochidæ (the genera Astyra Boeck, Amphilochoirles G. O. Sars and Gitanopsis G. O. Sars), Stenothoidæ (the genera Stenothoë Dana and Metopa Boeck), Oediceridæ (the genus Perioculodes G. O. Sars), Paramphithoidæ (the gemus Paramphithoë Bruz.), Epimeridæ (the gemus Acanthozone Boeck), Syrrhoidæ (the genus Bruzclia Boeck), Calliopiidæ (the gems Calliopius Lilljbg.), Atylidæ (the genns Paratylus G. O. Sars), Gammaridæ (the genus Cheirocratus Norm.), Photidæ (the genera Lemboites Stebb., Protomedeia Kr., Leptocheirus Zadd., Gammaropsis Lilljbg. and Microprotopus Norm.), Corophiidæ (the gemus Corophium Latr.) and Dulichiidæ (the gemns Dulichia Kr.). Of the remaining eleven families the
majority are small, with one or very few genera and rather fow species, Jont the family Phoxocephalide is pretty considerable, the family Podocerida is large, and the family Lysianassidx is exceedingly large (in Sars' work thinty-three geneta), wherefore it seems interesting to me that no parasite of om Choniostomatida has been found on any species belonging to these families. One species was fomol in the Mediterranean in the gems Microdentopms Costa, belonging for the Photide, mother species has been ruite recently discovered in Cycluspis G. O. S., belonging to the lamily Cmmida, and these genera are the only two mentioned in the literature of the smbject, in which I have mot persomally observed the parasites of this family. To give an accomt of the loms the examination of which led to mo result, wonld be too tedions, neither wonld it prove moll; I will only say that I have examined a good nomber of exotic species, most of which were only represented by a few specimens, besides nearly all of the large material om musemm possesses of Gammaridea from Demmark, Greenland and the Kara Sea, and many of these species were represented by from fitty to hundreds of specimens. In F. Meinest's three papers, of 1877, 1880 and 1890 respectively, abont Damish Malacostraca, and in my own similar papers abont the fanm of Westem Greenland and of the Kala Sta, will lie found the names of most of the northern and arctic species examined, of which I have had a large material.

In a later paragraph I shall mention a little more in detail the following phenomenon which stands in a certain comection with the matter above, mamely, that of several species a considerable material from a large sea can be examined without showing a single parasite, whereas sometimes a smaller material of the same species from another sea reveals several parasites. This poves that we camot conclnde that a species is not infested, from the fact that an insestigation of hmoreds of specimens from different localities of a certan comtry has not led to the discovery of any parasite. In most cases such examinations must be modertaken on a much larger scale than I have been able to do, before any value can be attached to the negative results.

b. Age and Sex of the Hosts.

It serves our pmrpose best to divide the hosts into two sections according to their parasites, viz. whether the typical residence of these anmals is in the marsupinm or in other places. I will begin by the latter section, repeating my above statement that I only have exanined five species of parasites which do not live in the marsupinm.

Aspidoecia Normani, which, as has just been said, lives on the ontside of the body of species belonging to the genus Erythrops, I have found on young slecimens as well as on adult males and females, but in the latter the marmpimm was either empty, or vecupied by a species of the genus Dysidion. The two species of the gemus Choniostoma live in the branchial cavity of two species of the genns Hippolyte. From the Kara Sea I have seen
altogether seven infested specimens, fom of which were adnlt females without eggs, and each of these females was infested with one adnlt parasite, three of which having laid nmmerous ovisacs; two of the hosts were males: one was an adnlt infested with a parasite with numerons ovisacs, the other was a little smaller with eight smaller parasites; and finally, the seventh host was a female with eggs containing half-developer romg ones, on its right side was an empty swelling on the carapace about two thirds of the normal size, on the left side a very small and quite young female, and besides numerons larvæ and prpæ hinged on the gills. - The two species belonging to the gemns Homocoscelis live in the branchial cavity of two species of Cumacea; of one of these: Iphinoë trispinosa (Goods.), I have seen seven infested specimens: one female, whose marsupium contained a Spheronella, three not quite full-grown females, one of which - whose marsupimm was in an early stage of development - was infested on one side with a female, a male, and eight ovisacs, in one of which were full-grown larvæ. The three last specimens were a male before the last moulting and two adult males, one of which with an adult female and two ovisacs, a yomg female and a male in one branchial cavity, the other containing only a half-grown female. Of the other species, Diastylis lucifera (Kr.), I have seen sixty-six infested specimens - most of them females, in at least three cases yomg males, but not a single adult male, thongh this last circmmstance is of less weight than might be expected, as our natmralists have neglected to throw out the smface-net at night and in the evening in order to catch the full-grown roving males. About three fourths of the females had a well-developed marsupium; in more than two thirds of these it was empty, but in at least thirteen cases is was filled with half or fully developed young ones, never with eggs. Females which had not yet begm laying eggs appeared in females of Diastylis with young ones in the marsmpinm, as well as in specimens withont marsupium; there were found likewise female parasites with the full nmmber of ovisacs in females of Diastyles with yomg ones in the marsnpim, and in younger specimens withont marsupimm. - In a subsequent paragraph I shall have an opportunity of entering into further consideration of these statements; more special statistics are fomd in the systematic part.

We now come to the thirty-eight species which live typically in the marsupinm of forms belonging to fom different orders. I may say at once that the ten species which appear in Mysidacea, Cumacea and Isopoda, I have only found in perfectly developed marsupia, but it must be added that I have also constantly tound at least one older female with ovisacs in such a marsupimm, so I know nothing about the stage of development of the host at the time when the first (and often only) female attached itself to it as a larva; I have examined ummerons specimens of Cumacea, in which the marsupium was beginning to develop itself (it appeared as small plates), but without finding any parasite. Amphipoda presented somewhat different facts. Salensky writes abont Spher. Lenckartii (op. cit. p. 302): „Das Thier fand sich in der Brnthöhle der Weibchen und an der unteren Fläche der entsprechenden Brnstsegmente der Mannchen und war an den änsseren Bedecknngen des Wirthes mittelst eines besonderen Sangapparates befestigt." By this »sucking apparatns«
the author means the rostrum, but this observation is not just, for the attachment certainly takes place by a frontal thread; moreover, I suppose that the animals Salensky took for males were in fact somewhat yomger females without masupimm, fomding this suggestion partly on his (otherwise bad) description of the host "Amphitoë sp.", - according to Della Valle: Microdrutopus gryllotulpu Custa, - in which he does not say a word abont the very great difference in the "hands of the first pair of trmk-legs betwreen the two sexes, partly on the fact that I have never found a Spheronella on any adult male; whether some of the not full-grown specimens on which I found typical marsupimm-parasites, were young males, I cannot tell, but I dombt it. The twenty-four of the species parasitic on Amphipoda I have fomd exclusively in marsupia, and thongh, in not full-grown animals, 1 may not unfrequently have overlooked larve, pupre or very diminutive females, in any case I cannot have overlooked many females with ovisacs. Only in the following four species of Amphipoda: Metopa Bruzelii (Goës), Argisse typica Boeck, Protomedeia fusciata Kı. and Ampelisca temicornis Lilljbg., have 1 fomd parasites in specimens without or with half-developed marsupimm. In a specimen with searcely half-developed marsupium of Mefopo Bruzelii, two larve were found, and in a still younger one without marsupime, a single larra. In two young females withont marsupinm of Argissa typica appeared respectively one pupa and a tiny female of Spher. Argissce. In a yomg specimen of Protometcia fasciatt Kr., from Greenland, were found a not half.grown female and a male of Spher. Bomieri. Spherr. longipes I found in nine specimens of Ampelisce temicomis; two of these only were females with fully developed marsupium, the third was a young female with half-developed marsupinm, which contained a not half-grown female of the parasite; the six remaining specimens were young, withont marsupim, and on each of the five of these I tound a single fenale between not half-grown and very small, - in one case even recently hatched; in the sixth specimen there were only two loose larve. The result herent is, that in Amphipoda I have not found a single adult female in a specimen withont entirely developed marsupinm, and never orisacs except in marsupia. It is probable that larve not unfreguently fix themselves to immature females, beginning their development there, and thus entailing the necessity that larve as well as young females, and rarely males, remain ou the host, while it passes through its last monltings; however, as said above, not a single olservation has been made of ovisacs being found in females not fully developed, which by the by, seems natural enough, as they would certainly be washed away, if they were laid. However, I cannot prove that most specimens are infested before the marsupium is fully developed. No doubt, the larvæ seek either perfectly mature females - and at least rather often those whose marsnpium is already infested by at least one (half-grown or' (!nite adult) female and a male -, or such younger specimens as are so far advanced, that they will have got their marsupium before: or at the time when the females that have developed themselves out of some of them, are ready to begin laying eggs. Whether the larvæ of species that live in
the marsupium of Isopoda, Cumacea and Mysidacea sometimes, or often, fix themselves to not full-grown females, I repeat, I cannot tell.

I will add that in three cases (in Ampelisea tennicornis, Protomedeia fasciata from Denmark, and in the same from Greenland) I fond in the marsupinm, together with one female Spheronella withont ovisacs (in two cases a male attached to it), four to six of the Amplipod's own eggs, in one case with half developed young ones. In the marsupium of an Ampelisca typica I found a large female and two ovisacs of Spher. microcephala and two of the Amphipod's own eggs. In Eudorella truncatula I found one of its own eggs together with an adult female, three ovisacs and a male; in another specimen were fom no less than twenty-four of its own eggs together with an almost adult female and two larvæ which were invaders.

c. Number of Parasites on each particular Host.

In the systematic part of this work I give a kind of statistics of eacl species, accouting for my findings, and giving mumerous data concerning the number of each sex, of the ovisacs and the stages of development found on each particular host. Of this considerable material I put down some extracts here, which will give a condensed view of this matter. Of Aspilofcic Normani which lives fixed on the outside of Erythrops, I have often foud nue or several females of very different sizes on the same host, in one case as many as six females with ovisacs, three yonnger females and one larva on one single specimen. In a large material of Diastylis lucifera with Homocoscclis minuta in the branchial cavity, I have never fond more than one female, as a mule only one male, very seldom two males on one specimen, whereas of Iphinoë trispinosa, infested with Hom. mediterranea, only four specimens have been thoronghly examined by me; one of these had two females, six ovisacs and two males in the same branchial cavity, one had an adult and a young female, two ovisacs and a male in the same branchial cavity, one carried a male in one brauchial cavity, a female with eight ovisacs and a male in the other. Of the species of Choniostoma which live in the branchial cavity of Hippolyte, I have found only one specimen of an adult female on a host, whereas of younger fenale parasites one specimen contaned three in one branchial cavity, five in the other; in another specimen I saw an empty swelling covering one of the branchial cavities, whereas the other contained one female which was far from half-grown, besides certainly more than fifty larvæ and pupæ hinged on the gill-fibres; however, I donbt very much whether most of these would have been able to develop thenselves into adult females (and perhaps males) on this shriup; it seems to me rather doubtful that the anmal should be able to afford the nourishment required, and still more so whether the parasites would find sufficient room to grow.

In the parasites living in the marsupium we find the greatest differences as to the number's of them on one lost, but at the same time it must be observed that while
some species as a rule only contain a single female and a male, sometimes two males and seldom two females in the same marsupinm, in other species we pretty frequently find two, three, or more females and several or many males on the same host. Of twenty-six out of twenty-eight adult specimens of Mefopu Bruzolii (Goës) infested with Stenothocheres egregius which were examined and noted, there were fom only one female and frequently also one, seldom two males on each specimen; in one specimen were found only eggs and young oues, in one two females and no male. In Cumacea and Isopoda the marsupinn nerer contained more than one female, often also a male, sometimes two, and in a single case three males, besides, in one case I fonnd one pras, in another, where no male existed, some invading larve. In Mysidacea some deviations are observed; of adult females we very rarely find more than one specimen, but rather frequently also one or two young females or tiuy young ones which have not gone through the whole metamorphosis, besides frequently one or more, in one single case even ten males; (as for further details, s. statistics in the systematic part). In one specimen of Eryfhrops serratus there had lived at least three females with ovisacs and one male. Several Amphipoda infested with species of Spheromella as a mule only show one single female (with one or two males), others not unfrequently two or three females, mostly of somewhat different age, but here [will mention some cases of peculiarly abundant invasion. Ln one specimen of Calliopius Treviusculus (Kr .) were found one female with eiglit orisacs and five males, in another specimen six females with twentyfive ovisacs and two males, but the richest finds were supplied to me by Spluer. paraloxa in species of Bathyporeia. In one specinen I fonnd one large female, two small females, no ovisacs, eight males, four broad larvæ, sixteen "male pupæ« and one "female pupas; in another specimen four females of widely differing size, four ovisacs, eight males, two larvæ and one "male pupa«; in a third animal three large femules, two very small fomates, three ovisacs, two larve und seventeen males, the largest number of the male sex I have ever found. - The result of a large infestation is that the marsupinm of the host swells to the same extent as if it were filled with its own half or almost fully developed yomg ones.

d. Number of Species of Parasites on the same Species of Host.

On most species of hosts I have only fomd a single species of Choniostomatide, yet in several cases I found two species of parasites, now of the same genlus, now of different genera, on the same species of hosts, sometimes even on the same specimen; nay I have happened to discover three species of parasites, not only on the same species, but on one single specimen. As the particnlar cases are interesting in several respects, I will enmmerate them here. On ARetopa Bruzelii from Godthaab (through a renewed examination with the assistance of Sars's new important work, I have made sure that all infested specimens really belonged to this species, and not partly to Mctopra simutu G. O. Sars) were found in the marsupium of specimens from the same locality, now Stenothocheres eyregius,
now Splicrionella Mffope, but never hoth forms in the same sperimen. In a large material of the same lost firm another Greenlandish locality appeared a momber of specimens of the former, mot ome of the last-mentioned pasasites. On specimens of Higholyte Gaimardia M.-Edw. from the Kara Sea appeared now Chomiostoma minthile, now Ch. Hanscoii, and the latter species was also fomd in Higy. polaris (Sab.) tiom the same sea. In Danish specimens of Amprisec tomicormis: Lilljhg. I have fomed Spheromella lomipes: wheteas Giard and Bomier have fomd in specimens of the same speries from le Croisic (Brittany) the very deviating Splar: microctphata. Danish specimens of Protomedeid fasciata Krr. were infested with Sphor: Giardii, and Greenlandish specimens with the closely related speries Spher: Bommint. On a specimen of Iphinoi trixpinosn (Goods.) from Messina Homorosertis mediteranen was fomed in the branchial cavity and Splervondla murginula in the marsupinm. In Norwegian sjuecimens of Eof/hops serotus: G. O. Sars and Eny/hops alyssormm G. O Sats we not unfrerpently find a species of Mysidtion in the marsupimm, and one on several specimens of Aspidocia Normani on the ontside of the body of the same species. In one specimen I found two specimens of the latter speries on the ontside of the body, an adult and a young female of Mysidion (ibyssormm, and a young female of Mys. commune in the marsupium, which makes three speries of parasites on one animal.

e. Number of Species of Hosts of the different Parasites.

The answer to this question presupposes the answer to another, namely that of the limitation of the parasitic species, and as this latter question is not treated in detail till later on in a separate chapter, I will content myselt with mentioning the results of this examination, using them in answering the question indicated by the heading.

Twenty-nine of my species, as a matter of fact, are only found each on one particular species. Of the remaining fonteen species eight (belonging to the gromp of Spher. Leuchartii) are also limited each to one particular species; however, it may perhaps be questioned whether these eight species can really be maintained as such, or must be regarded as chance varieties of a single species (see later on). The remaining six species mast be mentioned each separately. Choniostoma Hansenit has been ascertained in two species: Hipmolyte Gaimardii M.-Edw. and Hippolyte polaris (Sab.). Of Spheronella insignis indeed I have only had a small material which was taken on Diastylis cornuta Boeck and Diastylis lavis Norm. ; however, the difference between the parasites of the two species was so slight, that my experiences from other species led me to consider them as belonging to one species. The species found by Giard and Bomier on Ampeliscu tennicomis Lilljbg. fiom le Croisic, which they have described under the name of Suhter. microcephala, as far as I can see, is identical with the species described by me in this work under the same name, and this is taken on Ampelisca typica Sp. Bate in Danish waters. Splacronella purtuloxa I have fomn on Bathyporeia noweyica G. O. Sars, Bathyporeia pelagica Sp. Bate and B. Rolertsonii Sp. Bate, and even if it were proved that the two
last-mentioned camot be maintained as separate species, but must be considered as one, at any rate this parasite has been taken on two good species of the same genus. Bnt now we come to a remarkable fact, viz. that three adnlt females have been taken on three specimens of Perioculodes longimanus (Sp. Bate) belonging to a different family altogether, and these temales I have not been able to distinguish from those taken in Buthyporcia. If some day the male of the parasite is fonud in Perioculodes, probably the interesting question will be settled, whether the same parasite can be found in animals belonging to snclo widely differing families. Mysilion commune I have found on the following three species: Parerythrops obesus G. O. Sars, Erythrops servatus G. O. Sars and Er. alyssorum G. O. Sars; moreover, it seems likely that it will be fomd in some other species of Erythrops living in Norway. Finally, I will state as my opinion that the parasites living on all five Norwegian species of the genns Enythrops, belong to the same species: Aspiflopcin Normani.

I will sum up by stating what I consider as an established fact, namely that several species of Choniostomatide live each on two or more species of the same genus or of two closely related genera, probably even to a considerably greater extent than I have been able to ascertain; perhaps, in exceptional cases, they may be found on animals of different families. On the other hand, I certainly think with regard to sereral species, that each of them infests only its particular species of hosts, and this result exactly agrees with what is known about the biology of other parasitic families belonging to Arthropoda. Only with regard to Epicaridea, Giard and Bomier have made the assertion that each parasite has its particular host and is found on no other species, an assertion which I think is incorrect, seeing that this division also comes in under the rule which applies to Choniostomatidæ ${ }^{1}$).

f. Occurrence together with Parasites of other Orders or Classes.

In nearly all orders of Malacostraca have been found species of the gronp or family Epicaridea belonging to Isopoda. Giard aud Bonnier have expressed the opinion that there exists a certain comection between Chomiostomatidæ and Epicaridea; but this objectionable hypothesis I have mentioned above in detail (p.11-12), and at the same time I have stated all I know from my own experience and most of what has appeared in literatmre about the occurrence of Epicaridea on the species which, according to our present knowledge, are infested by Choniostomatidæ. I have written that of Cumacea, Isopoda and Amphipoda together, I have seen abont 240 specimens belonging to thirty-eight different species infested with Choniostomatidæ, but that neither in any of these 240 specimens, nor in any other of the thonsands of animals belonging to these thirty-eight species, have I found one single specimen of any Epicarid. In Italy Della Valle has fonnd two specimens of Ampelisca

[^2]diademu Costa infested with a species of Spharomella (S. diarlema Giard and Bomier, without description) and two other specimens of the same Amphipod with Porlascon Della Vallei Giard and Bomier: Of Decaporla there have only been found as yet Choniostomatidæ on Hippolyte Gaimartii M.-Edw. and on Hipp. polaris (Sab.); both these species, we know, are not mufrequently infested, either with Hemiarthrus ablominalis (Krs.) under the abromen, or with Gyye Hippolytes (Kr.) in the branchial cavity. In a specimen infested with Choniostoma J. Sparre Schmeider has observed a sperimen of Hemintlows, and on a specimen of Hipp. Gumartii, mider a large swelling on the right side of the animal, I have found eleven wvisacs and an adult female of Chon. Hansenii. as well as an adnlt male and a tiny female (smaller than the male) of Gyyr Hipmolytes, and besides, moder the almarently normal left side of the carapace, a male of Gyye. In the species of the genus Erythops (order Mysidacea), G. O. Sars has fonnd the Epicarid Aspirlophyrius peltatus G. O. S., and Giarl and Bomier have reserved this name for the form found on Er. arythrophthatmus (Goës) (E. Goïsii G. O. S.), and established a new species, A. Sursii G. and B., for the form which lives on E. micophthritmus: G. O.S. Giand and Bumier have fomd their type specimens of the latter speries (the valne of which future examination will have to decide) on the same specimen as their type specimens of Aspictocciu Normmi, and I have fomd a sperimen of Aspidtophy\%rws on an Er. mythrophthalmus sent to me by Prof. Sals as infested with Aspinfopein, but this parasite must have fallen off before the anmals were sent to me, if it was ever there at all.

The gemns Sylon Kir, belonging to Rlizocephala, lives, as we know, on the rentral side of the abdomen in some species of Hipmolyte, but I have not found it on any specimen infested with Chomiostoma. The remaining species belonging to Rhizocephala and Copepoda, which are parasitic on Malacustraca, have all been taken on forms on which no Chmiostomatidae have been found.

Together with Splispomillo parmioxa I have fomen repeatedly in the marsupium of Bathyporeia several specimens of a species belonging to the family Tyroglyphidse (the order Acarida).

Of other parasites I have only detected some Protozoa on the branchix and the marsupial plates in the material of Malacostraca with Choniostomatidx examined by me.

So I have anmed at the result that there exist.s 11 , connection at all between Choniostomatidx and any of the other parasites of different orders found on the same species of hosts.

g. Nourishment.

I cut a bit of skin of an Erythrops in the place where an Aspidoccia had been attached, cleaned it with caustic potash from muscles and viscous substance, and discovered a small hole, where the month of the parasite had its place. And this seems very natural indeed; in the first place, the mandibles appear quite well qualified for producing such a hole; secondly, the month is donbtless snctorial, and lastly, the female, which is permanently
attached, must draw her nomishment from the host in order to be able to grow to a bulk Which, adding its own volume after having finished laying eggs, to that of the eggs it has produced, is fremmently houdreds of times larger than the volume of the larra at the time when it attached itself, and after having fixed itself it is impossible for the animal to procme the nomishment necessary for this enormons growth in any other way than by a hole worked through the comparatively solid skin of the host, whose blood must form the tood of the parasite.

Hereby we have found a fixed starting-point in this question, and it is more than probable that the females of all the other Choniostomatidx also grow and nomish themselves by sucking the blood of their lost throngh a hole they have gnawed. At the same time, it seems rather probable that the females of many of these species, either voluntarily or involuntarily, e. g. by pressme of another specimen, or by the bulk of ovisacs, are pushed ont of their place and have to gnaw a new hole for themselves. I have frequently fomnd a female in such an attitude relatively to some of the ovisacs it had laid, or the orisacs arranged in such a mamer as to make me suppose that the animal had changed place.

How far the males of this family take food, I do not know, but as their month is as well developed as that of the females, it seems likely that they do it while young, and perhaps not when they are old (abont their growth, s. above on pag. 57-55). I consider it rather donbtfnl whether the larva take food, but I am (quite certain that the pupe, which are provided with a mouth, and abont whose considerable growth several facts have been stated above, nourish themselves in a way similar to that of the females.

h. The Influence of the Parasites on their Hosts.

Giard and Bomner have proved that parasitic Crustacea of different groups (as Entoniscinæ, Rhizocephala) cause a peastration parasitaire« in their hosts. In the last of their papers quoted above they mention Della Valle's motenable hypothesis that Sphicronella eats the eggs of its host, and they maintain that this suggestion is wrong, and that this is also a case of "castration parasitaire", after which they continne: „Dans des cas très rares, l'hôte ayant été infesté tardivement, cette action [namely the castration] ne s'exerce pas aussi énergiquement, et quelques ueuẗs peuvent être pondus et fécondés, comme uous l'avons vu une fois chez Clypeoniscus [a gems helonging to Epicaridea which they have treated in the same paper, and which they use as example and parallel], mais ce sont là des exceptions. En général, l'hôte est infesté avant qu’il ne soit arrivé à l'état adulte. Sons l'inflnence du parasite, son développement génital est artêté sans que la croissance discontime, de sorte qu'à l'époque où devait se produire normalement la matmité sexnelle, la progénitnre légitime est remplacée par le parasite et les embryons de celni-ci«. This explanation, on the whole, agrees well with the numerous data which I have given above on p. 6is- 68 in the division about the age and sex of the hosts, from my observations about my thinty-eight species
which live in marsupia. In the afore-mentioned place it is stated that only in six cases I found the eggs of the host together with a parasite, and it may be added here that in almost 160 cases I only fond parasites (one or more specimens), but no eggs of the host, in the marsupium. But at the same time I have stated that I have found no parasite on any specimen of Cumacea or Isopoda in which the marsupium was wanting, and of Amphipoda I have only found altngether twelve specimens belonging to four species, whose marsupium was either wanting or only half developed, and on which, nevertheless, I found parasites; all these, without exception, were half-mature or tiny females, or larvæ (one male). However, this material is too small to allow me fully to adopt the opinion of the authors that the host »en général" is infested before its maturity; in the fully developed marsupinm of several specimens of Corophinm crassicorne Bruz. I have found only a half-developed or still yomnger female and either a male, a larva, or a pupa, but no adult females. But it is certainly an established fact that, as a rule, we notice a "castration parasitaire" in the hosts which have parasites in their marsupium.

It is much more doubtful whether the four species living in the branchial cavity of Hippolyte and Cunacea, are usually, or sometimes, capable of causing a »castration parasitaire« of their hosts. In page 66, and particularly later on, in the systematic part, detailed information is given about the age and sex of these hosts, but I do not think we can draw definite conclusions from these statements. I have said that I have found specimens of Diastylis lucifera contaiming a female of Homoeoscelis with the full number of ovisacs in the branchial cavity, and the young ones of the host in the marsupium, but knowing neither the time required for the development in the marsupium of the eggs and young ones of the host, nor the time required by the parasite for its own growth and the laying of all its ovisacs, it seems impossible to me to draw a definite conclusion with regard to a »castration parasitaire«; however, that such a castration may take place, seems to follow fiom the above-stated fact that the marsupinm of more than two thirds - namely thirty-one of the infested adult females was empty, whereas in thirteen specimens it was filled with young ones; yet it must be observed that in the non-infested females, the marsupimm was found to contain eggs or young ones in 182 specimens, whereas it was empty in 74 specimens. It is rather probable that Aspidoecia Normani causes a castration, as the marsupia of the four infested females which were not occupied by Mysidion, were empty.

The four species living in the branchial cavity of Hippolyte and Cumacea canse a swelling of the carapace of the host, which, to begin with, increases in size with the growth of the parasitic female, and thus - at least in Cumacea, and probably also in Hippolyte continues gradually increasing with the number of ovisacs. In Hippolyte the swelling may reach the same size as if it enclosed a large Gyge, and in the subsequent description of Chomiostomu Hansenii, it will be provel that this parasite itself produces the swelling. In Diastylis luciferu the swelling assumes a somewhat other shape, though it may be very conspicuons.

Finally it may be added, that in those specimens of Hipmolyte in whose branchial cavity was found an adult female with ovisacs of Choniowtome, the gills belonging to the two foremost pairs of trunk-legs were either somewhat reduced, or had ruite disappeared, and in one case the three other gilk situated more behind appeared a little curled, as a sign of degeneration. In one specimen, which was infested with several smaller females, the gills were slightly curled.

i. Geographical and Bathymetrical Distribution of the Family.

Of the forty-three sluecies described here, sixteen come from Demmark, and one of these was also found at le Croisic; eight are from Norway, eight from West-Greenland, and two of these also in the Kara Sea, three only from the Kara Sea, besides the two which are also found in Greenland, fom tiom Sicily, two from the Pacific near the East-coast of Asia, one from the Cape, and one from the West-Indies. It may be added that in the most northern part of Norway and in the Barents Sea there has been found an modetermined species of Choniostoma, thongh no doubt one of those which occur in the Kara Sea, that one species (Spheronella Lerclartii Sal.) was taken at Naples, another species (Homoeoscelis sedenturia (Bomn.)) in the Atlantic off Gascogne, and besides, a non-described Spherr. diademut G. and B. in the Mediterranean. Withont counting Norway, whose species - with one exception - have been discovered and sent me by Prof. (G. O. Sars, the mumber of species from the different countries and seas is nearly proportional to the material which our musemm possesses of Amphipoda and Cumacea - the two orders in which most parasites have been found - from the same localities. From this fact we can pretty safely draw the conclusion that the examination of a manifold larger material than was at my disposal, e. g. from the Mediterranean and from eastern Asia, will bring mumerons unkuown forms to light. The above statements also snggest the probability that the family is distributed over all seas, thongh of couss I cannot form any precise notion how far its geographical distribution will extend, when some day the chief bolk of the existing species has been discovered, for, as stated in the preface, I think there can be no doubt that their number amounts to hundreds.

Unfortunately I am not prepared to give many data concerning the bathymetrical extent of my species, for in most cases I lack precise indication of the depth in which the special hosts have been found. Most of the sixteen Danish species and four species from the Mediterranean were taken in a depth of between a few and twenty-five fathoms, but unfortunately I camot state precisely in how shallow water the most littoral species is generally found, or may sometimes be found; it may be stated, howerer, that a specimen of Bathyporeia with its parasite, Spheronella paradoxa, was taken in a depth of between eight and eighteen feet. Stenothocheres egregius was taken in a depth of forty fathoms, a few specimens in a depth of between forty and sixty fathoms; my only specimen of Spher.
curtipes came from a depth of a humdred fathoms. Possibly a large part of the specimens of the three forms which live on Mysidacea were taken as far down as one to two bundred, some even to three homdred fathoms, but as the hosts in question may occur in a depth of less than a hundred fathoms, I camot say anything definite abont them. So it may be stated here, that in the material from the "Ingolf expedition I fomnd a conple of specimens parasitic in Cumacea, fiom a depth of respectively a thonsand and thirteen hundred fathoms, which sufficiently proves that the family also occurs in a very considerable depth.

j. Geographical Distribution of the particular Species relatively to that of their Hosts.

It appears from the preceding paragraph that each of the forty of my species was taken in one particular comtry (as Denmark, Norway, Sicily etc.), or in a particnlar, comparatively smaller sea. Only three species (Spheronella microcephala, S. decorata and Choniostoma Hansenii) show a wider distribution. As a matter of comse, we shall gradually find that most species of Choniostomatilæ have a mnch wider range than is known at present, but from this I do not think we can draw the conclnsion that they are as widely dispersed as the species on which they live. In a smaller material of Iphinoë trispinosa (Goods.) from Messina I fomd seven specimens with parasites, one specimen even with two parasitic species, but in a larger material of the same species from Demmark I have been mable to find a single parasite. In a pretty considerable material of Calliopius laviusculus (Kr.) from the East-coast of Asia between lat. 40° and $51^{\circ} \mathrm{N}$. I found seven specimens with parasites (Spheronelle Celliopii), but my examination of several specimens from West-Greenland, and numerons specimens from Demmark, gave a negative resnlt. (Yet it must be mentioned that Sar's, in his work on the Amphipoda, considers the Danish specimens to belong to another species, Call. Rathiei (Zadd.), but I doubt whether this will be maintained in the future). Several specimens of Hipmolyte Gaimardii M.-Edw. from the Kara Sea were infested; at the most northern coast of Norway, Sp. Schmeiler, and at West-Greenland E.Vanhöffen, have found Choniostoma in the same species, but I have examined without resnlt a very large material of the same Hippolyte collected from mmerons localities near the Danish coast, and I feel inclined to think that these parasites do not occm in the waters smrounding this country. The same may be said about Diastylis Rathkei (Kr.), of which in about half of the females with marsnpium from West-Greenland and from the Kara Sea, I found Splicronelld decorata, whereas of the same species fiom different Danish localities I have examined at least several scores of adult females withont finding any parasite.

k. Frequency of the Parasites in proportion to their Fertility.

In mentioning the eggs of the parasites, I pointed out (p. 46-47) the enormous difference of fertility between the species with very small and those with very big females. Of

Hippolyte Geimarrii M.-Edw. I have had a large material fiom the Kara Sea, and one of similar size from West-Greenlam; in the former I only fomd six infested specimens: fomwith Choniostoma miruhble, two with Ch. Hansenii; in the latter I fomod nome at all, thongh a few specimens of $C h$. Hunsenii have heen discovered there at least either on H. Gaimurdii or on H. polaris. On the latter species [found one Ch. Hansenii from the Kara Sea and one Chor. sp? from the coast of West-Greemand, though H. polaris is not menfrequent in the former, and of common occurrence in the latter locality. This shows distinctly enough that the genus Choniostoma with its two rer!y lirge and purticnlarly frotile species is pretty scarce in the Kara Sea and rare in West-Greenland. Most of the middle-sized and rather small species of parasites I have fombl in between very few and about seven specimens of their respective hosts, thongh my material of the latter was frepuently very rich. Only of two parasites: Stenothoeheres egregius and Homoeoscelis minuth have I fomd a great number of specimens in a large material of their respective hosts: Mefopu Bruzelii (Goës) and Diastylis lucifera (Kr.). The firstmentioned parasite is the least prolific of all my species, and the second, in this respect, comes nearest to it among the species of which my material of infested hosts was sufficiently large; moreover, the hosts came from several localities. That the number of parasites camot be determined only by the number of infested hosts, has been proved above, as of some species, e. g. the two afore-mentioned: Stenothocheres egregius and Hom. minuta, we sellom find more than one female and one male on each host, whereas on others we pretty frequently find several females and males as well as pupæ in one host, but the only parasite of which, from the last-mentioned reason, I have fomd as many specimens as of the above-named species, is Spheronclla paradoxa (living on Bathyporcia, a genus of very frequent occurrence in Demmark); it belongs to the smaller species and, as it seems, does not lay more than four of five nvisacs, which are comparatively large. All these data decidedly point in one direction, but considering the insufficiency of my material, I will take good care not to lay down any rule or law which might possibly not prove quite tenable, and I will content myself with suggesting the direction. We might feel inclined to suppose that the conditions of life of most of these parasites are pretty similar, aud that consequently the most prolific species would occur most frequently, the more so, as there is such an enomons difference in their fertility, that a species like Choniostoma mirabile lays at least more than three humdred times as many eggs as Stonothocheres egregius; however, the above-mentioned examples prove in a striking manner that such a conclusion camot be drawn. Consequently there must be circumstances to accomnt for the fact that the two least prolific species: Sten. egregius - taken in two localities - and Hom. mimuta taken in several, probably in many places at considerable distance from each other - occmmuch more frequently than the prolific and very prolific species. An explanation of this fact is required, and I will attempt to explain it, at least partly. No doubt, the critical point in the life of the parasites must be the short period dming which the lill-grown, thongh very small, larva leave the ovisac and their mother's host in order to seek a new
host for their own further development and no dombt, a comsiderable nomber of the larve of all species are destroyed while swimming abont, partly becanse many of them cannot find their ohject in due time. Then again, there must be circumstances which canse a comparatively smaller percentage of the brood of the least prolific species, and an enomons percentage of the brom of the most prolific species, to be destroved doming this period. This, again, must he supposed - at least partly - to have something to do with the difference of the number of specimens of the speries which constitnte the losts. Now, as the larve of the most prolific species seek large forms, those of the least prolific small forms, and as the large fums, as we know, are fom on "on arerage in much smaller momber than the small forms, it follows that the lara by which they are songht, have as a mule much less chance of finding them in due time, fur, as peviously stated in detail, there is mo considerable difference in the structme and size of the different larve, - e. g. the larva uf Chomiostomu mirabite is mily abont one eighth longer than that of Stomothocheres corcyius; but, as far as I can see, scarcely so vigorous and so well adapted for swimming, (comp. the perluncles of the natatory legs in the two species; pl. I, fig. 11 , and pl. XI, fig. 1 e . - On the hase of my material of parasites and of my knowledge of the biology of the hosts, I might set firth several points, thus giving a wider scope to the disconsion of these matters, hat fur varions reasms I abstain from loing so.

C. About Classification.

a. Limitation and Characters of the Species.

Of small Crustacea, such as Cladocera, Ostracoda and free-living Copepoda, there are in most cases some or many specimens of each species at the student's disposal for determination of the forms, and even where these animals are so small that the compound microscope has to be nsed in order to determine them, most of them can stand the pressure of a glass-cover, and as a rule it is mmecessary to submit the specimens to much particular preparation, except where a description of them has to be given; finally, most species have a very fixed shape. All these factors help to farilitate the determination of the species. In Choniostomatidæ the circumstances are diflerent. The animals are so rare, that of most species only a single specimen or a few specimens of each sex can be procured; neither males nor females can bear the pressure of a glass-cover; the males are so small, that they camot be examined withont high magnifying power, and before the examination particular care has often to be taken in placing them in the preparation, and thongh the females are much larger, the parts of their body which have to be investigated are exceedingly small
and very difficnlt or impossible to examine in detail on intact specimens, so that in numerous cases one is obliged to undertake a difficult dissection, and to place the heal and the genital area in a preparation; lastly, the general form of the hody in both sexes, and particularly in the females, is far less fixed than in the free-living forms. On accomt of these circmustances it is sometimes difficult to form a positive judgement abont some species, e. g. in how far they present varieties of one species, or form separate species. It is sufficiently well known that a similar difficulty is not unfrequent with regard to the free forms, and from what has been said about Choniostomatidæ, it is easy to understand that, with respect to this family, the difficulties are sometimes so great that a fimal settlement of some questions: must be left to the future.

It has been specially mentioned that most species of Choniostomatide have been fomd each on its particular species of Malacostraca, but, at the same time, I can prove to a certainty that the same species can be fomd on different species of the same genns (e.g. Chomiostoma Hansenii on two species of Hippolyte), or even in forms of two different genera (Mysidion commune on Parcrythrops and on two species of Erythrops); and further, on the same species of host one may find two species of parasites in the branchial cavity or in the marsupimm, hay even two species in the same marsupium (Mysidion commune and Mysid. abyssormm in Er. alyssorum). The result hereof is that we cannot absolutely take for granted that we know a parasite, becanse we have fomd it on a certain host, nor that a parasite belongs to an nnknown species, because it is fomd in a host that is not mentioned in this work. All the same, in most cases the host is of the greatest importance in determining a parasite, and where parasites are found in new hosts, most frequently they will prove themselves to be new species.

Most of the species established in this work have been easy to distinguish from each other, and in the majority of cases there has been no hesitation at all in establishing the difterent species. It is mentioned above that on Perioculodes lonyimamus (Sp. Bate) I fomd females which were exactly like the Spheronella paradoxa living on species of Bathyporeia Lindstr., but as the male belonging to the females found on Perioculodes is wanting, I lave not been able to decide whether the same species really lives on forms of different fanilies. On account of rather small material, I have also had a little doubt concerning the identity of the forms found on Diastylis cormuta Boeck and D. levis Norm.; but with regard to this question, as well as to Aspidoecia Normani, I refer to the smbsequent special representation. The greatest difficulty I met with in the species very closely allied to Spheronella Leuckartii Sal. Of these species I have established eight, taken in six genera belonging to four different families of Amphipoda, and four of these species of hosts (belonging to four different families) came from Demmark, two from Sicily, one from the West-Indies, one from HongKong. The difficulties were so great, that I hesitated for a long time whether to establish them each separately, or as belonging all to one species. Thongh this question will be treated more thoroughly in the systematic part, I thonght it right to call attention to it here.

We now come to the question concerning the characters of the species. It appears hat everywhere, except within the just mentioned gronp of Sphar. Leuckartii, the males nffer a considerable number of excellent and, as a rule, easily observed characters. In this respect they generally smpass the females; they are not only easier to examine, but the shape and decoration of the frontal margin, the processes from the sub-median skeleton, their often very peculiar two pairs of trunk-legs and the hair-coat of their tronk frequently afford excellent characters, which do not occur in the other sex. Other distinctive marks are not mufrequently fond in the antennulæ, the maxillæ and the maxillipeds, in the presence or in the want of candal stylets, and in the former case, often in the length of their longest terminal seta etc. But, at the same time, we must point out that minor differences in the general shape of the body, in the distance of the candal stylets from the posterior extremity, in the length of very long setæ, are frequently seen in specimens of the same species; also, that such a feature as the rostrum protruding or receding may give a very different appearance to the animal. In the females the chief characteristics are found in the structure and the organs of the head, especially the antennulæ, the maxillæ and the maxillipers, and in adult specimens usnally in the genital area, (in Mysidion, however, in the arch round each genital aperture). As a rule the heads of the females are much more miform than those of the males, and must be examined with great care; the size of the genital area compared with that of the head, its form, the extent of the solid clotine, as well as its lair-covering or want of hair-covering, often afford goor characters; nevertheless, it is often necessary to make a preparation, and as far as my experience goes, one must frequently pass over several smaller differences, as some variation may be found in the same species. The caudal stylets, their position etc., or the want of them, is always of importance. Within the genus Spheronella, the females of many species have trunk-legs, whereas these appendages are wanting in others, but in adult specimens they are often so hard to find, that the character drawn from their presence is not easy to make use of, and one has to examine the animals very carefully before being able to deny their existence. In the adult females of very few species we notice a peculiar haircoat, but it must be remembered that in Chomiostoma Hansenii the younger specimens are more lairy than the adults, and e.g. in Spheronella danict, the tronk of the young ones is closely covered all over with hair, that of the adults mostly or totally maked. In the females the general shape of the body is sometimes rather characteristic, but often rather variable according to chance circumstances, e. g. some kind of pressmre, or the periods of begimning and ceasing to lay eggs.

But, in order to find good characters of the species, we are not confined to the males and females only. In a large material it is not difficnlt to procure larve of a mumber of species, partly free specimens, partly in preparing those contained in one or some of the ovisacs. Of all the five species fond in the marsupium of Cumacea, the larvæ are known to me, and these not only differ from all other larvæ yet found, they also slow very distinct differences among themselves, particnlanly in the frontal decoration and in the two distal
joints of the maxillæ; howerer, I may also observe that I have found very considerable difference in the length of the olfactory seta of the antemulæ hetween larvæ of the same species (Sphor. modesta). Most other larve we know also difter from each other in a number of features: length of the olfactory seta of the antemnulæ, structure of the antemme. the relative size of the abdominal segments and of the candal stylets, and the lengtlo of their long setæ, sometimes (Mysidion) also in the presence or absence of fine processes on the terminal joint of the maxillipeds. However, in one case, namely in the genss Choniostoma, I have not been able to find any difference between the larva of the two closely allied, yet distinctly separate species. - The size of the ovisacs and the size of their eggs compared with the female present considerable differences between the species, yet they do not maturally form good distinguishing marks. Finally, the few pupæ known to me differ very much according to species, except those belonging to the group of Sphuer. Lenchartii.

b. Limitation and Characters of the Genera.

All the species may be classed under six genera, which offer an almost regular gradation in the reduction of the females. The males too become considerably degraded, but not to such a degree as the females. This gradual reduction is combined with great changes in the way of laying the eggs, whereas there are rery little differences and no reduction at all in the structmre of the larve, and the post-larval development is too little known to allow of making general statements about it. Consequently, the arrangement of the genera in the systematic part is easily and maturally carried out in considering the gradual reduction indicated.

The first gemns, Stenothocheres, deviates from all the following by possessing a distinctly prominent abdomen, by the more conspicuous and distinctly two-branched trunk-legs of the females, and by the way they lay their eggs: in one or two (rarely three) free humps of indefinite form - not in orisacs, where the eggs are smrounded by a distinct common membrane. In the two first mentioned characters the genus approaches the less reduced forms of Copepoda. In the other five genera there is no abdomen, the tronk-legs of the females are small with at most one distinct branch, generally consisting of one single joint, or they are altogether wanting, and the eggs are deposed in several or in numerons ovisacs.

These fire genera are naturally divided into two gronps: in the three first, riz. Homocoscelis, Spheronellu and Chomiostoma, the genital apertures of the females are situated close together and smrounded by a more solid plate, ring or semicircular list, inside which are also found the entrances of the two receptacula seminis; the ovisacs, when laid, are free, not attached to the female. In the other group: Mysidion and Avpidoecia, the genital apertures of the female are often placed at a greater distance or very far from each other; each has its crescent or ring, and far in front of them is situated one receptaculnm seminis; the ovisacs are hinged on the lips of the genital apertures. In the first gronp most females
and most of the males known have 3 -jointed antennulæ, distinct antemnæ, distinct and, in the males, often very considerable trunk-legs as well as caudal stylets, whereas a few species, through a reduction of these parts, form a transition to the genera of the last group, having antennulæ which are 2-jointed or quite indistinctly articnlated, and no antennæ, trunklegs or candal stylets in either of the two sexes. Another slight difference between the two groups may still be mentioned, namely, that in the males the maxillipeds, especially their distal part, is stouter and more normally developed in the first than in the second group.

Homocoscelis does not deviate very much from Spheronella, thongh it differs distinctly in having trunk-legs and caudal stylets, which are similarly shaped in the same individual, as well as in the two sexes, and whose form differs very much from that in the female of Spheronella; finally, the larvæ of this gemas differ from all others in their very long antennæ and in the great distance between the maxillæ and the maxillipeds. It is also a character of this genus that its species occur in the branchial cavity of Cumacea. In Choniostoma, unfortunately, the male is unknown; the female only differs from Spheronella in having rudimentary maxillipeds; however, this featmre, as well as the fact that its species live in the branchial cavity of Hippolyte, appear to me sufficient to maintain the genus. Mysidion and Aspidoccia are distinguished most decidedly by differences in both sexes and in the mode of living, which it is hardly necessary to mention in detail, and Aspidoecia is the most reduced of all forms of the family, both sexes having 1 -jointed antemulæ, no antemnæ, very small maxillulæ without additional branch, and, as a matter of course, no trunk-legs or candal stylets; moreover, the maxillipeds are entirely wanting in the female, and their distal part is greatly rednced in the male.

No less than thirty-four of the here described species are referred to the genus Spheronella, and these species differ very much from each other in several respects which, at least apparently, are of considerable importance: 1) Antennulæ mostly 3-jointed in both sexes, sometimes shorter and either 2-jointed or with indistinct articulation. 2) Antennæ closely similar in both sexes, generally pretty well developed, in some species rudimentary, in others wanting. 3) Maxillulæ almost alike in both sexes, generally with an additional branch, sometimes without it. 4) Maxillæ rudimentary in the female of S. marginata, well-developed in all other forms. 5) Trunk-legs and caudal stylets are good-sized in the males of most species, but are wanting in a few; these appendages are fomen in most of the females, thongh they are very small; they are wanting in some forms, and it may be said that where they are wanting in the male, they are also wanting in the female of the same species, though the reverse is not always the case. 6) The peculiar attachment of the female in S. paradoxa. - In spite of these salient differences I have not ventured to divide the genns into two or more genera, as I have been mable to discover any featnre of sufficiently decisive importance. For it is easy enongh to say, as many authors do, that if a species (as e. g. S. paradoxa) presents some striking characteristic, it must be set apart as the type of a new genus, but freqnently we have no guarantee that such a feature is really of sufficient importance. We meet a similar difficulty where several
species have the distinct negative character of wanting trunk-legs and candal stylets in both sexes, for as there are species which, thongh wanting these organs in one sex, not in the other, or through the male having trunk-legs, but no caudal stylets, form a transition to the species in which both sexes possess trunk-legs and candal stylets, one camot very well set apart the first mentioned species as a separate genns. If I cour find no lcarling principle. to guide me in currying out the division of a large gemus, the elements of which scem to be heterogencous, and if I am not obliged to undertalie a dieision in order to lring alout an equiralcnce with previously established acceptable genera, I prefer mutting off the division till the discorery of new forms has thrown new light on the question. If I had had to smbdivide Sphceronella, the result would have been, not two or three, but six or seven genera (some of which wonld have consisted of only one or a conple of species), in order to establish a pretty correct equivalence, but these new genera wonld not have been tolerably equivalent with such types as Homoeoscelis, Mysidion etc.

c. Characters of the Family.

An examination of the genera will show very clearly that, in spite of several differences, they are all very closely related and belong to the same family. We will here attempt to give a summary of all its more important characters, some of which separate it from one, some from another', of the rather mmerons families of parasitic Copepoda, for it would be impossible to give a condensed characteristique with merely exclusive features, our knowledge of several points in the organisation and development of other families being too defective.

The adult Females are ovate or sub-globular. The head occupies only a smaller or a minute part of the greatly swollen, msegmented body; the abdomen is comparatively rather small and unsegmented, or mostly altogether wanting. Antenmlæ 1-3-jointed; antennie small or wanting; rostrum good-sized, comparatively stout with cup- or fumel-shaped mouth provided with a border formed by a membrane which is interrupted only in tront and supported ontside by free hairs; maxillulæ consisting of a basal part almost entirely fused with the rostrmm, and of two or three usually setiform branches; maxillæ short and powerful prehensile limbs consisting of a stout basal joint and a slender, 1- or 9 -jointed, somewhat claw-shaped, distal part; maxillipeds rarely wanting, mostly appearing as good-sized grasping appendages, consisting of a long, rather stont basal joint and a shorter, slender, 2- or 3-jointed distal part. We often find two pairs of rather small or minnte trunk-legs, each of which consists of one single joint or sometimes of a pednucle with one or two mijointed branches; the legs are wanting in not a few species. Candal stylets present or wanting. Some species, at least, can linge themselves by an adhesive plate or a frontal thread. Spermatophores (fomed in many species) consisting of a globular or oval vesicle on a rather long thread-shaped stalk.

The Mates are several or many times smaller than the females, oblong or sub-globular. The head forms a little more or a little less than half of the unsegmented body. Abdomen nearly as in the females. Antennulæ, antenæ, rostrmm, maxillulæ and maxillipeds nearly similar to those of the females. Frequently, though far from always, we find too pairs of tronk-legs, which are often good-sized and two-branched, with long terminal setæ, but very rarely jointed. Caudal stylets frerfuent. They hinge themselves by a rather long, or very long frontal thread.

Development. The eggs are deposed in one or two (rarely three) free, irregular lumps, or most frequently, in several (at least fom or five) or many (up to twenty-eight) ovisacs, which, as a rule, are free, thongh sometimes hinged on the lips of the genital apertures. The Nauplius stage is passed throngh in the egg; the forthcoming larva is in the first Cyclops stage, with an oval, somewhat depressed cephalothorax, which is divided far back by one articulation, and a 3 -jointed abdomen with candal stylets, each with a very long terminal seta. Cephalothorax with 2-nr 3 -jointed antenmulx, provided with a very long olfactory seta, 2 -, 3 or 4 -jointed antenna; rostrum in the main as in the adults, maxillulæ with - as a rule - indistinct basal part and (one) two, three or four setiform branches; ?- or 3jointed maxillæ and t-jointed maxillipeds, both pairs chiefly constructed as in the adnlts; finally, two pairs of natatory legs, each with two 1-jointed branches. Ont of this larva, which hinges itself by a frontal adlesive plate, the males not mufrequently, the females sometimes, appear directly, withont passing through any intermediate stage. In other species the larva develops into a pupa, out of which the male proceeds. In most species the same metamorphosis is gone through by the female; in one case the female passes through at least one additional intermediate stage. Where a pupa is found, it is always hinged; besides it is nearly always provided with a mouth and increases considerably in size. After hatching the males grow comparatively rather little, and the same is the case with the hear of the females, whereas the trunk of this sex swells excessively.

A distinctive mark of this family is the above (p. 27-28) described mouth, which appears, not only in the female and in the male, but - as far as its most important features are concemed - also in the larva, and nearly always in the pupa.

d. Place of the Family in the System.

During the last thirty years and more, the parasitic Copepoda have been very little stndied, and not a single really leading work has appeared about this snbject. Several anthors have established a series of genera, some of which might easily be ranged in the old families, while others stand rather isolated. Some smaller families have also been institnted. If, however, we try to get a general view of our present knowledge, we find that several families are hadly defined, and others so imperfectly known, that we cannot form a definite opinion of their place in the system: whether they belong to one of the established families, or must be taken as types of new families. The reasons
of this mucertanty are partlr, that the males of too few forms are known, partly - and particnlarly - that the metamorphosis of numerons genera among the old families and of the more abnomal forms is entirely unknown, and that the structure of the month in the adults as well as in the larve is uften badly studied, etc. A revision of the classification of the parasitic Copepoda would be most desirable and ought to be based upon a thorongh study of the external structure of both sexes, and upon mumerons new data which throw light on the post-embryonic development; that a representation of the internal structure of numerons types would be excellent, goes withont saying, but even withont mndertaking this gigantic work such a revision as the above-mentioned wonld be exceedingly useful. However, as such a work does not exist. I do not see that it can be of much use to discuss the relationship of the Choniostomatidr and their place in the system more in detail, so I will content myself with some few remarks.

The last detailed systematic arrangement of the parasitic Copepoda was undertaken by A. Gerstaecken in oBrom's hlassen und Ordn. des Thier-Reichs, funfter Band, erste Abth." p. 721-729, and this part was published about 1870. Perhaps we might also mention the more condensed grouping in »C. Claus: Grundzüge der Zoologie, B. I, 1880, p. $5 \overline{5} t-\overline{0} 8$, " as it is set up by the author who has also gained great distinction in this domain of carcinology. By stndying these treatments and several papers on special groups, I have foum out that the family Choniostomatidæ stands far apart from all hitherto established families, except Lernæopodidæ, from which, however, it also difters considerably. If Salensky in his often mentioned paper means that Sphceronella comes nearest to Lernæidæ, becanse he thinks that in the structure of the month and in the form and position of the maxillæ and the maxillipeds, it resembles Lemea branchialis in the pairing stage, we admit indeed that the resemblance in the structure of the mouth is donbtless very striking, but in other respects the varions larval stages of Lernca and Pennella differ widely from the larvæ and pupæ of Chomiostomatidæ, and the subsequent development of the two genera of Lernæidæ, as we know, differs so thoronghly from that of the Choniostomatidx, moreover, the structure and egg-laying of the female of Lerncea is so exceedingly different from these features in our family, that a closer relationship is entirely out of the question: in my opinion Lernæidæ and Choniostomatidæ stand very far from each other. But undeniably it stands even farther apart from Herpyllobiidæ, thongh Giard and Bomier have attempted to mnite it with this most remarkable family, which differs widely from all other parasitic Copepoda. They do so by establishing a new family: Sphæronellidæ, which they subdiride into Choniostomatinæ and Herpyllobiinæ. This peculiar classification I have criticised at length in my general historical view (p. 15-21), to which I refer. The same two authors, in their earlier work, published in 1889, say that Choniostomatidæ comes nearest to Chondracanthidæ, Lernæopodidæ and Ascomyzontidæ. The first and the last of the families in several respects - e.g. in the structure of the month - deviate so much from Choniostomatidæ, that any closer relationship is out of the question; indeed our family stands widely apart from both,
but as for Lernapodidx, there is a considerable resemblance in varions points, e. g. in the structure of the male and the female, and especially in that of the larva; at the same time, there are numerons and important differences. However, as the fanily Lernæopodidæ is comparatively well known ${ }^{1}$), I do not think it necessary to repeat and compare all the characteristics of the two families, but will content myself with stating my opinion that the Choniostomatidæ, thongh coming much closer to the Lemæopodidæ than to any other form of parasitic Copepoda, yet differ very much from them in the way they lay their eggs, in their development after the first larval stage, in several peculiarities in the internal and external structure of the male (e. g. in that of the month), and most conspicnonsly, in the structure of the month, the antennæ and the maxillipeds of the female. A comparison of the figures in: W. Kunz: Studien über die Familie der Lernaopodiden (Zeitschr. für wiss. Zool., B. XXIX, 1877)« with my present work, will give the best idea of the resemblances and the differences between the adults of these two families. In elucidation of the matter I will add, that Kurz concludes from the development that the pair of limbs which in the females of Lernæoporidæ are finsed together into one long arm that serves as organ of fixation, are the »first pair of maxillipeds." If this be correct - which is quite possible - this appendage wonld correspond to what I term the maxillæ.

[^3]
IV. DESCRIPTION OF GENERA AND SPECIES.

Conspectus of the Genera, based on the Females.

A. Abdomen is found, it protrudes from the trunk, is comparatively rather small, unsegmented and not set off by an articnlation. Eggs are laid in one free lump or in a two (or three) lumps withont distinct shape. (Live in the marsupium of Stenothoidæ, a family of Amphipoda). I. Stenothocheres n. gen.
B. Abdomen is wanting, though caudal stylets are frequently found. Eggs are laid in a smaller or greater number of ovisacs.
a. Genital area is fomm; genital apertures close together and surrounded by a common plate, ring or semi-circle, which is more solidly chitinised than the remainder of the skin. The entrances into the two receptacnla seminis are sitnated within the genital area. The orisacs are deposed freely.
α. Trunk-legs and caudal stylets apparently consist of a very small, short basal part which tapers into a comparatively rather long and very narrow conical branch. Live in the branchial cavity of Cmmacea. . II. Homoooscelis n. gen. β. Trunk-legs and caudal stylets not unfrequently wanting; if found, they are very small, generally sub-cylindrical and terminating in two - the caudal stylets sometimes in one or three - setæ. Live in marsupia.
§. Maxillipeds good-sized and at least always longer than the maxillæ. Live in the marsupium of Amphipoda, Cumacea and Isopoda. III. Spheronella Sal.
§s. Maxillipeds quite rudimentary, several or many times shorter than the maxillæ. Live in the branchial cavity of Hippolyte Leach, a genus of Decapoda . IV. Choniostoma H. J. H.
b. Genital area wanting; the genital apertmes often sitnated at a considerable distance from each other, each having its own arch or ring of solid chitine. The odd receptaculum seminis is far from the genital apertmres. The ovisacs hinged on the lips of the genital apertnres.
u. Maxillipeds good-sized. Genital apertures very far from each other, placed very near the line where the hind margin and the lateral-margin meet. Live in the marsupinm of the genera Erythrops G. O. S. and Parerythops G. O. Sars, belonging to Mysidacea.
V. Mysition n. gen.
β. Maxillipeds wanting. Genital apertures closer together, somewhat up on the dorsal surface. Live attached outside on the back and on the sides of the body or on the eye-stalks of the genus Erythrops G. O. Sars, belonging to Mysidacea.
VI. Aspidoecia Giard and Bomn.

I. Stenothocheres n. gen.

FEMALE. The body somewhat longer than broad; naked all over. The head which is comparatively good-sized, is not marked ont from the trmen; it has neither frontal nor lateral borders. Antemmlæ comparatively long, withont distinct articnlation and with few seta. Antema middle-sized. The mouth-border with very short hairs. Maxilnhæ without additional branch. Maxillæ robust, withont hairs. Maxillipeds of scarcely medimm size, second and third joints coalescent, all joints withont hairs, spines or processes. Sub-median skeleton very feebly developed, consisting only of a plate in front of each maxilliped. The trunk-legs are sitnated rather far from the lateral margin; they are comparatively of considerable size and consist of a basal part with two mjointed branches, each as a rnle ending in a strong nr spiniform seta, besides, on the onter branch of the first pair of legs, is found a smaller seta. Abdomen pretty well developed, consisting of a robust basal part and a narrower distal part, which passes without articnlation into two short and broad candal stylets, each of which bears fonr setæ of mequal length. Genital area wanting. Genital apertures sitnated partly on the lateral surface, partly on the ventral side of the basal part of the abdomen, more or less close to its lateral margin. Two large receptacnla seminis, the entrances of which have not been found. - Spermatophores have not heen noticed.

MALE. Agrees with the female in most features, so that only some characters need be pointed out. The head is not marked ont, it occupies about half of the body. The tronk-legs are situated at a short distance inside the lateral margins of the timnk; both pairs are comparatively very considerable, with a thick basal part. A little behind and outside the second pair of trunk-legs proceed a pair of spines (pl . I, fig. $21, \mathrm{x}$), which are possibly the rudiments of a third pair of legs. Only the narrower, distal part of the abdomen can be distingnished from the trunk. The body is naked, but on its dorsal side, and especially on its front part, it is fumished with moderately small, irregnlar protnberant knots, and on
the ventral side, particmlarly ontside a line between the base of the antemmla and the first pair of trunk-legs, with pecoliar, irregular stripes or with keels and knots.

OVISACS. Real ovisacs are not fonnd the eggs are laid in one free lmmp or in two (or three) lumps.

LARVA. Is only known of one species. Antenme abont the length of the antenmule. The maxillule have a slort but distinct basal part and two stont branches, the anterior of which is rery long. The maxillipeds are sitmated closely behind the 3-ionted maxillæ; all joints of both pairs are smooth. The pedmele of the natatory legs is very broad. The thord segment of the abdomen, together with the broad candal stylets, which are mot set oft by an articnlation, is almost as broad as and nearly domble the length of the second segment. The longest seta of the candal stylets is only a little longer than the abdomen and not nearly half the length of the cephalothorax.

POST-LARVAL DEVELOPMENT. UThknown.
HABITAT. The two species known live each in a species of the genera Mctopa Boeck and Stemothoë Dana. Hitherto found only in Norway and at the western coast of Greenland.

REMARKS. My material of the Amphipod family of Stenothoida, which contains a great multitude of species, being somewhat limited, becanse I have only seen a few specimens of most Greenlandish and Danish species, it may be expected that researches made in a large material will lead to the discovery of a nmber of new species of this interesting genus.

Conspectus of the Species.

The basal joint of the maxillipeds in both sexes conspicuonsly longer than that of the maxillix. The female without median frontal process. The male elongated.

1. St. egregius n. spl.

The basal joint of the maxillipeds in both sexes almost shorter than that of the maxille. The female has a median firmal process. The male is short and broad.
2. St. Sarsii 11. sp.

1. Stenothocheres egregius n. sp.

(Pl. I, fig. 1 a-1l.)
FEMALE. A very large specimen is 63 mm . long. The specimen representer (fig. 1 a and fig. 1 b) is ab. 59 mm . long and 46 mm . broad. The body as a rule a little longer than broad, apart from the abdomen evenly romded; seen laterally (fig. 1 b), the ventral side is rather flat, the back strongly convex. No median frontal process between the hases of the antennula. The antennæ distinctly jointed; the terminal juint fumished with two short setie of unequal length. The hasal joint of the maxillipeds conspiconsly longer than that of the
maxillie. Each maxilliper proceeds from a chitinons list (fig. 1 e, h), projecting between the bases of the maxille. The proximal part of the abdomen two to two and a half times broater than the distal part. Each of the triangular candal stylets (fig. 1 g , t) has four seta, the foremost of which is short, the apical one moderately long.

MALE. A well developed specimen is 196 mm . long and 11 mm . broad - thus grood-sized in proportion to the female (fig. 1 c : fig. 1 a). So the body is a good deal longer than hrod (fig. 1 i). On the ventral side, stretching from the base of the antemnlae ontside the maxilla, the maxillipeds and the legs, backward towards the abdonen, and from the appendages towards the lateral ontline, are found a comparatively small number of irregular stripes or grooves. On the basal part of the first pair of legs we see some irregular projections and taps; similar thongh blunter taps or knots are spread more scantily over the dorsal side of the animal, whereas the frontal part is closely covered with larger knots. Antenulx shorter than in the following species. The basal joint of the maxillipeds longer than that of the maxillo and more robust than in the following species. [n the secmo pair of legs the apical spine on the inner branch is frequently somewhat curred, but not hooked. Of the setie on the candal stylets, the apical one is thick and longer than the others. - Δ frontal thread was found in a few cases; it was abont as long as the animal (fig. 1 c), simple and somewhat dilated towards the distal end.

EGGS. They are very large (fig. 1 d compared with fig. 1 a), and are deposed in a large, loose, irregnlar lump, or in two (or very rarely three) lumps; the greatest number fomm is forty-two, the usnal mmber is about thirty.

LARVA (fig. 1 l). Length of the body (except candal seta) 22 mm ., which shows that it is longer than the male, thongh its volume is somewhat smaller. Cephalothorax oval, somewhat longer than broad. The front has a transverse band which curves backward, ending at a short distance from the base of the antemmuæ. Antemnule 3 -jointed; olfactory seta at least donble their length. reaching a little behind the middle of the cephalothorax. Antemme of medium length, 3 -jointed; hasal joint broad and longer than broad, abont the same lengtle as the second joint; third joint short, terminating in two or three setæ, one of which is stont and as long as the second and third joints together. Second and third joints of the maxillipeds of abont equal length. The longest seta at the hindmost angle of the first abdominal segment a little longer than the second segment. Each candal stylet furnished with five setz, one of them a little longer than the abdomen, two of the others a little longer than the last segment phos the caudal stylets. (See besides the diagnosis of the genns).

POST-LARVAL DEVELOPMENT. Unknown.

HABITAT. On Metopu Bruzelii (Goës) from two localities near the western coast of Greenland. In a glass labelled: "Godthaab, deep water [probably $40-60$ fathoms), in Sertularia, Holboll«, were fomb numerons specimens of Mot. Bruzelii (Goës) and of M. sinuta G. O. Sats, as well as a muber of specimens of M. longicormis Boeck, M. Tongimana Boeck
and M. neglectn H.J. H., and an examination of all these only exhibiter parasites on eight adult females of M. Bruzclii; in five specimens this Stenothocheres was fomud, in three others spheronella Metope n. sp. (s. later on). The second locality is: plat. (6is ${ }^{\circ} 30^{\circ} \mathrm{N}$., long. 54 $4^{0} 50{ }^{\prime} \mathrm{W}$., forty fathoms, stones with many Balemi, 5. VIII. 1886, Th. Holme; here was taken a very great number of Met. Brazelii and of M. simutu, but whereas the latter is free from parasites, Stmothochores occurs frequently in the first mentioned species, white no specimen of Spher. Metoper was found. Unfortunately the ahundant material from this locality was somewhat ronghly handled, as the animals while still alive hat been put into too strong spirit. I investigated and put down statistics on the contents of the marsupia of twenty-three infesterl females, which, added to those from the former locality, makes a total of twenty-eight. In one case neither females nor males were found, but at least twelve larye and a lomp of six eggs withont larve. In another case only one not half developed female was found; in a third marsupinu two females, but neither mates nor egg's. In twentyfive cases a female was fomm, and often a male besides, in one case even two males (once I also fomm a normal male and the larger part of the skin of a dead male), and fually, I fiequently met with eggs or recently hatched larve. Concerning the eggs, I refer to the description given on p. 44. The female was always seen in the foremost part of the marsupium, the male and the eggs behind. Only in a few cases a frontal thread was found in the male. Subsequently more material of Met. Bruzelii was examined (ardult females as well as young specimens), in order to find - if possible - stages of development. Several finds in adult females corresponded to the above stated results, but in one yomg female with scarcely half-developed marsupium I succeeded in finding two larvæ which had evidently swum in beneath the body of the animal, and in a young specimen without marsupium I found a single larva. From all these data it may be concluded that, at least as a rule, the female is infested before the marsupimm is quite developed. At least one of the last-mentioned larve had hinged itself by the usial adhesive frontal plate, but about the subseruent development I learned nothing.

2. Stenothocheres Sarsii n. sp.

(Pl. I, fig. 2a-2 I.)
FEMALE. The largest specimen (fig. 2 a) is swollen to such an extent that the body is vaulted beyond the abdomen, so that this part does not add to its length or breadth which are respectively 80 mm . and 69 mm . The specimen exhibited in fig. 2 d and fig. 2 e is only 67 mm . in length. Seen from below, the body (apart from the abdomen) is a short, at the ends rather flattened oval; seen laterally (fig. 2 e), the rentral surface is rather flat, the back considerably vaulted. Between the base of the antennulæ is found an odd, blunt, horizontal process of considerable size. The antennse weak, with indistinct articulation, the distal
joint terminating in a short spine. The maxillipeds comparatively short and slender, their basal joint almost shorter than that of the maxillæ. The proximal section of the abdomen more than three times broader than the distal section (fig. 2 i); each of the oblong candal stylets furnisherl with fom setze, the foremost of which is the longest. - Fig. 2 a shows that this specimen possessed two long frontal threads (s), the proximal parts of which are minited into one single thread.

MALE. The largest specimen (fig. 2k and 21) measmes to the extremity of the caudal stylets 27 mm . in length; breadth $\because 24 \mathrm{~mm}$.; a rather considerable size compared with the female (fig. 2 b : fig. 2 a). So, the borly is proportionally only a little longer than broad and somewhat depressed. The rentral smface outside the limbs from the base of the antemmule to the abdomen, the posterior part of the sides, the hindmost part of the back, the stout basal part of the trunk-legs and the inner branch of the first pair, are closely covered with peculiar, very irregular eminences, which are partly shaped like keels, partly like knots or short, acnte taps. The median part between the maxillipeds and the tronklegs shows fewer keels and stripes. The dorsal side has very few knots, whereas the front part of the head is covered with numerous blunt knots. The masillipeds like those of the female. The terminal spine on the immer branch of the posterior legs is strongly curved and hooked. Of the setre of the candal stylets, the two apical ones are stont and of subequal length. - The frontal thread (fig. $2 \mathrm{k}, \mathrm{s}$) a little shorter than the animal, simple, slender, yet somewhat thickened towards the distal end.

EGGS. Much smaller, but also much more numerous than in the preceding species. In one female were found two somewhat ohlong lumps of eggs of about equal size and of irregular shape; they did not show any trace of latve. One of these hmps is exhibited in fig. 2 c , enlarged to the same scale as the largest female, fig. 2 a, and a comparison of these figures with the male (fig. 2 b) will show the relative size.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABГTAT. On Stenothoë marina (Sp. Bate) from Norway. The locality camot be precisely indicated, but, according to Sars, the host occurs along the sonthern and western coast of Norway up to the Nordland coast (Tjötö). I have only seen two infested specimens lent me by Prof. G. O. Sars, after whom I have named this remarkable form discovered by him. One of the hosts was a female with marsupium, in which were fonnd an adult female, a very small female aud the two afore-mentioned lomps of eggs, one of which, probably by chance, was adhering to the abdomen of the female, whereas the other was free and sitnated more to the front; the female had attached one of its above-mentioned frontal threads to it, which I think shows that the animal mnst have moved after deposing this lump. The other host was also a female; its marsupial plates were somewhat smaller, thongh they appeared to be cquite developed, being furnished with marginal setæ, and in this specimen were found an adult female, a male and an empty skin of a somewhat smaller male.

II. Homocoscelis n. gen.

F'EMALE. The head small and distinctly defined from the circular, rather depressed trunk. Frontal and marginal borders and sub-median skeleton well developed. Antemmule of scarcely medium length, 2-jointed. Antemie wanting. Month rather small, the month-border being somewhat narrow, with well developed hairs. Maxilnle withont additional branch. Maxillæ abont middle-sized, smooth. Maxillipeds of medinm size, second and third joints coalescent. Body entirely naked in the adults, at the utmost a few hairs on the sides behind the head; in the recently hatched and younger specimens the har covering resembles that of the male. The tronk-legs are sitnated on the lateral margins; they are small, each apparently consisting of a rather thick, short basal part which is jointed without articulation to an elongated, very narrow conical, sometimes partly hairy hranch, at the base of which the basal part bears either a few sete or just a restige of another branch. Abdomen wanting. Well developed genital area with a transverse clitinons arch, opening towards the front and surromding the genital apertures, which are sitnated close together, and the entrances of receptacula seminis. Rather close behind the genital area are the two candal stylets which are a little thicker and longer than the legs. - Spermatophores frequently seen.

MALE. Body seen from below elongated ovate, from nearly twice to a little more than twice as long as broad. Length of the head somewhat exceeding a third of the total length. (The antemulæ 2- oi' 3-jointed, and very small antennæ are perhaps found in one species). In other respects all the other organs of the head, as well as the tronk-legs and candal stylets, mostly agree with those of the female. The trunk, except the anterior part of the ventral surface, is covered rather closely all over with comparatively short hairs.

OVISACS. Are deposed freely, and are of moderate or rather large size, containing few, six to eighteen, eggs which are very or exceedingly large. The number of sacs laid by one female can amount to eight.

LARVA. Is known of both species. Antemæ much longer than in any other genus, more than twice the length of the antemnla, owing particnlarly to the fact that the penultimate joint is very much elongated; the terminal seta is very long. Naxillule I have been mable to discover. Maxilla ouly 2 -jointed, the second and third joints being fuser and forming one curved joint, which, moreover, along the larger part of both margins is furnished with extremely fine and short, setiform processes. Maxillipeds far behind the maxillæ; all joints smooth; second joint half or scarcely half as long as the third one. Peduncle of the natatory legs rather slender. Third segment of the abdomen together with the small candal stylets distinctly articulated to the segment, much smaller than the second segment. The longest seta of the candal stylets sometimes shorter, sometimes considerably longer than half of the cephalothorax.

POST-LARVAL DEVELOPMENT. Observed only in one species and described above, p. 丂̄ 2.

HABITATL. The animals live in the branchial cavity of Cumacea, cansing a gradual swelling of the carapace above the place which is occupied by the parasite and its ovisacs. A parasite with several ovisacs may be found on immature specimens of both sexes as well as on adult females. Two infested adult males lave also been foum. The larre infest not only immature specimens, but frequently also females with marsupimm. The two species here described come respectively from Denmark and from Messina (and a deep-sea species was found on a Diastylis brought home by the " [ngolfe expedition) ${ }^{1}$).

REMARKS. The gemus is distingnished partly by the shape of the tronk-legs, partly by the similarity of both pairs in the male as well as in the two sexes muthally, and by their resemblance to the candal stylets. In giving the genns its name, I have tried to allude to this conformity in the appendages. The females are very small, more so than in any other gemus, which harmonises well with the scanty room left for them in the branchial cavity of their rather small hosts. The males, on the contrary, are uncommonly large in moportion to the females: in the large species about half the length, in the small one even longer than a middlesized adult female. (In II. mediterraner the antennulie of the male are decidedly 2 -jonterl; what in fig. If on pl. XIIL appears to be a short basal joint, is an angular excrescence proceeding from the head. On the other land, the antemnulæ of H. minutu sometimes aphear to be 3 -jointed, as the two last joints, though coalescent, are sepmated by a distinct line, which, however, is too strongiy marked in the drawing.)

Conspectus of the Species.

In the female the lasal joint of the maxillipeds is comparatively more slender, a good deal longer than half the breadth of the head at its base. Trunk-legs and candal stylets of the male are long, longer than half the breadth of the body, and firmished with hairs about all over the distal half 1. H. minutct 11. sp.

In the female the basal joint of the maxillipeds comparatively stont, scarcely longer than half of the head at its base. Trmok-legs and caudal stylets of the male shorter, not nearly half the breadth of the body, and with very few or no hairs . 2. H. metiterranco n. sp.

I. Homoeoscelis minuta 11. sp. (Ill. I, fig. $3 \mathrm{a}-3 \mathrm{~b}$; pl. II, fig. I a-11).

FEMALE. The largest specimen (fig. 1 b), which had not begnu laying eggs, is 52 mm . in length and 49 mm . in breadth. A female which has nearly finished laying eggs (fig. 1c) is only 35 mm . long and 39 mm . broad. The frontal margin has seven small incisions

[^4](fig. 1 h) and rery short hairs. Basal joint of the maxillipeds rather slender and a good deal longer than half of the breadth of the head at its base. The genital area (fig. 3 a) more than donble as broad as long; between, behind and obliquely ontside the genital apertmes, as well as behind the candal stylets, are a momber of rely fine lains.

MALE. A normal specimen (fig. 1 i and fig. 1 k) is $\quad 20 \mathrm{~mm}$. in length and 0.9 mm . in breadth, or abont half the length of a middle-sized adnlt female (comp. fig. 1 d witlo fig. 1 h and fig. 1c). The body between scarcely double and a little more than donble as loug as mond. The frontal margin seems to be like that of the femate; the incisions are extremely difficult to see (the hair-covering in fig. 1 i is twe long). Basel joint of the maxilliperls of a shape smilar to that of the lemale. Thmelegs and cambla stylets long, longer than half the breadth of the body, and very distinctly fumished with hairs abont all wer the distal halt.

OVISACS. Of medium or rather large size, globular or shortly orate (fig. 1 e and fig. 1 f). As a mule there are fomteen to eighteen very large eggs in each sac. It is a mot common occurence to find eight ovisacs with one female, and a greater momber has never been observed.

LARVA. A free specimen (fig. 1 g) is 15 mm . in length. Its cephalothorax is nearly donhle as long as broad. Having only one snch specimen in hand, I prepared some larve ont of their egg-membranes and examined them more closely; one of them is seen in fig. 11. We notice that its cephalothorax is still somewhat shorter and broader than that of the freely swimming larva, and the animal is only 14 mm . in length. The offactury seta of the antemmlæ turned backward reaches beyond the posterior extremity of the cephalothorax. Distance between the maxillæ and the maxillipeds about as long as the basal joint of the latter: Second abdominal segment as long as the first. The longest seta of the candal stylets considerably longer than half the length of the cephalothorax, about half the length of the borly in the free specimen.

POS''-LARVAL DEVELOPMENT'. Described in detail above, on p. 55.
HABITA'I'. In the branchial cavity of Ditstylis lueifera (Kr.) from Demmark. The parasite I have fomm in sixty-six specimens, the special locality of fifty-seven of these are maknown to me; five specimens were taken at Hellebak (fom hy Dr. Toh. Petersen, one by the anthor), and fom in the following four stations of the experlitions of "Hanch : Stat. 25 (110 fathoms), Stat. 368 (13 fath.), Stat. 370 (15 fath.) and Stat. $383(14 \text { fath. })^{1}$). Either the right or the left side is infested; in no specimen have I fomd both sides infested. Only one female and generally also one male, rather seldom two males, are fond in the same branchial cavity. Where the parasite has laid several ovisacs, the carapace of the host is very considerably swollen, and frequently this swelling rises somewhat above the median dorsal line.

[^5]An adnlt parasite, especially when it has laid several ovisacs, is easily seen throngh the carapace, but if we want to find out if a specimen withont swelling is infested with larrx, pupx or recently hatched specimens, we must examine it carefully under a good dissecting microscope.
[will try to give special statistics of my material, but mortumately, at the begiming of my investigation some years ago, I omitted to put down sufficient notes about a few of my specimens, so [camot give as perfect statements as I shonld like. Of 433 specimens of Diast. Lucifera, 66 were infested, 367 were not. Of the latter, 182 were females with eggs or young ones in the marsupium, $7 t$ females with empty marsupium, 28 adult males, 7 young males (before the last moulting) and 76 young females (some of them may have been males without rudiments of abdominal appendages). Of the 66 infested specimeus 13 were females with young ones in the marsupium, (there was not one with eggs), 31 females with well-(heveloped thongin empty marsupium, no adult males, 3 young males and 15 yougg females; concerning 4 specimens sufficient notes are wanting, at all events none of them was an adult male. Of the 62 specimens, 33 contained an adult female with one or more orisacs, and alsn, of conrse, a male, and of these 33 hosts, 4 were females with roung ones in the marsupinm, 13 were females with empty marsupium, 13 young females and 3 young males. In 29 of the 62 specimens was found either a monderately large female without eggs, or one (or two) males, or in many cases recently hatched specimens or pupæ, and in at least one case, only one recently entered larva. Of these 29 hosts, 9 were females with young ones in the marsupimm, 18 were females with well-dereloped, empty marsupimm, and 2 young females (without marsupimm). $\mathrm{N} \cap$ help is needed to draw varions conclusions from these figures; I will only observe that the mmber of males collected is too small to allow us to conclude that they are never infester (s. the following species).

REMARKS. The three infested specimens first observed were discovered by the Inspector, Dr. F. Meinert, whom I had asked to look ont for eventual parasites in determining the Cumacea from the cruises of the "Hanch". With respect to the figures it may be observed that in fig. 1 a I haren given a drawing (in the same enlargement as fig. 1 b and 1 c etc.) of a rather young female, whose limbs are remarkably long, as in the male (fig. $\mathbf{1} \mathrm{d}$), and which has already fom spermatophores attached to its genital area, thongh it is far from being old enough to begin laying eggs. Fig. 3a (pl. I) exhibits two spermatophores (s) fixed at the entrances to the receptacula seminis (r), which are seen through the skin and are indicated by dotted lines.

2. Homoeoscelis mediterranea n. sp.

(Pl. XIII, fig. 1 a-1 h).
FEMALE. The specimen represented (fig. 1a) is 28 mm . in length, 23 mm . in breadth; the largest specimen taken out measmes 31 mm . in length, 32 mm . in breadth.

The frontal margin minterrupted, with scarcely any hairs. The basal joint of the maxillipeds moderately stont (fig. 1d), scarcely longer than half the breadth of the head. The genital area (fig. 1 e) not nearly twice as long as broad; the whole area betwreen the genital apertures and the caudal stylets, a narrow part behind the latter, and an area outside the soft membrane which borders the genital apertures, are covered with rather short hairs. The remainder as in the preceding species.

MALE. The well-developed specimen illustrated (fig. 1 f and fig. 1 g) is $\cdot 17 \mathrm{~mm}$. long and 09 mm . broad, thus a little more than half the length of the largest female. The body more clumsy than in the preceding species, not twice as long as broad. Frontal margin and maxillipeds as in the female. Trunk-legs and caudal stylets shorter, not nearly half as long as the breadth of the body, and with very few or no hairs.

OVISACS. Rather large (fig. 1c), shortly ovate or sub-globular. There may be five to twelre, but generally we find six to ten comparatively extremely large eggs in each ovisac, and as many as eight ovisacs have been found with one female.

LARVA. In one ovisac were found larvie nearly on the point of swimming out; one of these is figured (fig. 1 h); its body is 15 mm . in length, and the cephalothorax is very elongated. The olfactory seta of the antenmiæ reaches the posterior extremity of the cephatothorax. Distance between the maxillæ and the maxillipeds considerably shorter than the hasal joint of the latter. Second abdominal segment scarcely the length of the first. The long setie of the caudal stylets considerably shorter than in the preceding species, not half the length of the cephalothorax and frequently moch shorter.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. In the branchial cavity of Iphinoë trispinose (Goods.), at Messina. In May and in the begiming of June 1893 I canght fifty-eight specimens in all ages of this species in the harbom of Messina, in a depth of ten to twenty fathoms, and seren ont of these were infested with the parasite. It was only fomd in specimens which were either much more than half-grown or full-grown, so that no parasite appeared on a single one of the nmmerons specimens which were only half-grown or still yonnger. A female with the marsupium containing Spheronella marginata (s. later on), had on its right hand side a considerable swelling, in which were two adult females, two males and six owisacs. In a female with less than half-dereloped marsmpinm, the left branchial cavity contained a male; the right hand side of the carapace, especially its posterior part, bolged very much, and under the hindmost part of it were found an adult female, in tront of it a male and eight ovisacs, the foremost of which was evidently newly laid, whereas another, which was lying close up to the female, contained full-grown young ones; this arrangement showed clearly that the female had changer place. An adult male contained in its left branchial carity one half-grown female. Another adnlt male contained, also in its left hand side, one ardult female, one yomg female, one male and two orisacs. The three remaining hosts, riz. a male before its last moult and two not quite adult females, have not been dissected, bnt it
could be observed throngh the carapace that in one of the specimens (a female), the parasitic (no doubt adult) female had not begun laying eggs, whereas the two other specimens lodged not a few ovisacs beneath their carapace.

REMARKS. In this small species the female is smaller and the eggs comparatively larger than in any other form of this family hitherto found. It is closely allied to Homoeoscelis mimuta. though the male in particular is easily distinguished from this species by its shorter legs. It may be observed that an examination of numerous specimens of Iphinoë trispinosa from Denmark gave a negative result.

III. Sphæronella Salensky (1868).

FEMALE. Head small, generally, though not always, defined from the trunk, which is ovate or globular, sometimes even a little broader than long. Maxillipeds large or 1ather large and at least always longer than the maxille. Trunk-legs sometimes wanting; if found, they always consist of one minute cylindrical joint with a couple of terminal setæ, or they are reduced to small eminences. Genital area is found and always well developed, so that the genital apertures - which are rather or very close together - and the entrances to the two receptacula seminis, which are situated close in front of them, are surrounded or at least bordered posteriorly and at the sides by common rather solid chitine. Candal stylets are sometimes wanting; if found, they are slaped somewhat like the trunk-legs and terminate in one, two or three setæ. - Spermatophores frequently observed.

MALE. This sex is known in a little more than two thirds (twenty-five) of the species. The body, seen from below, is ovate or sub-globular (seen laterally, the back is much vanlted, the ventral side rather flat, sometimes even concave in the middle). The head always fumished with frontal and lateral borders. The trunk is covered with hairs on the larger part of the ventral surface, as a rule, also on its sides and on the whole or part of the back. Trmk-legs and candal stylets sometimes wanting, but generally found, and in this case differing much from each other. The trunk-legs always deviating very much from those of the females.

OVISACS. Always deposed freely.
LARVA. Observed in scarcely half of the species. Antemæ at most a little longer than the antennule, sometimes very short. Maxillipeds situated close behind the maxillæ. Peduncle of the natatory legs of medium breadth or narrow. Posterior abdominal segment together with the candal stylets nearly always smaller than the pemultimate segment. Long seta of the candal stylets longer than half the length of the cephalothorax.

POST-LARVAL DEVELOPMENT. Known or partly known in several species (s. above).

HABITAT. The marsupium of Amphipoda, Cmmarea and Isopoda. Younger females and animals in varions stages of development of some species are also fomd on the ventral surface of the thorax in Amphipoda. Found in Denmark, Norway, Greenland, in the Kara Sea, the Mediterranean, off Cuba, and finally on the East-coast of Asia between about lat. 22° and $51^{\circ} \mathrm{N}$.

REMARKS. This genus is very large. Subsequently thirty-four species will be described, besides S. Leuchartii Sal., which I have not seen (and S. diadema G. and B. whicl has not been described). The above given diagnosis of the genus is rather meagre, and it is easy to see that some of the characteristics are qualified by an veither . . . or'«. The obvious reason is that many of the species in several respects vary considerably among themselves. Abore, on p. 82-83 I have ahready given a general view of the most important of these differences, stating my reasons for not feeling justified - in spite of these differences to divide the genus into several genera.

It is impossible, for two reasons, to give complete analytical keys of the two sexes in all species, firstly, because the male is unknown in nine species, secondly, because the differences between the females and between the males in one small division are ton vague to be represented with sufficient preciseness in such a conspectus. However, is order to procure a kind of general view, I will divide all species into three groups according to the orders of their hosts, subsequently giving as good a conspectus as possible of each of the two sexes in the species of each group. In this place I will only give the analytical keys of the first division; the other keys will be found immediately preceding the divisions to which they belong.

a. Parasites on Amphipoda.

It may be observed that the males of this group always have well developed trunklegs and candal stylets. In the larre the front is never furnished with processes or lists in the sub-median part (there are one or two rather small lists near the basis of each antennula), the basal joint of the maxilla is smooth, without combs, and the terminal joint not serrated.

1. Conspectus of the Females.

The figures preceding the names of the species indicate their number in the snbsequent representation. In this conspectus all species are included except S. abyssi n. sp., of which my knowledge is too fragmentary (s. the description below).

1. Head with distinct frontal border and distinct prominent lateral borders. Genital area broader than long

1'. Head without distinct frontal border; lateral borders wanting. Genital area longer than broad.
26. S. microcephala G. and B.
2. Antenne quite rudimentary. A tuft of hair near the base of each maxillula.

Gronp: S. Leuchartii Sal.
including the following species: . . . 1. S. elegantuta n. sp., 2. S. Atyli n. sp., 3. S. danica n. sp., 4. S. vestita n. sp., 5. S. Leptocheiri n. sp., 6. S. messinensis n. sp., 7. S. chinensis n. sp., S. S. antillensis n. sp.

2'. Autemnæ pretty well developed. No hair-tufts near the base of the maxillulæ . . . 3
3. Frontal margin withont expansion in the middle . 4

3'. Frontal margin with a flatly cup-shaped expansion in the middle . . 25. S. frontalis n. sp.
4. Trunk covered with short hairs, 2 - or 3 -branched at their basis 5

4'. Trunk naked or with rather few, simple hairs . 6
5. Caudal stylets situated between the genital apertures. The trunk thickly covered with hairs . 9. S. Calliopii n. sp.
5'. Caudal stylets situated behind the genital apertures. Hair-covering less thick. 10. S. irregularis u. sp.
6. Trunk fastened to the host by a very short ventral thread. . . 11. S. paradoxa 11. sp.

6'. Trunk never attached to the host7
7. Trunk-legs - if found - cylindrical, with two setæ 8
7'. Trunk-legs distinct, rounded eminences withont setæ 24. S. Acanthozonis n. sp.8. Maxillipeds good-sized; their basal joint much longer than that of the maxillæ . . . 98. Maxillipeds rather small; their basal joint not much longer than that of the maxille.
9^{\prime}. One of the terminal setæ of the trunk-legs remarkably long, about three times as long as the leg
21. S. longipes n. sp.
10. Genital area naked or with rather few and - as a rule - scattered hairs 11
10^{\prime}. Genital area provided on each side with a curved line of long hairs.
15. S. Hollölli n. sp.
11. Genital area forming a solid plate . 12

11'. Genital area for the most part thin-skimed, the more solid chitine forming a greater part of a ring

13
12. Numerous hairs between the base of the maxillæ and the maxillipeds. Genital area with a number of scattered hairs 16. S. intermediu n. sp.
12'. No hairs between the base of the maxillæ and the maxillipeds. Genital area naked.
17. S. capensis 1. sp.
13. No transverse list between head and trunk behind the base of the maxillipeds.
13. S. Argisse u. sp.
13'. At least one transverse list between head and trunk behind the base of the maxillipeds 14
14. Head with naked lateral margins (margins of the lateral borders) 15
14'. Head with lairy lateral margins 16
15. Antennulat rather short and clumsy. Sub-median skeleton withont a process at thebasal inner angle of the maxillipeds 14. S. Metopre 11. sp.15 '. Antemntæ moderately long and slender. Sub-median skeleton with a small process atthe basal inner angle of each maxilliped 18. S. Gitanopsidis n. sp.
16. Exceedingly short hairs on the lateral margins of the head. Basal joint of the maxil-lipeds moderately short and stont17
16'. Moderately long hairs on the lateral margins of the head. Basal joint of the maxillipedslong and slender.20. S. Amphilochi n. sp.
17. Candal stylets behind on the pusterior margin of the ring of the genital area.
19. S. Giardii n. sp.
17'. Caudal stylets at some distance in front of the posterior margin of the ring of thegenital area20. S. Bonnieri n. sp.
2. Conspectus of the Males known.

1. Dorsal surface of the tronk with (at least) a transverse line or belt of hairs, or covered with hairs all over . 21'. Dorsal surface of the trunk quite naked26. S. microcephala2. Frontal border with two very deep and broad incisions dividing it into three plates,the median one of which is large, long and broad and nearly square, the lateral onesmuch shorterGroup of S. Leuckartii
2'. Frontal border not deeply incised, the margin crenate or entire 3
2. Frontal margin crenate, forming six lobes of which the wost external ones are low.
3. S. Calliopii3'. Frontal margin entire44. Trunk covered with single hairs or with (at most) 3-branched setaceons hairs (3 hairsproceeding from each tiny knot)§
4'. Trunk covered with tiny oblong transverse knots, from each of which proceed aboutten very fine hairs, ladiating backward and sideways 25. S. frontalis
4. Each candal stylet with a very conspicuons seta, which is from about thrice to manytimes the length of the stylet6
5 '. Each candal stylet with two or three moderately shor't setæ, none of which is veryconspicnons, and not thrice the length of the stylet12
5. First pair of legs 1-branched, the branch ending in a long seta 7
6 '. First pair of legs 2-branched, the outer branch ending in a long and a shorter seta,the inner branch in a conspicuons, shorter or longer terminal seta9
6. Snb-median skeleton with two pairs of processes (second and third pairs) between the bases of the maxillipeds. Terminal setre of the candal stylets somewhat longer than the basal joint of the maxillipeds 11. S. paradoxa

7'. Sub-median skeleton with ouly one pair of processes (second pair) between the bases of the maxillipeds. Terminal setæ of the candal stylets scarcely the length of the basal joint of the maxillipeds
8. Basal joint of the maxillæ withont any prominent plate 16. S. intermertia

8'. Basal joint of the maxillæ with a prominent plate with spiniform marginal processes round the distal, inward and backward turning angle 17. S. capensis
9. Terminal seta of the candal stylets somewhat longer than the terminal seta of the, onter branch of the first pair of legs . 12. S. abyssi
9^{\prime}. Terminal seta of the caudal stylets a little or much shorter than the terminal seta of the onter branch of the first pair of legs
10. Terminal seta of the candal stylets at least four to six or eight times longer than the stylets, and much longer than the secondary seta of the onter branch of the first pair of legs 11
10^{\prime}. Terminal seta of the candal stylets only about three times the length of the stylets and not longer than the secondary seta of the onter branch of the first pair of legs.
13. S. Argissce
11. Terminal seta of the inner branch of the first pair of legs equal in length to, or longer than the distance between the base of the same leg and the end of its onter branch.
14. S. Metopre

11'. Terminal seta of the inner branch of the first pair of legs somewhat shorter than the distance between the bases of the same legs and the apex of their outer branch.
15. S. Holbölli
12. First pair of legs with a long seta at the apex of the single branch, none on the outer process
18. S. Gitanopsidis

12'. First pair of legs with two branches, the terminal setæ of which are shorter than the leg; a seta on the onter process 13
13. Trunk not much larger than the head, with setaceous hairs, proceeding two or (generally) three together from tiny knots . 19. S. Giardii
13 '. Trunk more than donble the size of the head, with moderately thin, normal hairs.
20. S. Bonnieri.

About species 1-8: Group of Sphicromella Leuckartii.

In seven species belonging to the genera Paratylus G. O. Sars, Cheirocratus Norm., Leptocheirus Zadd., Gammaropsis Lilljbg., Microprotopus Norm. and Corophium Latr., taken in Demmark, Sicily, Cnba and Hong-Kong, I have fonnd parasites which bear a close resem-
blance to one another and to Sphrer. Leuckartii Sal. from Naples. The Danish forms which are taken on animals of the two first and the two last-mentioned genera, deviate quite as much from each other as from the exotic forms, and quite as much as the latter deviate from each other: In studying a not very large material of specimens taken on two of the genera (Cheirocratus and Corophium) it appeared, on the one hand that the haircovering of the females sometimes, but not always, varied very much according to age (Salensky already found that the recently hatched females of S. Leuchortii were more hairy than the adolts), on the other hand that adnlt, egg-laying females taken on the same species (Cheirocratus Sinderalli) also varied moch with respect to the 'pality of their hair-covering on the anterior part of their trunk and on the genital area, and to the appearance of tufts of hairs on various parts of the ventral side of the head; however, these last-mentioned differences seem to be acconnted for by the fact that one of the adult specimens had retained part of the hair-covering it had had when young. Between adnlt females taken in the same species there was some difference in the distance between the candal stylets and the genital area, still the differences in this area and in the sitnation of the candal stylets were much smaller in animals taken in the same species than in several of the forms taken in hosts of different species. The size of the egg-laying females was very different, varying according to the size of the infested species, so that a specimen from Cheirocratus was thrice the length of one from Gammaropsis. There was considerably less difference of structure between the males of varions species than between the females, and much less difference of size. Some of the differences fond betweeu the males were decidedly of an individual or accidental nature. These data placed me in the dilemma of either considering all the animals I had found as belonging to one species, thongh a very variable one, infesting animals of widely differing families of Amphipoda, and being spread over an immense geographical area, or to admit the eight species established here. Future naturalists who will have a much larger material at their disposal to throw light on the varieties of individuals taken in the same species, and at the same time will have many parasites from hosts of different genera, must pronomnce the final rerdict on this matter. (Perhaps some day it will be possible to solve the question, whether parasites from one gems often can infest aumals belonging to other genera, by coltivating in an aquarim non-infested specimens of the genera that are to be examined, together with infested and non-infested animals of another genus; then perhaps it will be seen, whether the larvæ, which no donbt swim abont only a short while, exclusively seek specimens of the same species as the host of the mother, or whether they also infest and develop themselves on the other genera). Not having fomd any parasite on Microdentopus gryllotalpe Costa, I must consider Spher. Leuckartii Sal. as a ninth (to me unknown) species. Unfortmately Salensky's description and figures are far from being sufficiently exact in the details with which we are here concerned. If my species were to be united into one, no doubt it would have to be under the name of S. Leuckartii, but I will conclude with the remark that I consider it rather improbable that such an arrangement would prove to be well-fonuded.

I think the best plan is to begin by giving an account of the features which are common to all species, subsequently describing each species separately. A tuft of hairs ontside the base of the maxillulæ in both sexes, and the shape of the frontal border in the male, are probably the most characteristic featmes which distinguish them from all other species of the gemms Sphoronella.

FEMALE. Body ovate or sub-globular, with well-defined head. Antennulæ of abont medimm length, 3 -jointed, the last joint provided with rather short setæ. Frontal margin naked. Antemne rudimentary (pl. ILI, fig. $2 \mathrm{c}, \mathrm{c}$), but generally visible. The mouth of middle size. Setæ of the month-border of medium length. Maxillulie provided with an additional branch; outside and somewhat behind their base a peculiar, pretty large tuft of hairs turning outward. Maxillæ of medium size. Maxillipeds normal, with hairy spots on their basal joint. The sub-median skeleton between the rostrum and the base of the maxillipeds forms rather broad longitudinal plates, but there is no transverse list on the ventral side at the posterior limit of the head. The lateral margin of the head provided with a row or a stripe of moderately long hairs. Trumk-legs and candal stylets always distinct (e. g. pl. II, fig. 6 a). Genital area much narrower than the head, broader than long, platelike or only with a solid ring which has no opening in front. The curved genital apertures turn their fiont extremity forward, their hind extremity sideways, and their distance from each other is shorter than the length of each. Caudal stylets either on the posterior margin of the genital area ($p \mathrm{l} . \mathrm{II}$, fig. 5 b) or, as a rule, behind or far behind it (pl. II, fig. 3 b).

MALE. This sex is known of six of the species. The body is from one third to one half longer than broad. The head about the size of the tronk. The frontal border produced so as to form in advance of each antennula a pretty large, romded, distally ciliated lobe, which is separated by a deep and broad incision from the odd, long, broad and almost square median plate, the sides of which are often somewhat diverging, sometimes parallel; its slightly curved anterior margin, as well as the distal part of the lateral margin, are furnished with fine and short hairs. Antemnlæ, antenmæ, rostrum, maxillulæ, the hair-tuft at their basis, maxillæ and maxillipeds, chiefly as in the female. The sub-median skeleton with first and second pairs of processes well developed; first pair rather prominent, triangular, pointed, situated close in front of or overlapping the base of the maxillipeds; second pair situated at the inmer angles of the maxillipeds, elongated, extending over the basal part of the tronk, and more or less diverging. Lateral margin of the head ciliated; from its posterior extremity a narrow belt of long hairs extends npward over the side and in an oblique direction across the back. The ventral surface, the sides and the hindmost part of the tromk are covered with moderately long, posteriorly towards the back with very long hairs, leaving a large maked area behind the above-mentioned transverse belt. The legs of moderate and sub-equal length; the first pair consist of a peduncle, one branch, and a short conical process on the outer side at the apex of the peduncle; the proximal part of the peduncle is stout and rather broad; the branch which must be homologous with the outer one in the following
species, is shorter than the peduncle and terminates in two setæ, one short, the other longer or somewhat slorter than the peduncle plus the branch, and finely plumose; the onter process terminates in a short seta. The branclu - at least in most cases - is not distinctly set off from the perluncle by an articnlation; if nevertheless this seems to be the case sometimes, it may be owing to an optical delnsion. The second pair of legs consist of a rather short and slender peduncle and two branches, the onter of which is short, conical and terminates in a short seta, the inner one agrees with the branch on the first pair of legs and terminates in similar setie ${ }^{1}$) (the outer branch is never set off by an articnlation). The caudal stylets are comparatively long, with a seta which is shorter than the stylet and proceeds from its inner angle. - The animals are sometimes linged by a frontal thread (pl. II, fig. 4 b), the very complex structure of which is described above on p. 42-43.

OVISACS. They are ovate, in the large species of comparatively medium size, in the small ones very large compared with the females, and in the small species the female probably lays only four to fire, in the largest species as many as ten ovisacs (possibly even more).

LARVA. Known in only two species: S. clegantula and S. untillensis (pl. In1, fig. 2e); the latter is the one describer here. Cephalothorax seen from helow, a somewhat elongate oval. On the front, inside the base of each antemnta, two lists, ruming so as to form a somewhat acnte angle, but they do not quite meet. Antemmiæ 3-jointed, the olfactory seta reaching a little beyond the middle of the cephalothorax and measuring less than three times the length of the antennula. Antenne somewhat longer than the antennule and specially characteristic by consisting of forr joints of sub equal length and a terminal seta which is longer than the two last joints together, or abont as long as the three last joints. Of maxillute only two naked branches have been fomnd. Maxillæ rather robnst. Maxillipeds of scarcely medium length, second and third joints of about sub-equal length. Peduncle of the natatory legs moderately slender. Abdomen proportionally short and broad; the long, stout seta at the posterior angle of the first segment reaches far beyond the extremity of the candal stylets; third segment very short, and the not defined candal stylets also short, their terminal seta more than three quarters the length of the ceplatothorax.

POST-LARVAL DEVELOPMENT. Very peculiar; we refer to the description given above on 1 . $58-60$.

HABITAT. All my eight species were found exclusively in fully developed marsupia which contained no eggs or young ones of the host. Salensky states that his S. Leuclartii were fomd both in females and in mates, but the latter, no doubt, were young females (comp. abuve, p. 66-67).

[^6]
I. Sphæronella elegantula n. sp.

$$
\text { (Pl. II, fig. } 2 \mathrm{a}-2 \mathrm{~g} .)
$$

FEMALE. An adult specimen (fig. 2 a) was $1: 31 \mathrm{~mm}$. long and 1.16 mm . broad; the head is a little more than middle-sized, the trunk globnlar. One of the specimens dissected differed considerably in hair-covering from the two others and may be described first. Tufts or rows of hairs were found on the proximal part of the inner side of the basal joint of the maxillæ and on the skeleton in front of and outside the articulation of the maxillæ, in front of the anterior inner angle of the maxillipeds, above their posterior imner angle and behind their articulation. The greater part of the trunk was naked; a moderately broad, transverse belt behind the head was rather closely covered with most peculiar hairs, which are also found on the genital area. This area (fig. 2 e) is considerably broader than long, and the solid chitine forms a rather broad ring and a median list which is broad posteriorly; the distance between the genital apertures is of medium length; the caudal stylets are situated far from each other and at a considerable (though not equally comsiderable) distance from the posterior margiu of the area. The region between the candal stylets, the interval between these stylets and the genital area, the posterior part of the genital area, the part in front of it and just inside its outline are more or less densely covered with most peculiar, very broad, somewhat flattened, long hairs, which, however, are so strangely transparent and membranons, that their outlines are difficult to follow, whereas, on the contrary, their bases form conspicuous ovals, one half of which is more distinct than the other (in fig. 2 e all these ovals are drawn, but only very few of the hairs themselves). - In another specimen the ventral side of the lead had hairs only in front of the basis of the maxilla and at the anterior and posterior imner angles of the articulation of the maxillipeds. Behind the head the tronk had a belt provided with slort and fine, basally somewhat dilated hairs. The genital area had nearly the same shape as that of the preceding specimen, but its posterior margin was slightly more concave; the candal stylets were sitnated a little nearer (but not equally near to) the area, and the part between and behind the genital apertures, as well as the skin stretching from the genital area to a good distance behind the candal stylets was less densely furnished with hairs of the same shape as those on the front part of the trunk, while the membranous hairs were entirely wanting. - A third specimen agreed essentially with the last-mentioned one.

MALE. The largest specimen is 31 mm . in length, the smallest, which is not fullgrown, measures 23 mm . It is of medium size compared with the female (fig. 2 b : fig. 2 a). The body comparatively slender (fig. 2 f). The lateral margins of the median frontal plate diverge distally, the anterior angles are sharp. The processes between the base of the maxillipeds are long or very long; the trunk-legs proportionally long; the terminal seta of the branch on the first pair and of the imer branch in the second pair longer than the leg.

OVISACS. Of medium size (fig. 2c), only slightly differing in size.
LARVA. Only one specimen was found, it was hinged. Its cephalothorax is very broad and thick; the condition of the contents seems to indicate that the larva was developing into a male (comp. above, p. 60). Except in this clumsiness of shape, it agrees entirely with the larva of S. antillensis (pl. IU, fig. 2e).

HABITAT. The marsupium of Cheirocratus Sunderalli (Rathke) from Denmark; till now found only in four specimens. In one specimen were found: one adult female, two males and six ovisacs; in the second: one adult female and four pupæ; in the third: one adult female, one male and ten ovisacs; finally, in the fourth: one adult female, three males (one of them hinged to the base of the hindmost gill), six ovisacs and one larva linged on the base of the penultimate gill.

REMARKS. The above-described difference in the hair-covering of the adult females appears remarkable to me. The female is larger, the male longer and more slender than in any of the following species.

2. Sphæronella Atyli n. sp.

(Pl. II, fig. $3 \mathrm{a}-3 \mathrm{~b}$.)
FEMALE. The largest specimen was 99 mm . in length, a specimen with seven ovisacs only 66 mm . Shape like the preceding species. Two specimens have been dissected, and the skeleton of their heads (fig. 3 a) was fomd to want all the hair-tufts described in the afore-mentioned species, so as to leave only the tuft of hairs at the base of the maxillulæ, which is a distinguishing mark of the group. The trunk naked except a belt behind the head, which is covered with numerous, but exceedingly fine and short hairs. The genital area (fig. 3 b) considerably broader than long, the solid chitine forms a ring, the larger part of which is rather broad, as well as a median list; anterior and pusterior margins considerably concave; moderately long distance between the genital apertures; the candal stylets are sitnated far from each other and at a long or very long distance from the area; genital area and its surroundings naked, except the usnal, narrow arch ontside each genital aperture.

MALE. Length 22 mm . More like the male of S. chinensis (pl. III, fig. 1 a) than like that of the preceding species. The body is chmmsier than in this species, the median frontal plate is shorter, with converging margins and rounded anterior angles. The tronk-legs more slender than in S. cleyontula; the terminal seta on the branch of the anterior legs shorter than the leg, that on the imer branch of the posterior pair slightly longer than the leg.

OVISACS. Comparatively larger than in the preceding species, differing little from one another in size.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.

HABITAT. The marsupium of Paratylus Soormmerdamii (M. Edw.) from Demmark. Found only in five specimens. Two of these contained only one adnlt female each, the third had an adult female and a male, the fourth one male and seven ovisacs. The fifth specimen contained no female, but thirteen ovisacs, but whether all these belong to one single female which has fallen out, camot be decided; some of the sacs contain almost fully developed larva.

3. Sphæronella danica n. sp.

(PI. II, fig. 4 a-4 e; pl. XIII, fig. 2 a.)
FEMALE. The largest specimen was 88 mm . in length, 76 mm . in breadth. Shape of the body much the same as in S. chinensis. It will be to the purpose to begin with a description of this specimen. The most proximal part of the basal joint of the maxillæ is hairy on its inner side; there is moreover an area densely covered with hairs in front of, and a similar one behind the base of the maxillipeds. A part of the tronk behiud the head is furnished with a number of fine, simple hairs, the remainder of it is naked. The genital area (fig. 4a) is somewhat broader than long, the greater part rather solidly chitinised; the genital apertures at moderately long distance from each other; the caudal stylets far from each other, but not very far from the posterior margin of the area; between and behind the genital apertures the area is furnished with normal, fine hairs, and so is the skin extending fiom the area to somewhat behind the caudal stylets. - A much smaller specimen, only to mm. long, has a comparatively large head, and its trink is a little longer than broad. Distribution of hairs on the hearl as in the large specimen; the trunk seems to be quite naker, and the genital area, which was not cut off, is well developed and - as far as can be judged - seems to agree with that of the large specimen (a spermatophore was also attached to it). - In a somewhat smaller specimen, +1 mm . long, which was dissected, the hairs behind the base of the maxillipeds were wanting, the trunk was hairy anteriorly as in the largest specimen, but the genital area was not developer (pl. XIII, fig. 2 a), the more solidly chitinised part being represented only by a rather small area surrounding the entrances to the receptacula seminis (one of these is indicated by a dotted line). The genital apertures theuselves are as in the adult animal, but the caudal stylets are situated close behind them, and the surface between and behind these apertures extending beyond the stylets, is furnished with normal hairs. - Another specimen which is even a little smaller, measming 407 mm . in length, deviates in many respects from the preceding animals. The body is a nearly elongate oval; the head which takes up a good deal more than one third of the whole length, and which is very large, has, in addition to the hairs fond in the large specimen in front of and behind the base of the maxillipeds, conspicuous tufts or stripes of hairs on the inner side of the base of the maxillæ and on the skeleton in front of and
outside the articulation of these appendages. The trunk is closely covered all over with the peculiar membranons hairs which are mentioned above as having been foum on the anterior part of the trimk and on the genital area of the one specimen of S. elegantulu. - Two still smaller specimens - the smaller one only $\cdot 34 \mathrm{~mm}$. long and $\cdot 19 \mathrm{~mm}$. broad, - are very like the last-mentioned specimen, which shows that these three very yomg animals differ very much from the older ones in the hair-covering of the head and - particnlarly - in that of the trumk. As a matter of comse, the genital area is not developed in these small specimens, but the animal mentioned as measming 41 mm . shows that, at least sometimes, this area does not develop its final shape till some time after the animal has lost the lair-covering that was characteristic of it when young. For want of ampler material I camot decide whether this comse of development is the rule in this species.

MALE. A large specimen is $2 t \mathrm{~mm}$. in length. It is somewhat more clmmsy than the male of S. clegantula, but on the whole closely resembles this species, as e. g. in the shape of the median frontal plate, which, however, is a little shorter, and in the legs, the long terminal seta of which are longer than each leg; but the anterior pair of trmk-legs seem to be smaller, compared with the basal joint of the maxillipeds, than in the aforementioned species; the candal stylets are hardly so long. - The smallest male found is only 15 mm . long, but it seems to be just hatched, for the frontal plate is bent downward, the rostrom backward and the antennulæ tmon backward (comp. p. 60).

OVISACS. Are pretty large, but occasionally show great difference of size, being shortly oval or snb-globular.

LARVA. A single hinged specimen was fomd, but is lost.
POST-LARVAL DEVELOPMENT. Nine pupæ have been found, all closely corered with hairs (fig. $4 \mathrm{c}-4 \mathrm{e}$); the smallest 115 mm ., the largest $\cdot 25 \mathrm{~mm}$. in length. As for more particulars, I refer to the detailed accome on p. 59-60.

HABITAT. The marsupinm of Corophium crassicorne Bruz. from Demmark. In one specimen were formd one pupa and the smallest above-mentioned female; in another the smallest female but one and one male; in a third specimen a yonng female and a linged larva; in a fourth the largest female but one, one male and fom ovisacs of very different size; in a filth specimen a small female; in a sixth animal the largest female, one pma and two males, both fixed by a frontal thread, one of them being an adnlt, while the other was the above-mentioned, recently hatched individual. In a seventh specimen fom ovisacs were found, no female, but the anterior halves of two males, which had evidently been destroyed before the host was canght. Finally, in an eighth specimen, two ovisacs and seven pupe, two of which were sitnated each on one side of the marsmpial plate of the sixth (right) leg, one on the gill of the penultimate (left) leg, one on the inner side of the basal joint of the posterior left leg.

4. Sphæronella vestita n. sp.

(PI. II, fig. $5 \mathrm{a}-5 \mathrm{~b}$.)
FEMALE. The largest specimen (fig. 5a) is 49 mm . long and 335 mm . broad; the body is orate, and the proportionally very large head occupies abont one third of the total length; another specimen of the same slape is only 44 mm . long. Tufts or stripes of hair are fomd on the imer side of the basal joint of the maxillæ, on the skeleton outside their articulation, in front of and behind the basal part of the maxillipeds, as well as above the middle of their articulation. The trunk is densely covered all over with peculiar, very broad, apparently shorter than broad, obliqnely proceeding »scales", which are transformed hairs. The genital area of the large specimen (fig. 5 b) is cut off'; it was shortly oval and somewhat broader than long, yet somewhat longer compared with the breadth than the preceding species; its solid chitine forms a ling which is rather broad in front, posteriorly it seems to be open; the distance between the genital apertures is moderately great; the caudal stylets are sitnated on the posterior margin of the area, and the distance between them is rather considerably smaller than in the preceding species; the region between and behind the genital apertures and the part surrounding the candal stylets are closely covered with the above-described "scales", while the remainder of the skin inside the ring has much fewer "scales", and the ring itself is almost maked. The genital area of the smaller specimen seems to agree essentially with that of the larger one.

MALE. Length: 234 mm . Resembles the male of the preceding species, but the median frontal plate seems to be a little longer and the second pair of legs a little shorter.

OVISACS. They are somewhat to not very much smaller than the females.
LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsupium of Microprotopus muculatus Norm. from Denmark; found only in two specimens. In one ammal were found: one female (the largest), one male and fom ovisacs, which are oblong, glned together and contain larve which are more or less, but not fully developed. In the other specimen were fumd: one female, one male and five ovisacs, each of which was somewhat smaller than the female.

REMARKS. In the shape of the body, the hairs-tufts on the head and the pecnliar close covering of "scales" on the trunk, the two females found agree essentially with the scarcely halfgrown or very small fenales of S. danica; they are, however, somewhat larger than these; each of them had a spermatophore attached to it and a developed genital area, from which we may conclude that they are both adnlt and have laid the orisacs which were found together with them. This supposition is confirmed by the circumstance that the hosts are too small to contain parasites of the size of S. danica.

5. Sphæronella Leptocheiri n. sp.

(Pl. XIII, fig $3 \mathrm{a}-3$ e.)
FEMALE. The only specimen found (fig. 3 a) was 76 mm . long and 64 mm. broad; its head somewhat exceeding middle size, the trunk almost globular. On the sub-median skeleton of the head (fig. 3 c) there are no hairs at the articulation either of the maxille or of the maxillipeds, but a few hairs are found (thongh not drawn in the illustration) at the base of the inner side of the basal joint of the maxillæ. The trunk is naked, except a comparatively small area behind the median part of the head, which is provided with a number of extremely short and fine hairs. Genital area (fig. 3 d) much as in S. Atyli, but the anterior extremities of the genital apertures come much nearer to each other, and the ring is somewhat narrower. The distance between the candal stylets is very great, and between the stylets and the posterior margins of the area it is rather considerable; the whole area and its surroundings are naked.

MALE. Length 20 mm . (fig. 3 e). The shape a little more clumsy than in S. clegontuln: the median frontal plate of medium length, its lateral margin somewhat converging, but the anterior angles are acute and a little prodnced. The trunk-legs a little longer, or at least not shorter, than the long terminal seta.

OVISACS. I have only found an incomprehensible abnormity, viz. the outer membranes of two ovisacs, one of them containing only one single egg, the other a large and a small one; otherwise they were empty bags.

LARVA and POST-LARVAI DEVELOPMENT. Unknown.
HABITAT. In the marsupium of a Leptocheirus guttatus Grube, taken by me near Siracnsa on rocky gronnd, twelve to twenty-five fathoms, in June 1893, were found: one female, two males and the two just mentioned, nearly empty membranes of ovisacs. (The lost is determined by the Rev. Th. R. R. Stebbing).

6. Sphæronella messinensis n. sp

(Pl. XIll, fig. 4a-4c.)
FEMALE. The only specimen fond (fig. 4 a) was 44 mm . long and 32 mm . broad; the body sub-ovate, the head proportionally large and the trunk scarcely longer than broad. In fig. 4 b are shown some hairs at the base of the inner side of the basal joint of the maxillæ, and on the sub-median skeleton a row of hairs in front of the anterior inner angle of each maxilliped. The trunk quite nakerl. The genital area (fig. 4 c) of similar shape to that of S. elegantula, consequently much broader than long, the larger part solidly chitinised; distance between the genital apertures moderately great, but they are turned so much that their inner and front extremity advances only very little beyond the posterior extremity, the
result being that their muscles are nealy parallel with the median line. The candal stylets are sitnated far from each other, but close behind the posterior margin of the genital area. The whole area and its smroundings are naked.

MALE. Unknown.
OVISACS. Three oblong sacs have been fonnd, their average length being like that of the female.

LARVA. Unknown.
POST-LARVAL DEVELOPMENT. A pupa densely covered with hairs all over is 22 mm . in length and 16 mm . in breadth.

HABITAT. In the marsupimm of a specimen of Gammaropsis melanops G. O. Sars, taken by the author in the harbom of Messina in May 1893, were found: one female, three ovisacs and one pmpa. (The Rev. Th. R. R. Stebbing has kindly determined the host; he writes: "The specimen is imperfect, but appears to be Gammaropsis melanops G. O. Sars«).

REMARKS. It mnst be smpposed that the ovisacs were laid by the small female which was fornd together with them, and to which a spermatophore was attached, for the host is so small that the parasite must of necessity be small too. So it appears that in this respect this species is like S. restita, but there is this difference, among others, that the tronk and the genital area are perfectly naked.

7. Sphæronella chinensis n. sp.

(Pl. II, fig. $6 \mathrm{a}-6 \mathrm{f}$; pl. III, fig. $1 \mathrm{a}-1 \mathrm{c}$.)
FEMALE. The only specimen fond (fig. 6a) was 1.01 mm . long and 88 mm . broad; the head a little above medinm size, the trink globnlar. The base of the maxillæ and the part in front of the maxillipeds covered with lairs, as in the preceding species. The trunk rather scantily furnished with most peculiar membranons hairs, the base of which forms a very broad and flattened oval, and from this broad base the flattened hair increases somewhat in breadth, whereupon it is romnded off rather abruptly, which gives the whole hair almost the outline of an egg, the tapering end of which is cnt off. The genital area has about the same shape as in S.vestitn, so it is longer compared with the breadth than in the nther species, and forms a short oval, but the larger part of it is solidly chitinised; the distance between the genital apertures is a little shorter than in S. vestita, but their form and direction are as in this species; the distance between the candal stylets is of medium length and about equal to their distance from the area. The area is provided with membranons hairs, which in several places form a covering as close as the "scales « in S. vestita; finally, the surface extending from the area to somewhat beyond the candal stylets is furnished with similar hairs; the greater part of these hairs are much narrower than those of the trunk and also different in shape, the hair in its proximal part being of equal width and then gradurally tapering ends in a point.

MALE. The ouly specimen fomid (pl. III, fig. 1 a- 1 h) is 174 mm. long. The body comparatively somewhat shorter and broader than in S. eleguntula; the median frontal phate of medium length, a little hroader at the end than behind the middle, with rounded anterior angles. Trunk-legs, the first pair barticularly, a little shorter and somewhat more slender than in S. elegrentulu and a little shorter than the long teminal seta.

OVISACS and LARVA. Unknown.
POST-LARVAL DEVELOPIENT. Two pmax have been fomud, one of them 146 mm . long (fig. fic), in which no animal had as yet developed itself (fig. (ie) (the strongly coagulated contents are marked in the drawing ly darker shading); the other, " 4 mm . in length (fig. fid, lair-covering omitted) contains an almost fully developed female (fig. 6 f). Both pupre, a more detailed mention of which is given on p. $58-60$, are closely covered with hairs all over, except on the area in front of the month.

HABITAT. The marsnpimm of Corophiem Bomellii M.-Edw. fiom Hong-Kong. In one specimen were found: one female, one male and one puna, in another one pua. The hosts were taken by H. Koch (1872) and kindly detemined for me by the Rev. Th. R. R. Stebbing.

8. Sphæronella antillensis n. sp.

(PI. III, fig. 2a-2f.)
FEMALE. There have only been fomud rery small, recently hatched specimens and a single large one, which was quite torn. We hegin by describing the latter: Rather few hairs are seen on the proximal part of the imer side of the basal joint of the maxilla, and a small tuft in front of the foremost imer angle of each maxilliper. The trunk is quite naked. The genital area (fig. 2 d) chitinised and shaped almost as in S. Atyli, but the anterior and posterior margins are somewhat less concave; the distance and position of the genital apertures as in the lastmentionerl species, but the caudal stylets are somewhat closer together and only at a short distance from the posterior margin of the area; the area and its smomblings naked. - In the three young ones, two of which are recently hatched and the thind on the point of monting (fig. 2 c), the hair-tufts on the head are exactly like those of the adult specimen. In the two specimens the tronk is naked, in the third it is fumished with a umber of exceedingly shont and fine hairs, which occupy a short part behind the head. The genital area is not developed, thus agreeing with the above-described area in a young one of S. danica; between and behind the genital apertures are found a number of very fine hairs.

MALE. Unknown.
OVISACS. Of medium size, somewhat elongate (fig. 2 b); an ovisac which was measured appeared to be 35 mm . in length and $\cdot 27 \mathrm{~mm}$. in breadth.

LARVA. Fig. 2 e shows the drawing of a lara (of the natatory legs mly the base is represented); it measures 15 mm . in length, and it is nsed as type in the description on p. 105 of the larva in this group of species.

POST-LARVAL DEVELOPMENT'. One pupa, 185 mm . in length (fig. 2 f) is naked on about the front halt of its body, while the posterior part is furnished with mmerous very fine and short hairs. Another specimen, 172 mm. in length, is well provided with hairs all over, like the pupae of S. danica and S. chimensis. A third specimen (fig. 2 a and fig. 2 c) had lost the foremost thirl part of its skin, where a roung female, 245 mm . long, was just emerging; the part of the skin of the pupa which encloses the trunk of the female has the nsual hair-covering.

HABITAT. The marsupium of Corophimm Bonellii M.-Edw. from Cuba. In one specimen were fornd a very yonng female and one larva (or perhaps three larvæ) ${ }^{1}$); in another the female shown in fig. 2a, which has burst the skin of the pupa; in a third the pupa drawn in fig. 2 f ; in a fourth a recently hatched female; in a fifth the anterior part of a female, fom ovisacs ghed together and a pupa covered with hairs, hinged on a gill; finally, in a sixth specimen were found one large, but torn female and two ovisacs. The hosts were taken by Mr. Iversen (1871) and determined by the Rev. Th. R. R. Stebbing.

REMARKS. It is most remarkable that both this and the former species, S. chinonsis, occured in hosts of the same species, from two localities as far removed from each other as Cuba (West-Indies) and Hong-Kong. These localities are mo donbt correctly stated, as it is scarcely possible that there can be any mistake in the old labels on the two glasses which contained the hosts. And indeed, there is a great difference, not only in the haircovering of the tronk, but also in the shape of the genital area in the females of the parasites fiom the two localities, so that one is perfectly justified in establishing them as two separate species. - Whether the afore-mentioned difference in the hair-covering of the pupe is of any importance, camot be decided from this find.

9. Sphæronella Calliopii n. sp.

(PI. III, fig. $3 \mathrm{a}-3 \mathrm{l}$.)
FEMALE. A large specimen is 2.38 mm . in length and 205 mm . in breadth, and the head, which is rather small, is well defined from the sub-globular trunk. In somewhat smaller specimens the tronk is more oblong. The median part of the frontal margin is provided with short hairs (fig. 3d). Antemmlæ of medimm length, 3-jointed, with rather short terminal setæ. Antenmæ small, but distinct, the nmmber of joints - probably two -

[^7]conld not be ascertained; the teminal seta is rather long. The month is rather large; the month-border of medimm breadth; the maxillæ provided with a well dereloped additional branch. The maxillæ moderately large, the distal margin of the losal joint is furnished with hairs along the larger part of the articular membrane (fig. 3 c). The maxillipeds (fig. 3 f) scarcely of medium length, all joints separated, the lasal joint somewhat chunsy, provided at its distal margin with a fer short rows of haiss, a similar row a little ontside the middle of the inner margin, and a tuft at the same distance from the base on the opposite margin; the terminal joint ending in three points. The snb-median skeleton between the rostrm and the maxillipeds consists of a pair of moderately narrow lists on each side; the skeleton between the maxillæ and the maxillipeds has a long thansyerse belt of hairs, some of which are long (in fig. 3 d the hairs are only drawn on one half of the head.) The lateral margin of the head, as far forward as somewhat behind the base of the antennulæ, is furnished with numerons moderately long hairs, a little outside of which another row of similar hairs, advancing forward outside the base of the antenmule to somewhat in front of it. The trink is closely covered all over with short, most peculiar hairs, each of which is divided from its base into three branches, the central one of which is double the length of each of the other two. Trmk-legs are found. The genital area is much narrower than the head, it is as long as broad (fig. 3 g) and solidly chitinised all over; the oblique genital apertmes are rather far apart, the caudal stylets situated close together between the distal parts of the genital apertures. The whole genital area is almost naked, except some rows of normal, fine hairs between the genital apertures, furthermore, a crescent-shaped area in front of and outside the anterior half of the genital area is likewise naked, whereas the peculiar haircorering of the posterior part of the tounk extends $n p$ to the candal stylets and to the posterior extremities of the genital apertures.

MALE. A large male is 30 mm . in length, whereas an abnormally small, probably far from adult specimen is only 182 mm . long; the proportion between length and breadth is approximately as 4 to 3 . So the male is rery small in proportion to the adnlt female (fig. 3 b : fig 3 a). The head is about the size of the trunk (fig. 3 h and 3 i). The frontal border is very considerably prodncerd, and its margin fumished with a row of fine, very short hairs; it is crenate, being divided into three pairs of romded lobes, the outermost pair of which is much lower and broader than the others. The antemmle much like those of the female. The antemm shost, laving at least tro joints; terminal seta long. The rostrm, maxillulæ and maxillæ nearly similar to those of the female. The maxillipeds difler from those of the other sex in having the basal joint longer, more slender and almost naked. The smb-median skeleton withont processes and naked. The lateral margin of the head fringed with hairs of medium length, and a little in front of the posterior end of the margin originates a very narrow stripe of long hairs, whicli runs upward across the side, and further in a somewhat oblique line a little backrard across the back of the anjmal, the hairs being exceedingly long in the dorsal part of the stripe. Behind this stripe, the back,
the sides and the posterior part of the amimal are very closely covered with tiny dots which resemble the base of fine hairs, yet no such hairs could be seen. From the outer angle of the first pair of legs this curious area is crossed by a narrow naked stripe which runs upward in an oblique direction and somewhat backward across the side and the back (fig. 3 i); the ventral surface of the trumk between the legs and the caudal stylets is covered with moderately long hairs. The first pair of legs are good-sized, with a broad basal part and both branches well developed; the immer branch, which is a little shorter than the outer one, is pointed, the outer branch is blunt, terminating in two setæ, one of which is plumose and double the length of the branch. The second pair of legs about as long as, or a little shorter than, the outer branch of the first pair, having near its base a short conical outer branch with a short terminal seta, whereas the terminal seta of the inner branch is still longer than that of the outer branch of the first pair of legs. The candal stylets of moderate length, terminating in some setæ, the longest of which is only a little longer than the stylet.

OVISACS. Globular or oval (fig. 3 c) and rather small in proportion to the adult female (fig. 3a); the eggs in each ovisac comparatively small and pretty momerous.

LARVA. The length of a free specimen (fig. 3 k) 24 mm . The cephalothorax ovate. The front (fig. 31) has an oblique list inside the anterion angle of each antemula; this appendage is 2-jointed, its olfactory seta reaching somewhat beyond the middle of the cephalothorax, and being somewhat more than donble the length of the antemula. The antennæ a little shorter than the antemmix, 3 -jointed, first and second joints of equal length, the third joint short, provided with a terminal seta which is of equal length to, or longer than, the two last joints combined. The maxillule each with four branches, the foremost and imner one of which is rather short. the three others long and powerful, the hindmost bending backward and distinctly plmmose. The maxillæ normal, with smooth joints. The second joint of the maxillipeds slightly longer than the third one, the fourth joint with a few setæ inside the apex. The thick seta at the posterior angle of the first abdominal segment reaches somewhat beyond the extremity of the caudal stylets; the third segment is very short, and the candal stylets more or less distinctly set off, their terminal seta being abont as long as the cephalothorax.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsupium of Calliopius laviusculus (Kr.) from the East coast of Asia between lat. $40^{\circ} \mathrm{N}$. and lat. $51^{\circ} \mathrm{N}$. In a large material were found altogether seven specimens infested with parasites. One specimen is from lat. $40^{\circ} \mathrm{N}$. , long. $134^{\circ} \mathrm{E}$., Capt. Andréa, 1869 «; in its marsupium were found two moderately small females, the smallest male formd, no ovisacs, but mmerous - about thirty-three - free larve. Three specimens are from »lat. $45^{0} 40^{\circ} \mathrm{N}$., long. $139^{\circ} \mathrm{E}$., Andréa, 1869 «; in the largest of them were found six females, two males and twenty-five ovisacs, in the second specimen four females and six ovisacs, in the third three females, twenty-four ovisacs and at least two males (the host has
not been closely examined). Two specimens are from "lat. $49^{\circ} 30^{\prime} \mathrm{N} .$, long. $142^{\circ} 8^{\prime}$ E., Sartung in Sachalin, Andrea, 1869"; they have not been clnsely examined. One specimen is from "lat. $51^{\circ} \mathrm{N}$. , long. $141^{\circ} 20^{\circ} \mathrm{E}$., sin sea-weed ", Andréa, 186°, and in its marsupimn were fomd: me female, fire males and eight ovisacs (none of them containing developed larve). - In several specimens the marsupinm was very much extended by the parasites; the hosts were always sterile.

REMARKS. The female is easily recognised by its hair-covering and its pecnliar genital area; the male differs from all other species by its crenate fromtal margin and by the peculiarly dutted surface of the hack and the sides of the tronk.

With regard to the determination of the host, I will add that I myself was incapable of distinguishing the numerous specimens from East Asia from Greenlandish specimens; therefore I sent some of the non-infester Asiatic specimens to Prof. G. O. Sars, who in his new important work about the Norwegian Amphipoda, writes on 1. 450 , that he was mable to distinguish them from the Norwegian Call. Imviusculus. So it is interesting that I have found no parasite in specimens from Greenland, nor in any of the very numerons Danish specimens which have been referred to this species, but it must be observed that in Sars' opinion these amimals belong to Call. Rathliei (Zaddi), about which, however, Sars himself does not seem to be absulutely certain, whether it can be maintained as a species.

10. Sphæronella irregularis in. sp.

(Pl. Xill, fig. 5 a-5d.)
FEMALE. The only specimen found (fig. 5 a) was 73 mm . long and 59 mm . broad; the body is ovate, the head tolerably defined. The sub-median part of the frontal margin furnished with a mumber of moderately long hairs. (The antemnula broke off under the preparation). The antemme 3-jointed, with a terminal seta (which broke off). The maxillie normal. The maxillipeds with all four joints distinctly separated; the basal joint naked, the terminal joint with trifid apex. The sub-median skeleton consists of narrow lists, and a distinct, centrally minterrupted, list rums between the head and the tronk; between the base of the maxillæ and the maxillipeds roms a pretty long transverse stripe of long hairs. The lateral margins of the head with a thin row of moderately long hairs. The whole surface of the trunk is rather sparingly trimmed with peculiar hairs, which consist of a very small but comparatively thick basal part, from which proceed two, sometimes three hairs, of which the one proceeding from the centre of the basal part is always much longer than the other or the two others. The trunk-legs are distinct. The genital area (fig. $\overline{5} \mathrm{~d}$) in my only specimen is so irregnlar in shape that it most be misshaped; it is a little narrower than the base of the head, most of its median part is thin-skinned, the more solidly chitinised part forming a kind of heart-slaped ring with an opening to the front. The genital aper-
tures are rather far apart and turned forward in an oblique direction: the skin between them is closely corcred with normal hairs of medium length, and this hair-coat extends forward as far as to the wrifices of the receptacmla seminis and backward as far as behind the genital apertmes, whereas the pecoliar hairs of the thonk ale fonnd on mearly all the remainder of the area. The well-developed candal stylets are sitnated within the chininsed part, close together a little behind the genital apertures; each of them is provided with two setæ, one of which is exceptionally long.

MALE. Unknown.
OVISACS. They differ somewhat in size and are more or less oblong; an ovisac of medium size (fig. 5 b) is 44 mm . long, 36 mm . broad; the eggs are large and not numerons.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. In the marsupinm of a female of Metopa rubrovitata (G. O. Sars were found one female (witl three spermatophores) and form ovisacs.

II. Sphæronella paradoxa n. sp.

(Pl. III, fig. 4 a-41; pl. IV, fig. 1 a- 1 h.)
FEMALE. A very large specimen is 1.26 mm . in length, the animal represented in fig. 4 a is 92 mm . and that in fig. 4 b only 71 mm . in length. In the older specimens the body is not regularly globular, for its ventral surface shapes itself more or less conspicuonsly into a very broad, low cone, near or from the top of which proceeds a short thread by which the animal is fastened in the marsupium of the host: in consequence of this shape the animal does not show its longest dimension in the distance from its small, but well defined, head to or behind the genital area. In order to explain these peculiarities it will be to the purpose to mention the young specimens. A young animal which is breaking ont of the skin of the pupa (fig. 1 g) is 207 mm . in length, with an oblong, nornal trmak. A somewhat larger specimen, 36 mm . long, is represented in fig. 1 h ; at some distance behind the middle of the ventral surface of the trme we see a proximally broad, short, conical projection (t), which teminates in a short, pretty thick thread, the end of which is expanded into a small disk (n) and this disk is fastened, e. g. to one of the gills of the host. In the specimen represented the conical part has been flattened and pushed to one side. This attuchment continues throughout the life of the animal, and as a mle the thread gets very much twisted (fig. 4 a and fig. 4 b). hecause the anmal tums itself, and at the same time it gradually gets its longest diameter from the base of the thread, or a little behind it, up to the dorsal smface somewhat behind the head, whereas the genital area, the place of which is shown in fig. 4 b by a spermatophore, becomes situated more or less high up on the dorsal surface; in other words: nearly the whole rentral surface forms a much stronger, somewhat conical curre and a much more extensive area than the back, which no
dombt has something to do with the strain caused by the attachment. As fig. ta shows, the animal is almost symmetrical.

The frontal margin is finged with short, fine hairs (fig. 1a). The antemula are bather long, with rery long terminal seta. The maxilnalæ with well developed additional hanch. The maxillx and the maxilhpeds momat, naked, the latter par having all four joints distinctly separated, and the terminal joint ending in three or fom points. The submedian skeleton with a tolerably broad list near the maxillie; a list hetween the head and the tronk which is mot intermpted in its centre; no hairs whatever smomming the base of the varions appemdages. The lateral margin of the head provided with a narow stripe of rather short hairs. The tromk perfectly maked; tronk-legs very small, easily form in small specimens, but scarcely to be detected in large ones. The genital area (fig. 1b) is narower than the heal and somewhat broader than long; its chitinised part forms in posteriorly somewhat concare rather marow bing, the anterior half of which is more feebly chitinised than the posterior part, or, as in fig. 1 b , it is sometimes altogether wanting; the grenital apertures are sitnated near each other and turn forward in an oblique direction. The caudal stylets are tomd close together on the chitinons ring quite near the genital apertmes; at least in two adnlt specimens they were withont setie - which may have been broken off by the preparation, tor they are fonnd in small specimens (fig. 1 g and 1 h). (Besides in fig. 1 b are seen the orifices of the receptacula seminis, which are marked by a doted line). Genital area and smrommbings naked.

MALE. A large specimen is 27 mm . in length. The borly is somewhat elongate wal, the breadth being about one third shorter than the length, conserfently it is of pretty gnod size in proportion to the female (fig. 4 c: fig. + a). The head is somewhat larger than the tronk (fig. 4h and 4i). The frontal borler is rather produced, its margin evenly cmrved and maked. Antemmbe, antemm, month, maxillule and maxillæ essentially as in the female (fig. 41 will give an idea of a strongly protroding rostrum and show the maxillula, with its additional branch proceeding from a kind of foot, and the antenna). The maxillipeds very long and slender, all joints well separated, the basal joint provided with a few hairy spots. The sub-median skeleton with all three pairs of processes; the first pair (at the base of the maxillæ) are blunt; the second pair which originate nearly at the anterior angle of the base of the maxillipeds, are long, tum backward and are distally somewhat curved, and between their posterior parts are found the thind pair of processes, which are pointed, but not half the length of the second pair. The lateral margin of the hear is provided with a stripe of moderately long hairs, and from its posterior end, which curves npward, the hair-covering is continned oblituely upward and sumewhat backward across the side and back of the animal: behind this line, the back, the sides and the ventral surface of the trunk are covered with hairs of medium length, yet on the back, somewhat behind the anterior limit of the hair-covering, we see a transverse area which is maked and rather short (at the median line); the anterior part of the ventral surface is also naked. The head
of the male in its posterion and lateral parts shows the peculiar featme (mentioned above on p. 42) of large, hollow spaces beneath the skin (fig. 4 k).

The first pair of trmk-legs are long and consist of one branch, and it is no doutht the onter branclu which is preserved (sometimes even it appears to be set off by an articulation); the peduncle is long, proximally bather large, partly hainy; the banch ends in a seta whol is nearly as long as the whole leg. The second pair of legs consist of a shorter, cylindrical hasal part and a somewhat longer, a little more slender, cylindrical branch, which terminates in a seta which is even considerably longer than that of the first pair of legs. The candal stylets are thick, their teminal seta being even longer than that of the second pair of legs, and abomt half to more than hatf the length of the whole animal. - The mate is frequently formond linged by a frontal thread (fig. th, s) which measmes about three eighths of the length of the body, and the distal pat of which dilates gradually towards the end.

OVISACS. They are oblong, varying firom a moderate to a very large size: the specimen represented in fig. $t d$ is $(69 \mathrm{~mm}$. in length and 50 in breadth; it contains rather numerons eggs which are comparatively large.

LARVA (fig. 1 c). Length $2 \cdot 2 \mathrm{~mm}$. The borly slemder; the rephalothorax abont $2 / 3$ longer than broad; the front with an obliqne list inside the anterior angle of the antemmulx. Antemmer 2-juinted; olfactory seta companatively shom, less than lomble the length of the antemmla and abont a thind of the length of the rephalothorax. Anteme considerably shorter than the antemmla, the first joint (comp. fig. 1 e , for in fig. 1 c there is a fant in the engraving) pretty thick, of the same length as the second one, third joint short, and the terminal seta equalling in length the two last joints combined. Of the maxilhize we find the posterior branch and one of the anterior branches in the shape of long sete, the himdmost of which is naker, and close in front of its base is seen a rather small conical process (fig. 1e), which is a rudmentary branch. Maxille and maxillipeds normal, with smooth joints. Abdomen chiefly as in S. Celliopai; however, the last segment and the candal stylets which are distinctly set off, are a little larger, bont the teminal seta is scarcely so long, a little more than halt the length of the animal.

POST-LARVAL DEVELOPMENT. The attachment of the larva and subserqent great change of form (fig. 1d), as well as the highly interesting development, is described in detail above, p. $57-58$, to which we refer.

HABITAT. The marsupinm of Bathyporeire norregica (G. O. Sars, B. pelagica Sp. Bate and B. Robertsonii Sp. Bate from Denmark. In a consideralle material I fomm altogether eleven infested specimens, two of which are B. noregica, four B. pelagica and five B. Robertson i^{1}).

[^8]1 can indicate the special localities of only three specimens of B. pelogica: they were all taken in the Kattegat on the cruises of the Hauch, two at St. 486 (in a depth from between eight to eighteen teet, on sandy bottom, and the third at St. 113 (depth: four fathoms, on coarse, white sand). - In order to give an idea of the unique degree in which this species infests its lonst, it will be sufficient to copy my notes on the comtents of the marsupium in five of the most infested specimens. In one animal were fomul: three large females, all attached, one to a gill, the other to one of the plates of the marsupium, further: two very small attached females, seventeen males, three good-sized ovisacs and two larve, one of which was hinged to a gill. In another specimen were found: one large temale, tell males (at least three of which were hinged, one on each side of the same gill, the third to another gill, and they were so solidly attached that I could examine the phenomenom more closely); further: one ovisac, one rather broad larva and four thick larva ("male pupac). In a third specimen were found fom females of rery different size (in one specimen, the longest diameter of which measured 41 mm ., the ventral thread was 13 mm . in length), eight males, fom ovisacs, one narmower and one broader larra, as well as one mmale pupa. In a fourth specimen occurred: one large and two small females, eight males, no ovisacs, fom broad larva, sixteen "male pupe< (six of which were hinged on the gill of the third right leg. together with a broad larva) and one temale pmpa.

In the marsupium of three specimens of Perioculodes Tongimanus (Sp). Bate) $(=$ Monoculordes Grubei Boeck) from Demmark I have fomnd females which I cannot possibly distinguish from this species. In one specimen occurred: one female, the longest diameter of which is 47 mm ., and four ovisacs of sub-egual size, one of them was 39 mm . in length and 30 mm . in breadth; on each of the other two specimens was fond only one female, the larger one of which measured 71 mm . On accomnt of similarity in their mode of attachment, in the structure of the antennule with their long terminal setz, in the hairs on the frontal margin, in the slape of the maxillæ and of the maxillipeds and in the essential features of the structure of the genital area, I must for the present admit these animals as belonging to S. parceloxa, but as long as the male is not known, it is safer not to pronome any lefinite judgment abont such small and rather difficult forms.

REMARKS. The name of the species is chosen on arcoment of the very peculiar, hitherto unique, rentral attachment of the female.

12. Sphæronella abyssi n. sp.

FEMALE. The only specimen fomed was 9 mm . in length, $1 \cdot 13 \mathrm{~mm}$. in breadth, somewhat irregularly crooked and rather flattened (fig. 2a). The head was spreczed against

[^9]the lower smrace of the body, but was lost hefore I conld get it drawn. The tromk is naked; I have lound no trunk-legs, but they probably exist nevertheless. The genital area (fig. 2c) is much narrower than the head and ronsists of a plate well chitinised all over, which is about one half broader than long, with flatly convex anterior margin and deeply concave posterior margin; the genital apertures oblique, the distance between them moderately large (in the drawing they are both open) and two long-stalked spermatophores are shown, as well as laalf the stalk of a third one. The candal stylets (one of them is torn off) are sitnated close together on the smooth membrane adjoining the posterior margin of the plate; the latter and its surroundings are naked.

MALE. A good specimen is 25 mm . in length, and the body seen from below (fig. 2d), is regularly wate. Compared with the female it is about middle-sized (fig. 2b: fig. 2a). The head is considerably larger than the trunk. The front is not strongly produced, its anterior margin is evenly rounded and naked. The antemmbe are tolerably strong, the terminal setæ slort. The antemse are long, 3 -jointed, the conical terminal seta the length of the last joint. The month is small. The maxillulæ with an additional branch of medium length. The basal joint of the maxille has a conical process where the posterior and the inner side meet. The basal joint of the maxillipeds is long and naked, the three other joints distinctly separated. The submedian skeleton with the first pair of processes not developed, the second pair are long, somewhat diverging and feehly curved. The lateral margin of the head las only very few hais; somewhat before reaching its posterior angle the hair-covering expands a little, then continnes as a thin fringe upward and backward in a very slanting line across the back, leaving only a small dorsal part of the trunk to be seen behind it. On the back, close behind this finged line, is a considerable naked area, so that only the hindmost extremity of the trunk, the larger part of its lateral surface and the ventral surface between the legs have a rather thin covering of moderately short hairs. At the back and the siles we see empty spaces beneath the skin similar to those in S. pormdoxe. The first pair of trunk-legs are rather long; the clumsy peduncle is contimed in a pretty long and clumsy outer branch, while the inner branch is a short cone; the former terminates in two setr, one of which is considerably longer than the whole leg, nay even longer than the basal joint of the maxilliped, whereas the other seta is abont three times shonter; the imer branch ends in a long seta which is a little shorter than the basal joint of the maxilliped. The second pair of legs are moderately long', mbranched, ending in tro seta, one of which equals in length the short seta on the onter branch of the first pair of legs, whereas the second somewhat exceers in length the long seta of the lastmentioned onter branch. The caudal stylets are of medimm length, their terminal seta even somewhat longer than any of the other seta, and measming nearly two thirds of the length of the whole animal. - The frontal thread in the spetimen drawn in fig. 2 d is a little longer than the animal, very fine, and feebly expanded at its distal end.

OVISACS. They are of middle size; those hitherto tomd are somewhat integular from pressure, ohlong (fig. 2a), the longest $\cdot 69 \mathrm{~mm}$. long. The eggs large, not mumerons.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsupium ol Astyru ubyssi Boeck from Fimmarken (Norway). In one specimen were fomd: the female mentioned, with the two orisacs glued together and adhering to its foremost part, and a third one glned to its ventral surface, besides two males, one of which was fastened by the frontal thread shown in the drawing. In another specimen were found only four wrisacs, and these were discovered in examining some specimens of the abore-mentioned Amphiporl kindly offered to our Musemm hy Prof. G. O. Sars, unom which on my applying to him, he lent me his whole material for investigation, and I discorered the specimen which supplied me with both sexes of the parasite.

REMARKS. The description of the female is, mfortmately, very defective on account of the loss of the head. The male is exceedingly characteristic owing to the minue development of the terminal setæ of its trunk-legs and candal stylets.

13. Sphæronella Argissæ n. sp.

(PI. IV, lig. 3 a--3n).
FEMALE. The only adult specimen (fig. 3a) was somewhat shrunk and rendered crooked ly pressure; its length was 85 mm . a small, recently hatched specimen represented in fig. 3 c (eularged on the same scale as fig. 3a) and strongly magnified in fig. 3 d , is crooked and empty; its length is 15 mm .. The head is small and well defined. The frontal margin is naked. The antemmlæ have moderately long terminal setie. The antemme are 3-jointed, their terminal seta quite as long as the last joint. The month-border of medimm breadth. The maxillule with additional branch. The maxillæ smooth. The maxillipeds slender, their basal joint maked, the following three joints distinctly separated, the terminal joint pointed. The sub-median skeleton has narrow longitudinal lists inside the maxillæ and no real transverse list at the median line behind the base of the maxillipeds; it is naked all over. The lateral margin of the head provided with rather short and fine hairs. The trunk quite naked; the trunk-legs well developed in the young ones, and probably also present in the adnlts. The genital area (fig. 3f) broader than the head (fig. 3a), somewhat broader than long; the solid chitine forms a semi-circle which opens towards the front; it is very broad posteriorly and decreases gradually in breadth; its two extremities form irregular lobes with inward curving points; the posterior margin is semicircular: The genital apertures oblique, the distance between them of medimm length (in fig. Bf they are wide open and a spermatophore is attached to the entrance of me of the receptacula seminis). The caudal stylets are small but well developed and situated close together on the firm chitine immediately behind the genital apertmres. The whole genital area is naked (the young one represented in fig. 3 d has no genital area yet).

MALE. In the largest specimen the length of the body is 19 mm .; seen from below (fig. 3 g), it is short and hroad, only a little longer than broad, its circumference is nearly rombic, with broally romded angles. The second specimen is of the same length, but is considerably more slender, though scarcely as slender as the male of the following species (S. Metopec). So the male is rather small compared with the female (fig. 3a, where a male is marked m). The head is not a little larger than the trmk (fig. 3h). The front is somewhat produced, its anterior margin naked, slightly convex in the middle, slightly concave towards the sides somewhat in front of the antemnlæ. Antemula, antennæ, month aud maxillutæ essentially as in the female. The basal joint of the maxille has a short conical process on its posterior side. The maxillipeds of medimm length; their basal joint has several stripes and spots covered with hairs, and their immer margin an incision and two considerable, shortly conical processes, which can only be seen distinctly when looking at the maxilliped from in front (fig. 3 k) or from belind, so that all its joints present themselves on the same plane; the terminal joint has a small spine inside its point. The snb-median skeleton has its first pair of processes developed into short conical taps which tmon ontward, one behind the base of each of the maxillæ; posteriorly, between the bases of the maxillipeds, the skeleton takes the shape of a pretty considerable, somewhat raised area, the median part of which extends into a broader plate, cat off posteriorly; laterally are fomd the second pair of processes which ure slaped like long narrow cones, a little curved near their base and turned straight backward. The lateral margin of the head provided with a row of moderately long hairs, and from its posterior angle the hair-covering is continned as a belt upward and rather obliqnely backward across the side and the back. The dorsal part and the upper lateral parts of the head show hollow spaces beneath the skin. The dorsal surface of the tronk with a broad and pretty long, naked area, in front of which is found the above-mentioned, moderately narrow belt of hairs of medimn length; the lateral suffaces of the trmok, its posterior extremity and the greater part of its rentral smface are closely covered with hains of medimm length. The first pair of tronk-legs of abont medimm length; the basal part broad; the immer branch is a short knot, the outer branch of medium length and ending in two setre, one of which is almost half the length of the body, the second about a third or scarcely a thind the length of the first one, besides, the branch has on its outer side a conical process which ends in a short seta; the terminal seta of the imer hranch is scarcely the length of the shorter terminal seta of the onter branch. The second pair of legs are short, the inmer branch with one short and one extremely long terminal seta, which almost exceeds in length the one on the onter branch of the first pair of legs; the onter branch is a conical tay terminating in a thin seta which is a little shorter than the leg. The terminal seta of the candal stylets not more than abont thrice the length of the stylet, and the same length as, or shorter than the secondary seta of the onter branch of the first pair of legs.

OVISACS. They are very large and somewhat oblong (fig. 3 b); those I found were a little flattened, the one drawn is 74 mm . in length. Each of the orisacs containing numerous middle-sized egg's.

LARVA. The only sperimen found (fig. 3 n) is 2 mm . in length. Inside the base of the antemula in oblique, somewhat geniculated, pretty considerable list. The antennuia 2-jointed, their terminal seta exceptionally long; the olfactory seta scarcely half the length of the cephalothorax. The antemme somewhat shorter than the antemnule; the second joint of the same length or a little longer than the first one; third joint short, its terminal seta about as long as the whole antemna. Of the maxillule I have only been able to find a single rather short brancli on one side. The second joint of the maxillæ proportionally long and rather slender, the third joint comparatively short; the joints smooth. The abdomen much as in S. paradoxa, however, the long setre of the first segment extend a little further belind the candal stylets, and the terminal setie of these stylets are scarcely half the length of the body.

POST-LARVAL DEVELOPMENT. A single pupa (fig. 31 and fig. 3 m) has been found and is mentioned above on p. 56.

HABITAT. Argissa typica Boeck from the west-coast of Greenland. In the marsupium of a female was fornd the large female represented and a male attached to it, besides an unattached male, a larva and four ovisacs, two and two glned together, all without larve and not varying much in size. In an immature specimen without marsupium was found the pupa represented; in another young specimen the recently hatched female represented in fig. 3c and 3 d ; it was hinged to a gill by a rather broad, triangular (in fig. $3 d$ visible) adhesive plate, which on the gill expanded into a circular disk.

REMARKS. The female presents rery few peculiar characters, whereas the very beautiful male is distinguished from kindred species by several characters. A lateral view of the male, when placed under the microscope, so as to leave ont the dorsal outline, presenting only the part immediately above it, shows the peculiar aspect of the spaces beneath the skin represented in fig. $3 \mathbf{i}$.

14. Sphæronella Metopæ n. sp.

(l'l. IV, fig. 'a; pl. V, fig. la - 1g).
FEMALE. The specimen represented in fig. 1 a , which is the largest and best, is .40 mm . in length and 33 mm . in breadth; the head is tolerably large and well defined from the sub-globular tromk; probably the female can become somewhat larger. The firontal margin is naked (fig. 1 d). The antemule of abont medium length, with rather short setw. The antennæ good-sized, 3 -jointed; the basal joint short, the terminal seta about the length of the last joint. The mouth-border of about medium breadth. The maxillulit with well
developed additional branch. The basal joint of the maxillæ with a conical process on the boundary between the imner side and the posterior side. The maxillipeds tolerably robust; the hasal joint smooth and naked; (whether the second and the third joints are separated conld not be made ont with certainty); the last joint has a few short setee inside its point. The sub-median skeleton has narrow lists inside the maxillæ and a well-developed list between the head and the tronk lehind the base of the maxillipeds; no hairs on the skeleton between the appendages. The lateral margins of the head maked. The trunk maked; the truk-legs distinct. The genital area (fig. 4a) much narrower than the head, much boader than long; the solid chitinised part foms a somewhat simous semi-circle, which posteriorly has a narrow interruption at the median line, and anteriorly a very broad opening; the hindmost submedian lart is nearly straight, the anterior comers bent inward; the ring itself is rather namow except outside the posterior extremity of each genital aperture, where it expands on the inward side. The genital apertures are large, strongly curved and sitnated close together; the well-developed caudal stylets are found in very close proxinity on the soft skin which divides the ring on its posterior side. The genital area is naked, except a number of very fine hairs on the ring near the candal stylets and on a smaller spot behind them.

MALE. The only specimen (fig. $1 \mathrm{f}-1 \mathrm{~g}$) is 20 mm . in length; its breadth is a little more than two thirds of the length. This shows that it is tolerably small compared with the chief bulk of males, but extremely large compared with the female (fig. $1 \mathrm{~b}:$ fig. 1 a). The animal is flatly romded anteriorly and with very obtuse angles in the middle of its lateral margins; its lead is only a trifle larger than its trunk. The front is feebly produced, its margin is naked. Antemmæ, antennæ, mouth, maxillulæ and maxillæ much as in the female. Maxillipeds of medimm length, the basal joint with smooth imner margin, and a moderately large part of the outer surface provided with hairs, these, as usual, arranged in stripes and spots; the terminal joint as in the female. The sub-median sheleton with all three pairs of processes developed; the first pair, behind the maxillæ, are broadly romded, depressed, plate-like; the second pair long, slender, almost cylindrical and strongly diverging; the third pair are situated at some distance from each other between the second pair and are not half the length of these. The lateral margin of the head is furnished with hairs (and as in much the greater nomber of species, this hair-covering begins in front of the base of the antennulæ), continues in an oblique direction npward and backward across the side and the back, forming laterally a rather narrow band of moderately long hairs, being reduced on the back amost to a line of very long hairs. Behind this line the back has a long, maked transverse area, whereas the remainder of the back, the sides, the posterior extremity and the ventral surface - except on its foremost part - are closely covered with hairs of medium length. The dorsal and upper lateral parts of the head have hollow spaces beneath the skin. The first pair of trmb-legs are short, with a hroad basal part and two short, subcylindrical branches situated far apart from each other; the outer hranch ending in two seta, one of which is about the length of the second joint of the maxillipeds, whereas the
second is not much shorter than half the length of the body; the imer branch ending in a long seta which, however, is somewhat shorter than that of the onter branch, and which in the only specimen examined is rather molike in the two sides. The second pair of legs are much as in S. Argisse, yet somewhat more slender; the onter branch ends in a short seta, the imer one in two seta, which are both a trifle longer than the two setæ on the onter branch of the first pair of legs. The candal stylets are of medimn size, each ending in two seta, one of which is of the same length as, or a little longer than the stylet, the other abont five times the length of it.

OVISACS. They are sub-globular and disproportionately large; the longest diameter of one of the smallest is $\cdot 37 \mathrm{~mm}$., and of one of the largest, represented in fig. 1 c , even 41 mm ., consequently larger than the female (fig. $1 \mathrm{c}:$ fig. 1 a), but as all orisacs contain abont half-developed yomg ones and, as a matter of comse, are larger than those whose eggs have preserved their original form, these measmres camot be compared immediately and withont reduction with those of the other species. The eggs are rather few in number and proportionally very large.

LARVA and POST-LARVAL DEVELOPMEN'T. Unknown.
HABITAT. The marsupium of Metopa Bruzelii (Goës) from West-Greenland off Godthaab, „deep water« [probably $40-60$ tathoms], in Sertularia, C. Holbüll. In one specimen were fomd: one female and three ovisacs; in another: one female and two ovisacs; in a third: one female, one male, and three ovisacs glued together in a lomp. These three specimens were fomd in a material, of which five other specimens were infested with Stenothocheres egragius (comp. this species).

15. Sphæronella Holbölli n. sp.

(Pl. V, fig. $9 \mathrm{a}-2 \mathrm{~g}$.)
FEMALE. The largest specimen fig. 2 a is 1.44 mm . in length and 1.57 mm . in breadth. The head is rather small, well defined. Frontal margin maked. Antemmure, antemæ, month, maxillulæ, maxillee and sub-median skeleton much as in S. Hetope; there are, however, two lists between the head and the tronk behind the maxillipeds. The maxillipeds are of medium size; their basal joint having some small, scattered grous of short hairs, the three following joints distinctly separated, and the last joint ending in several very fine spiniform processes (fig. 2d). The lateral margin of the head hairy; the haircovering begins ontside the antemmla, continnes in a stripe of moderately long lairs and expands posteriorly into a comparatively broad area with shorter hairs. The tronk is naked; the tronk-legs distinct. The genital area (fig. 2e) a little narrower than the base of the head, much broader than long; the solid chitine forms an almost rectangnlar, transverse plate, which is somewhat narower anteriorly than posteriorly; the posterior angles are very
broadly rounded, the median part of the posterior margin has a broad and very deep incision; the median part of the plate, ontside and especially in front of the genital apertures, coisists of soft membrane. The genital apertures are rather large, strongly cured and situated pretty close together. The candal stylets are very small and sitnated near each other on the soft membranous part on a line with the posterior margin of the chitinous plate. On each side of this plate, at a considerable distance from the margin, tmons a very long, curved line of rery long, ontward turning hairs, and from the part between the genital apertures towards the candal stylets m fom stripes, anterioly very narow, posterionly broader, of extremely short, fine hairs.

MALE. The best preserved specimen has become crooked throngh pressure (fig. 2f); it is 21 mm . in length, consequently of small size compared with the female (fig. 2 b : fig. 2a) and has a broad shape similar to that of the male of S. Argisse (represented in pI. IV, fig. $3 \mathrm{~g}-3 \mathrm{~h}$), whereas in hair-covering and in the structure of the trmk-legs etc. it bears great resemblance to S. Metope (pl. V, fig. $1 \mathrm{f}-1 \mathrm{~g}$). The head seems to be somewhat larger than the trmak. The front is somewhat produced as in S. Argisse, but the margin scarcely concave in front of the antennulæ. Antemmlæ, antemæ, mouth, maxilluł and maxillæ essentially as in S. Metope. The basal joint of the maxillipeds has a short, broad, conical process on its imer surface, besides several groups or stripes of moderately long hairs; the last joint is digitated, at the apex ending in abont fom points. The three pairs of processes of the sub-median skeleton are somewhat like those of S. Metope, but the first pair are longer and more pointed, the second pair a little shorter and more or less diverging. The lateral margin of the head is fringed with somewhat longer hairs than in S. Metope, and from its posterior angle a somewhat broader stripe of longer, and dorsally very long hairs rums almost vertically upward across the side and the back; behind this stripe is a moderately long, naked, dorsal transverse area, whereas the remainder of the trink is covered with hairs as in S. Metopre, however, the hairs are proportionally longer and coarser. The dorsal and lateral parts of the head have hollow spaces beneath the skin. The first pair of trmk-legs nearly as in S. Metope; the most important difference is that the terminal seta of the imer branch is considerably shorter, and shorter than the distance between the base of the leg and the end of the onter banch. The second pair of legs are somewhat larger than in S. Metopa, but the shape and setæ are much the same as in this species. The candal stylets end in a single seta which is scarcely as long as in the preceding species.

OVISACS. They are comparatively rather small (fig. 2 c), sub-globular or oval, diftering rather slightly in size; one of the largest which is 63 mm . in length and 52 mm . in breadth, is represented. The eggs are proportionally rather small and pretty numeroms. LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT'. The masmpimm of Paramphithoe Bocehii H. J. H. from West-Greenland, off Godthaab, „deep watere [probably 40-60 fathoms\}, on Sertularia, C. Holböll. In
one specimen were found: one female and one male, and in front of the female were lying seven orisacs, behind it one; another specimen contained one female and one male.

REMARKS. The genital area of the female in several respects (shape, chitinisation and arrangement of hairs) deviates much from all the other species. By the name given to this species I have commemorated Lieutenant-Captain Inspector C. Holböll, to whom the study of Greenlandish Malacostraca owes so moch, and who more than half a century ago sent home rich collections of these animals. A considerable part of this material was worked ont by H. Kroyer. In the writings of this author we also find interesting biological observations by Holböll concerning freenlandish species of Lysianassida etc.

16. Sphæronella intermedia 11. sp.

(Pl. V. fig. 3a-31.)

FEMALE. The largest specimen is 89 mm . in length, $\$ 1 \mathrm{~mm}$. in breadth and somewhat flattened; the specimen represented in fig. 3 a is 57 mm . long and 47 mm . broarl. The head in the adult specimen is well defined and rather small. The frontal margin provided with fine and close hairs (fig. 3d). The antemulat moderately long, with long setæ. The antemae much as in the three preceding species, hut the hasal joint equals in length one of the two following joints. The good-sized mouth with a rather broad border. The maxillute with well-developed additional branch. The basal joint of the maxille without any process. The maxillipeds with a slender, naked basal joint, the three other joints all separater, the terminal joint has two short spines inside its point, and a single one on the ontside. The sub-median skeleton has a single, rather narow list inside each maxilla; a transverse area in front of the basis of each maxilliped is covered with momerous tolerably long hairs; between the head and the tronk two chitinised transcerse lists. The lateral margin of the head with a finge of hairs. which off the maxillæ and the maxillipeds spreads over a pretty considerable triangular area, The trunk very sparingly set with simple, rather short hairs, which are closest together behind the sides of the head; the trumk-legs distinct. The genital area (fig. 3 e) large, quite as boad as the base of the head (fig. 3 a), somewhat broader than long; the whole area forms a solid plate which is nearly heart-shaped, deeply incised in front and with a semicircular posterion margin. The genital apertures are somewhat curved, but their direction is nearly parallel with the median line of the amimal, and they are situated pretty near each other close behind the deep incision of the anterior margin of the plate. The plate is fumished with a number of irregnlarly scattered hairs, and the candal stylets are sitnated close together at a good distance inside the posterior margin of the plate, a little belind the genital apertmres. (In the illnstration we also see the orifices of the receptacula seminis, which are marked by dotted lines.)

MALE. The only specimen is 19 mm . in length and a trifle narrower; compared with the female represented, it is tolerably large (fig. 3 b : fig. 3 a), but only of medium size compared with the largest female. Seen from below (fig. 3f), the body is nearly pentagonal; the anterior outline, which only in its middle part is formed by the slightly curving frontal margin, but towards the sides of parts belonging to a lower level, is but feebly curved and comparatively broad, the lateral angles are ubtuse, but the posterior margin of the body forms a rather broad curve. The head is somewhat larger than the trunk. The aforementioned, scarcely prodnced frontal border has a fringe of hairs. The antemnnlæ are slender, of medium length and provided with long setæ. The antennæ and the maxillulæ much as in the female; the month smaller than in the latter. The maxille have a distinct conical process on the posterior side of the basal joint. The basal joint of the maxilliperls has a simate imer margin, its outer surface is supplied with hairs, and its anterior side has two transverse rows of tolerably long hairs; the last joint ends in three points of unequal length. In the sub-median skeleton are only found the two first pairs of processes; the first pair which are sitnated behind the maxillæ, are broad, somewhat prodnced and romded, the second pair which are sitnated between the maxillipeds, are scarcely of medimm length and feebly diverging. The lateral margin of the head fringed with long hairs, and the earshaped arch romd the base of the antennule distinguishes itself particuiarly by its very long hairs. The stripe of hairs which proceeds from near the posterior angle of the lateral margin, rmming npward across the side and the back, is somewhat more oblique than in S. Holbolli, and its hairs are somewhat shorter, otherwise the hair-covering of the tronk and its dorsal, naked transverse area are moch as in this species, and the same resemblance apmears in the empty spaces beneath the skin of the head. The first pair of legs consist of a very broad and rather long, hairy hasal part, from which proceeds a single moderately long branch, which terminates in a single seta of the length of the whole leg or of the first joint of the maxillipeds. The second pair of legs entirely like those of the former species, the only terminal seta of the imner branch abont the length of that of the first pair of legs. The very thick candal stylets have a terminal seta which is scarcely as long as that of the second pair of legs.

OVISACS. They differ very much in size, even if not containing larre. Of ten ovisacs belonging to the same female the smallest one is globular and has a diameter of 30 mm ., the largest (represented in fig. 3 c), is $\cdot 53 \mathrm{~mm}$. long and $\cdot 43 \mathrm{~mm}$. broad. In another female was found a still larger ovisac which is 64 mm . in length and 49 mm . in breadth. So these ovisacs are large compared with the females, and the eggs themselves are large and not mmerons.

LARVA. I have fomd two orisacs containing larve which were serviceable, yet not yuite capable of swimming away, and these specimens have served as models for fig. 3 h . A list curving somewhat like an S is seen inside the anterior angle of the antemma. The olfactory setil of the 2 -jointed antemulie is long, a little shorter than the cephalothorax.

The antennæ somewhat shorter than the antemmla, the first joint a little shorter and thicker than the second, the third joint short, and its seta scarcely as long as the two last joints combined. Of the maxilhur I have only found two seta. The second and third joints of the maxillæ proportionally pretty long; all joints smooth. The second joint of the maxillipeds shorter than the third one. The seta on the posterior angles of the first abdominal segment reach far beyond the candal stylets, which are small and distinctly separated from the small third segment. The body not having quite reached its final shape, the relative length of the terminal seta of the candal stylets camot be indicated with full certainty, but they are probably half the length of the body.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsupim of Bruzelia typica Boeck firom Norway. The species was discovered by Prof. G. O. Sars, who sent me one female and eight orisacs mutnally ghed together, two of them with the larva described. Later on he presented our Musemm with some specimens of the host taken at Mosterhavin in a depth of 150 fathoms, and in one of these specimens I found two ovisacs, beneath them the female represented, and behind this female eight orisacs glued together in a lump (none of them containing larvie), but I am uncertain whether all these ovisacs were laid by the female fonnd, or whether eight of them were not rather laid by a female which may have fallen ont. At last I bonght Prof. Sars' whole material and found in one specimen a female (the largest), a male and four good-sized ovisacs mutually glued together.

REMARKS. The species is nearly related to S. Hollölli, yet both sexes distinguish themselves from it by several good characters, the female e.g. by the fringe of hairs on the frontal margin and by the hairs in front of the maxillipeds, the male by the structure of the first pair of legs.

17. Sphæronella capensis n. sp.

(PI. V, fig. $4 \mathrm{a}-4 \mathrm{c}$; pl. VI, fig. 1a-1d.)
FEMALE. The only specimen (fig. 4a) was ${ }^{5} 2 \mathrm{~mm}$. in length and $4 \overline{5} \mathrm{~mm}$. in breadth, shortly ovate, broadest in front of the middle and scarcely as thick as broad. The head, which is well defined, and the genital area are both found on the ventral surface of the body, at some distance from the anterior and the posterior end respectively. The frontal margin naked. The antemulæ of mediun length, with long setæ, the terminal seta much longer than the whole antemula (fig. 1a). The antemne, the month, the maxilhut and the maxillæ much as in S. intermertia; the maxillipeds with a somewhat shorter, naked basal joint and with a pointed terminal joint, without distinct secondary spines. The sub-median skeleton with a moderately narrow list inside the maxillæ, maked all orer; behind the maxillipeds two transverse lists between the head and the tronk. The lateral margin of the head naked. The trink naked; only one trmk-leg is supposed to be fomm. The genital
area (fig. 1 b) broarler than the head (fig. 4a), a little broader than long, and consisting of a somewhat angular chitinous plate, which has a membranous part outside and behind the genital apertures. These apertures are somewhat curved, their direction is approximately parallel with the median line of the animal; their distance from each other is less than moderately great, and they are situated somewhat in front of the posterior margin of the area, but behind the middle of it. The whole area is naked, and I have been nuable to find caudal stylets. In the middle of the area we see the orifices (o) of the receptacula seminis, one of which (r) is represented by a dotted line.

MALE. The only specimen is 166 mm . long and almost as broad (fig. 1 c and 1 d); thongh actnally small, compared with the female, it is more than middle-sized (fig. 4 b : fig. 4a). Seen from below, in general shape and in most details it resembles the male of the previons species. The lead a trifle larger than the trumk. The frontal margin is naked. The antemulæ proportionally long, slender, with long setie. The antenmæ and the maxillulæ much as in the mevions species; the month small. The maxilla differ from all other species in the structure of the basal joint, which in its distal part close to the boundary between the imer side and the posterior side is provided with a protruding plate, the margin of which runs out into a number of spiniform, partly somewhat curved processes; the claw can be folled up along the imner side of this plate, which is very conspicmons in a lateral view of the animal (fig. 1 d); the basal joint, besides, has a knot-like protuberance on its outer side. The maxillipeds are long; their hasal joint has a sinnate immer margin and several shorter and longer transverse rows of moderately long hairs on the anterior surface; the terminal joint seems to be hifid at its apex. The sub-median skeleton has only the same two pairs of processes as the precerling species, the first pair somewhat produced and rounder, the second pair comparatively close to each other, rather short, triangular. pointed, slightly diverging. The ear-shaped arch smrounding the base of the antemnla is furnished with hairs of medium length, and from that point the hair-covering continues in a broad stripe of similar hairs along the whole length of the outside of the protroding lateral border of the head; from the posterior angle of this border a fringe of particularly long hairs runs upward and backward across the side and the back in a very slanting line. On the back behind this line we find the nsual nakerl area, which indeed is rather long, but much narrower than in the preceding species; the remainder of the back, the sides, the posterior end and the rentral smface are rather densely covered with hairs of medium length. The hollow spaces beneath the skin of the head as in the preceding species. The first pair of legs much as in S. intermedia, except that there is a shorter process on the exterior side of the branch near its base, and the terminal seta is a little shorter than the basal joint of the maxillipeds. The second pair of legs also much as in the preceding species, but the onter branch is reduced to a smaller excrescence; the terminal seta of similar length to the first pair of legs. The caudal stylets rather thick; the terminal seta quite the length of those of the legs.

OVISACS. They are moderately large, without considerable difference of size; one of the largest is represented in fig. 4 c , it is shortly ovate, and its longest diameter is 37 mm . The eggs are moderately large, somewhat numerous.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. In the marsupium of a female of Lemboides afor Stebh. from South Africa, at or near the Cape of Good Hope, were found: one female, one wale and eleven ovisacs, the latter united in two hmps, one of them with eight, the other with three ovisacs. Our material of the host is examined and described by the Rev. Tlı. R. R. Stebbing.

18. Sphæronella Gitanopsidis 11. sp.

(1'l. Vl, fig. 2a-2y.)
FEMALE. The only specinen found (fig. 2a) is 97 mm . in length and 85 mm. in breadth; the head well defined and the trumk sub-globnlar. The frontal margin naked (fig. 2 d). Antemmle comparatively long, with moderately long setie. Antemne 3-jointed; their basal joint of the length of the second joint (is incorrectly reproduced in the drawing); the terminal seta about the length of the last joint. The mouth of medium size. The maxillulæ with a gond-sized additional branch. The basal joint of the maxillæ with a small tap on the posterior side. The maxillipeds slender, the basal joint naked, the following three joints mutually separated, the last joint with a couple of spines inside the point. The sub-median skeleton with rather narrow longitudinal lists and with a pretty small process inside the imer angle of each maxilliped; a considerable, centrally much expanded transverse list hehind the maxillipeds, between the head and the trunk. The trunk naked; the trunklegs distinct. The genital area (fig. 2e) somewhat narrower than the head (fig. 2a), much broader than long; the more solid chitine forms a broad, anteriorly open, semi-circle, of which a rather small or large lateral part is slightly, the remainder solidly chitinised. The genital apertures are rather oblique, they are moderately far apart from each other, and they are situated close up to the anterior margin of the solid chitinons list, while the candal stylets are placed close together immediately behind its posterior margin; the whole area is naked.

MALE. The ouly specimen fond (fig. $2 \mathrm{f}-2 \mathrm{~g}$) is but 153 mm . long and 120 mm . broad, consequently smaller than any other male of this genns, but 1 am mable to say whether it is quite full-grown; it is also small compared with the female (fig. 2b:fig. 2a). Seen from below, it is oblong with obtuse lateral angles and broadly rounded anteriorly and masteriorly. The head as large as the tronk. The frontal border considerably produced, evenly rounded, its margin naked. The antennule of medium length, the terminal seta the length of the antennula. Antemır, month, maxillulæ and maxillæ essentially as in the female. The maxillipeds of medium length, their basal joint on its anterior side provided with some groups of very fine hairs. The first pair of processes of the sub-median skeleton
short and rounded, the second pair short, somewhat prodnced and strongly converging. The lateral margin of the head in its whole length smpplied with hairs of medinm length; somewhat in front of the posterior extremity of this margin begins the line which runs upward and backward in a somewhat oblique direction across the side and the back; in the latter place the hairs become long, but in this species this line only forms the anterior bomndary of a broad belt of hairs of medimm length, behind which we find the nsual naked transverse area, which is rather long and also broad; the remainder of the tronk: its sides, posterior extremity and ventral smface, are closely covered with hairs, part of which are proportionally rather long. The head has empty spaces beneath its skin. The first pair of trmb-legs are rather small, with a single, pretty short branch, and a tolerably short and thick process on the outer side at its base; the branch ends in two setr, one of which is short, the other long, but scarcely the length of the basal joint of the maxillipeds. The second pair of legs are of less than medinm size, with a shorter outer branch and a somewhat longer imer branch; the terminal seta of the onter branch scarcely half the length of the whole leg, whereas the inner brauch has a short seta on its outer side, and the terminal seta is nearly the length of that of the first pair of legs. The candal stylets rather short, each with a pair of terminal setæ, which are somewhat thicker and longer than the hairs of the trunk.

OVISACS. Only two are found they are tolerably large and of about equal size; the one represented (fig. 2c) somewhat flattened and rather triangular in ontline, its longest diameter being 59 mm . The eggs pretty numerons, about middle-sized.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsupium of Gitanopsis arctica G. O. Sars from Varangerfjord (the most northern part of Norway) at Vadsö. Prof. Sars discovered the parasite in a single specimen, which he snbsequently lent me, and in which were found: one female, one male and two ovisacs.

19. Sphæronella Giardii n. sp.

(Pl. Vl, fig. 3a-31.)

FEMALE. One specimen (fig. 3 c) which has laid six ovisacs and no doubt has finished laying eggs, and which is oblong and somewhat shrunk, measures 63 mm . in length and 45 mm . in breadth, whereas another female (fig. 3 a), which had not yet begm laying eggs, is 1.24 mm . long and 1.31 mm . hroad - consequently broader than long - and about domble the length and neally three times the breadth of the first mentioned specimen. The head is proportionally small and well defined from the tronk. The frontal margin is naked (fig. 3 e). Antemmuæ of medium length, pretty robust, with short apical setæ. Antennæ 3 jointerl, the second joint longer than the first or the thirl; the terminal seta of medinm length. The month-border of medium breadth. The maxillnlæ with a good-sized additional
brach. The maxilla normal, with smooth basal joint. The maxillipeds scarcely of medimm length; the basal joint pretty robust, naked; second and third joints coalescent; the last joint with a spine inside the point. The sub-median skeleton much as in S. Holbölli. On each of the lateral borders of the head we find an area - more narrow towards the front and broad posteriorly - which is closely covered with exceedingly short and fine hairs. The trunk is naked; trunk-legs are fomb. The genital area (fig. 3 f) is much narrower than the head (fig. 3a), much broader than long; the solidly chitinised part forms a sometimes narrow, sometimes tolerably broad semi-circle (in the latter case as in the following species, fig. 4d, which opens broadly towards the front, with the foremost end of each side curved somewhat inward; the posterior margin is tolerably concave, and from the median part of the ring proceeds a considerable plate, which occupies the rather broad space between the oblique, somewhat curved genital apertures, advancing somewhat beyond their anterior ends, and being cut off anteriorly by a straight line. The candal stylets a little apart, situated on or closely behind the posterior margin of the solid chitine. The whole genital area is naked.

MALE. It attains a length of about 21 mm .; seen from below (fig. 3 g), it is only about one sixth narrower than long, and seen laterally (fig. 3 h), it is very thick; compared with the female, it is abont middle-sized (comp. fig. 3c, fig. 3a and fig. 3 b). The head scarcely as large as the trunk. The frontal border but feebly produced and naked. The antemule a little more slender than in the female, their setre a triffe longer. The antenne and the maxillulæ as in the female; the month-border proportionally broader than in the latter. The basal joint of the maxillie provided on its posterior side with a comparatively pretty long, oblicue tap. The basal joint of the maxillipeds longer than in the female, with abont three conical processes on the immer margin; on the distal part of the anterior side about three transverse stripes of ordinary hairs, on its proximal part two to fom tiny, naked, transverse keels and a group of hairs at the base; the terminal joint with a conple of spines close inside the point. The sub-median skeletom with the two first pairs of processes distinct; the first pair small, the second pair long and parallel. From in front of the base of the antemula the lateral margin of the head is furnished with a line of hairs of medium length, which from the posterior end of the margin proceeds upward and forward in a slightly oblique direction across the side and the back. Behind this bomndary, the back, the sides and the ventral surface of the tronk are closely covered with setaceous hairs of medium length; however; a careful examination shows that the trunk is covered with numerous small, somewhat oblong, transverse knots, from each of which proceed two or (more commonly) three hairs, the central one of which is the longest. (This arrangement, which is difficult to observe, is not reproduced in fig. 3 g and fig. 3 h , as it was not discovered till after the plate was printed). However, on the back, far from the anterior boundary of the hair-covering, we find a short and not very broad, naked transverse area. The first pair of trunk-legs have a pednucle of medium breadth, a rather short inner branch and a little longer outer branch; each branch,
as a rule, ends in one or two short and one longer setæ, the latter of which, however, is only half or scarcely half the length of the basal joint of the maxilliperds (sometimes there are two about equally long setr at the end of the onter branch), and finally a rather short seta on an angular process of the pedmele ontside the onter branch. The second pair of legs compatively pretty long, with a short onter branch at their base, ending in a shorter seta, while the imer branch ends in several setæ, the longest of which is distinctly longer than the setæ of the first pair of legs. The candal stylets are rather small, with short setæ. - The frontal thread is between two thirds of or the entire length of the whole body, simple, ending in a thick disk.

OVISACS. They are of medimm size (fig. 3d), without great mutnal difference (at least if not containing young ones), for the most part shortly oval; the ovisac represented is 47 mm . long and 39 mm . broad. The eggs of medium size, not very nmmerous.

LARVA. I have fomd no free specimen, and the larve which I pulled out of the ovisacs were not sufficiently developed to allow of giving a description of them.

POST-LARVAL DEVELOPMENT. Some pupæ of both sexes have been tomnd (fig. 3i-31), and their interesting development is described on p. 5 t-5̄.

HABITAT. The marsapium of I'rotomedeia fasciata Kr. from Denmark. In a large material withont specialised locality are found eleven intested specimens; a twelfth one was taken by Dr. Joh. Petersen in the Kattegat at Stat. 403 (twelve fathoms). Only seven of these twelve specimens have been rely closely examined, but a statistic account of fom of them will be sufficient. In one specimen were fomd: the female represented in fig. 3 c , with a male adhering to its ventral surface, and six ovisacs partly glued together. In another specimen were fomb: a good-sized female, a male and seven ovisacs, thus distributed: three ovisacs were lying beside and in front of the female, the remaining fom and the male lying behind it; finally, a pupa was hinged to the base of the gill of the hindmost leg but one. In a third specimen occurred: one good-sized female, five males, three ovisacs and five pupa; fom of the males and all the pup were hinged to gills, to marsmpial plates or to the epimera of the second - sixth pair of legs. In a fonth specimen appeared the extremely large female represented in fig. 3 a , one male and one pupa; the female occupied the front half of the marsupimn, whereas its hindmost half was occupied by six of the host's eggs, containing yomg ones about half developed; in which the limbs were very distinct.
20. Sphæronella Bonnieri n. sp.
(Pl. VI, fig. 4 a-4d; pl. VII, fig. Ia-1b.)
FEMALE. The specimen represented in fig. 4a - the largest one fomnd - measures 97 mm . in length and 94 mm . in breadth. In the head and its organs of this species compared with the preceding, I have not been able to find any deviation which wonld seem
qualified to form a character of species. Trum naked; tronk-legs present. Genital area (fig. 4d) essentially as in the preceding species, for in S. Giardii the chitinised semi-circle can be almost as broad as in S. Bommieri; the only deviation fome is the situation of the caudal stylets which in the latter are plated a little more towards the front on the ring itself, bot whether this is a valid character, I am not prepared to decide.

MALE. Considerably larger than in S. Giartii, two specimens being respectively 28 mm . and 29 mm . in length, but they difter chietly from that species in the swollen appearance of the tronk, - its rolume several times exceerling that of the head - and in a very different hair-covering (fig. 1 a and fig. 1 b). Its fiontal margin, antemnle, antemme, mouth, maxillule, maxillæ and maxillipeds do not exhibit really good characters. The first pair of processes of the snb-median skeleton seem to be longer, whereas the second pair are a little shorter than and differ in shape from S. Giardii. The hair-covering of the lateral border of the head as in this species, hut the border itself is shonter and vanishes ontside or a little behind the base of the maxillae, and from this point the bomblary line between the naked head and the hair-covered trunk rums upward and backward in a slightly oblique direction across the side and the back. The whole dorsal sulface, the sides and the ventral smface, except its foremost pretty considerable part, are closely corered all over with simple, moderately long hairs which grow separately (not as in S. Giardii two or three from the same little eminence); the back withont naked transverse area. On accomit of the swelling of the trunk, the legs and the caudal stylets are much further removed from the lateral and the posterior ontline than in nearly all other species, and the candal stylets are sitnated almost in the middle of the ventral smface. Both pairs of trmk-legs are proportionally smaller, and their long terminal setex a little shorter than in S. Giardii; from the pedmacle of the first pair of legs ontside the onter branch proceeds a distinct process ending in a seta, but the other differences in the length of the setæ etc. between this and the preceding species are of slight or no value.
(Three, but not the fourth, of the males found are more or less closely wrapped mp in long, fine threads, or rather, it looks as if a thread were wound romb the body in numerous curves and with projecting nooses, but I have tried in vain to find out the origin and nature of these remarkable threads. Fig. $4 b$ exhibits one of the closely wapped specimens.)

OVISACS. These are oval or shortly oval (fig. 4c), a little larger than and with somewhat larger eggs than in S. Giardii, otherwise as in this species. The ovisac represented (fig. 4 c) is 53 mm . long and 43 mm . broad.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. Protomedeia fasciuta Kr. from West-Greemand. I hare found it in old specimens which were determined by Kröyer, but mfortmately I neglected at the time to put down statistics about the number of hosts etc. of the parasites fomed, vi\%: whe adult female, one halfgrown female, one very small female, one male withou survomding theads
and three ovisacs. I fomm further in the marsupimm of a female from the harbour of Godthaab ($2-3$ fathoms, sand with sea-weeds, collected by Th. Holm ${ }^{3} / \mathrm{x} 11$ 1886): one adnlt female, one male in a close wraping of threads, and two ovisacs glued together; in the marsupimm of another female tirm the same locality were found: one adult female, one closely Wrapper male, and six of the host's nwn eggs; in a yonng female withont marsupinm, taken in a depth of ten to fifteen fathoms in that harbour were found: one small female, only 34 mm . in length and nearly as broad, on which, nevertheless, occurred two spermatophores, and a male, round which a few threads were spm, was also attached to it.

REMARKS. It is an interesting fact, that the same Amphipod, Protomedeia fasciatu Kr., has one parasite in Demmark and another very closely allied species in West-Greenland. The two parasitic species seem to be distinguishable from each other with certainty only by the differences between their males.

21. Sphæronella longipes n. sp.

(Pl. VII, fig. 2a-2g).
FEMALE. One single tolerably large, but flattened and ill-treated specimen has been fomd, which measures 73 mm . in length and 92 mm . in breadth, and besides, several well preserved specimens, all of which, however, are but scarcely half-grown or recently hatched, so that the largest one (fig. 2a) is not more than 46 mm . long and snmewhat longer than broad, while a very small specimen, represented in fig. 2 d and fig. 2 e , is only $\cdot 26 \mathrm{~mm}$. long, and the proportion between the length and breadth of this animal is as 7 to 4 . The head is well defined. The frontal margin naked. Antemnuæ rather long and slender, with long terminal setæ. Antemæ 3-jointed, third joint shorter than the second (fig. 2c, c); terminal seta about the length of the two last joints combined. Mouth-border of medimm breadth. Maxillulæ with well developed additional branch. Maxillæ with smooth basal joint. Maxillipeds lather long and slender; basal joint naked, second and third joints coalescent, last joint digitated at the end with three exceedingly short points. The sub-median skeleton with a somewhat narnow list inside the maxille, naked all over; no transverse list between the head and the tronk. Lateral margin of the head naked. Trunk naked. Trunk-legs compared with those of the other species of this gemis exceptionally good-sized, consisting of a proportionally rather long cylindrical joint, from the end of which proceeds a proximately thickened very long seta, three to fom times the length of the joint, and besides another seta equal to, or somewhat exceeding the length of the joint. Abont the genital area no information can be giveln; in the small specimens it is not developed. The candal stylets considerably shorter than the legs, each ending in three setæ of mequal length, the longest of them almost equalling in length the short seta of the trunk-legs.

MALE. Unknown.

OTISACS. Of abont equal size, elongatel oval (fig. 2 h); the specimen representer measures 71 mm . in length and 46 mm . in breadth. Eggs numerons, about middle-sized. Judging from the size of the ovisacs, the adult females of this species must be supposed to be 1 mm ., or somewhat more, in length.

LARVA. A specimen fomd free (fig. 2 f) is $\cdot 16 \mathrm{~mm}$. long. Cephatothorax more than $1 / 2$ time longer than broad. The front with a long, almost straight list inside the base of the antemma. Antenmule 3 -jointed; olfactory seta about three times longer than the antemmla and searcely half the length of the cephalothorax. Antemm much as in the larra of S. intermedia. Of the maxillula only a single seta las been discovered. First joint of the maxille of a little more than medium lengtl, smouth; the fwo others normal. Second joint of the maxillipeds shorter than the third. Abdomem small, its first segment somewhat longer and a tritte broader than the second, and its long seta reaching a little beyond the ends of the candal stylets; second segment swarcely longer and not broader than the thind, from which the relatively good-sized caudal stylets are well set off, but their long setæ are defective in my two larve.

POST-LARVAL DEVELOPMENT. A single pupa (fig. 2 g) found on the glass during the preparation is 17 mm . long and $\cdot 11 \mathrm{~mm}$. broad; it is described above on p .60 .

HABITAT. Ampeliscu temicornis Lilljhg. from Demmark. I have found the parasite on mine specimens, six of which were rather young, without marsupium. On each of five of these occmred a not half-grown or very small female (in one case it was evidently just hatched); on the sixth specimen I foumd two free larva. In a specimen with halfdeveloped marsupium occmred one not half-grown female. The two other hosts were females with fully developed marsupium; in one of them occurred five orisacs, in the other the aborementioned flattened female and fomr of the host's own eggs.

REMARKS. By the rery long setre of the tronk-legs this speries is easily distinguished from all other hitherto known species of this genus.

22. Sphæronella Amphilochi n. sp.

(Pl. VII, fig. $3 \mathrm{a}-3 \mathrm{~b}$).
FEMALE. The only specimen found was adult and measured 54 mm . in length and 40 mm . in breadth. The head (fig. 3a) is well defined from the trmk. The frontal margin with short and very fine hairs. Antemmlæ tolerably long, with pretty long setæ. Antemre 3-jointed, the basal joint appears shorter than the following joints; the terminal seta abont the length of the last joint. Month-border of abont medium lireadth. Maxillule with rather short additional branch. Basal joint of the maxillse smooth. Basal joint of the maxillipeds long, slender and naked, second and third joints coalescent, last joint ending in a point. Sub-median skeleton naked, but a peculiar characteristic in this species is that the
lindmost, brodest and thimnest of the two transverse lists which are found on the ventral side between the head and the tronk, is provided with short hairs thronghont its whole length. The lateral margin of the hear supplied with hairs of medimn length, which anteriorly are arranged only in a single line, but somewhat in front of the base of the maxillæ begins a broader area, which runs whiquely backward and ontward. The tronk naked; trunklegs not fomid, but no doubt present. The genital area (fig. 3 b) not quite as broad as the head, somethat broader than long; the more solid chitine forms abont two thirds of a ring, Which opens broadly in front; laterally the ring is narrow, but posterionly it is broad, its median part forming an area which consists of an expansion of the himdmost part of the ring and of a triangular proces advancing anteriorly between the genital apertures and dilating into a small plate in front of the anterior extremity of the apertures; the whole median part of this area again is occupied by an oblong, anteriorly pointer area of thin skin. The genital apertures come pretty close together in front and are sitnated quite near the advancing process just described; they are rather oblique and a little curved. The candal stylets are sitnated on the hindmost part of the just mentioned membranons little central area; each of them ents in two or three setæ. one of which is quite exceptionally long. The margin and the foremost part of the chitinous plate sitnater between the genital apertures, are provided with fine hains, some of which are rather long; some hains are also scattered outside the genital apertures on the thin membrane covering their moscles.

MALE. Unknown.
OVISACS. The two ovisacs fomd are irregularly shaped, probably owing to pressmre; they are somewhat oilong and flattened; the largest is 42 mm . in length. The eggs middle-sizer, not mumerous.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.

HABITAT. Tn the marsupium of a specimen of Amphilochoides pusillus G. O. Sars from Denmark were fomd: one female and two ovisacs adhering to each other.

REMARKS. The female of this small species is no donbt well characterised by the hairs on its head, the structure of the genital area and the particnlarly long seta of the candal stylets. The name of S. Amphitochi is perhaps not quite suitable, but is was given, and the plate engraved, before a renewed examination of the lost by means of the new work by G. O. Sirs, revealed that it belonged to a species of the recently established genus Amphilochoides G. O. S. not hitherto observed in Denmark.

23. Sphæronella Dulichiæ n. sp.

(PI. VII, fig. $4 \mathrm{a}-4 \mathrm{~d}$).
FEMALE. The only specimen formd (fig. 4a) is 72 mm . in length, 59 mm . in breadth and a liitle thimmer than hroad. The head of very good size in proportion to the
trmak, well defined and ummally broad in proportion to its length. The frontal margin maked (fig. 4c). Antennule short, with tolerably short setie. Antemare well developed, but partly broken otl. Mouth good-sized, mouth-border of medium breadth. Anterior branch of the maxillulæ rery long, additional branch rather short. Basal joint of the maxillæ hardly middle-sized, smooth. Maxillipeds proportionally smanl, much shorter than in any of the precerling species; the basal joint, in proportion to its length, rather thick, naked; second and third joints coalescent, last joint pointed. The sub-median skeleton derjating much in appearance from those in the preceding species (comp. fig. fc), naked. Lateral margin of the head with a series of moderately short hairs. Trunk maked; tronk-legs small, with short seta. Genital area (fig. 4d) much narower than the head, comsiderably broader than lomg, forming a transverse, pretty solidly chitinised plate, which is sub-oval, yet a tolerably large part of the posterior margin forming a straight line; the genital apertures are large, the distance between them of about medium length; they are finthermore considerably corved, and the anterior half of their inner lip nealy parallel; their posterior extremities are fomd a little in front of the posterior margin of the plate. The candal stylets are sitnated close together on the posterior margin of the plate; they are small, with shorter setæ. The part of the plate which is sitnated behind the genital apertures, and a narrow area surrounding the membranons part, which, as nsual, is found outside each genital apertmre, are furnished with momerons fine and rather short hairs; the remainder of the genital area is naked.

MALE. Unknown.
OVISACS. Compared with the female found, they are very large (fig. $4 \mathrm{~b}:$ fig. 4 a) and without much difference in size: the largest, which is represented, is 56 mm . in length. The eggs are large, not numerous.

LARVA and POST-IARVAL DEVELOPMENT. Unknown.
HABITAT. In the marsupium of a female of Dulichia monacantha Metzger from Denmark were found: one female and fonr ovisacs.

REMARKS. The female is easily distinguishable from all other species by its very short, but otherwise quite normally constructed maxillipeds.

24. Sphæronella Acanthozonis n. sp.

(Pl. VII, fig. $5 \mathrm{a}-5 \mathrm{~d}$).
FEMALE. The only specimen found is very large, namely 42 mm . in length, 34 mm . in breadth, and nearly as thick as broad. The body seen from below (fig. 5 b), is regular and rather shortly ovate, narrowest towards the front, the head and the genital area situated at a not very short distance from the anterior and the posterior outline respectively, and the tronk-legs very far from the lateral ontline; seen laterally (fig. 5a), the
head protrodes somewhat like a small triangle, besides, we see a knot-like protuberance, somewhat in front of the middle, at a short distance firm the outline of the bark. The head is exceedingly small in proportion to the trmk, and it is distinguished by the particular solidity of the chitinised parts to the front and on the sides, which, moreover, laterally and anteriorly extends comsiderably on the lower surface, so as to render the area with the appendages somewhat smaller than in the other species. The fiontal margin maked (fig. 5c). Antemmbe slender, of medium length, second joint proportionally longer than in the preceding species, the seta of abont medimm length. Antemm 3-jointed, basal joint shomt, second Joint longer than the third, and the latter longer than the seta. Mouth large, with horder of medium breadth. Additional branch of the maxillula well developed. Maxilla rather small, their basal joint smoth. Maxillipels comparatively short and slender, ret somewhat longen than ins. Dulichice; the basal joint has one or two stripes of excessively short hairs (not shown in the drawing) on the immer side, and similar hairs on the imer part of the terminal margin; second and thind joints separated, the last joint pointed. Sub-median skeleton provided with thick lists, maked; a double list between the head and the trmm, somewhat behind the base of the maxillipeds. Lateral margin of the head naked. Trumk naked; the trunk-leg's are small hit conspicnous, rounded knots withont setæ - thas deviating much from all other species. Genital area (fig. 5 d) somewhat narrower than the head, much broader than long, firmly chitinised all over; it has a long, somewhat concave, anterior margin, convex, oblique lateral margins and a shorter, deeply incised, posterior margin. The genital apertures situated somewhat behind the middle of the plate; they are of medimm size, close together anteriorly, and somewhat diverging posteriorly. The candal stylets in close proximity on the plate close to its posterior margin; they are small, each ending in a rather long seta. The whole genital area naked. (In the illustration the orifices of the receptacula seminis are seen at a short distance in front of the genital apertures).

MALE, OVISACS, LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. In the marsupium of a female of Acanthozone cuspidata (Lepech.) from the Kara Sea was found a single female.
25. Sphæronella frontalis n. sp.
(Pl. VII, fig. 6a-6i; pl. VIII, fig. $1 \mathrm{a}-1 \mathrm{e}$).
FEMALE. The largest specimen (fig. 1a) is 1.84 mm . long and 1.71 mm . broad, and the thickness about three fifths of the breadth. The body is narrower towards the front, and its long posterior outline is sligthly concave in the middle. The head nearly middle-sized and distinctly defined trom the tronk. An excellent character of this species is that the naked frontal margin expands in the middle into an oval, transverse, flat cup (fig. 1 d), the breadth of which somewhat exceeds the diameter of the basal joint of the
maxillipeds. Antemmlæ scarcely of medium length, with setxe of medimm length. Antennæ 3-jointed, first joint short, the third longer than the second, but shorter than the seta. Nouth rather large, with mouth-horder of medium breadth. Basal joint of the maxille smooth. Maxillipeds middle-sized, proximal part of the basal joint with some transverse lines of short, fine hairs on their anterior side; second and third joints separated, the last joint ending digitated in four or five points. Sub-median skeleton rery powerful, naked, with a double list between head and tronk somewhat behind the base of the maxillipeds. Lateral margin of the head has a tolerably broad longitudinal belt of short and fine hairs. Trouk naked; trunk-legs normal. Genital area (fig. (6i) much narrower than the head: the solid chitine really consists of two halves, each of them forming an oblique, irregular arch, which begins within the genital aperture a little behind the anterior angle of its lips, whence it continnes very close to the lips, following their direction to the posterior angle, then advancing forward and ontward in an oblique line; its anterior extremity corving a little inward; the two arches comected between the genital apertmes are strongly curved and placed at a pretty considerable distance from each other. The candal stylets are somewhat apart and comparatively far from the genital area; their setæ have no doubt fallen oft. The skin between the genital apertures is closely covered with very short and fine hairs, which also extend somervhat furtler backward, though not nearly as far as to the candal stylets; besides, a tolerably large part of the chitinous arches - not their anterior part, horvever, - is formished with fiue hairs.

MALE. It is large in proportion to the female (fig. 1 h : fig. 1a), indeed quite exceptionally so, namely • 69 mm . long and 53 mm . broad. The head occupies only between a third and a fourth of the whole body, consequently it is very short and also narrow, compared with the large trunk (fig. (ia-6b). The frontal border somewhat produced; the margin evenly curved, without cup, naked. Setæ of the antennulæ tolerably long. Antemme (fig. 6c) seem to be 4 -jointed; the basal joint short and coalescent with the skeleton of the head; the connective membrane between the third and fouth joints is long, the terminal seta very long, yet somewhat shorter than the antenna, with a transverse division not very far from the base. Month as in the female. Maxillulæ (fig. (6d) with two long principal branches, the anterior one the longest, and at the base of it an extra branch of about half of its length; the additional branch (e^{\prime}) is long, and its basal part forms a pretty thick, articulated foot. Maxillæ as in the female. Maxillipeds tolerably long; basal joiut powerful, its imer margin armed with a pair of rather short, pointed processes (fig. 6 e); its anterior surface is decorated in a pecnliar way by scattered areas covered with long hairs alternating with partly large groups of very small, transverse eminences supplied with very short hairs; its other sides are decorated in a more or less similar way; second and third joints separated; the terminal joint ending in at least a couple of points. The first pair of processes of the snb-median skeleton short and blunt, the second pair long and projecting straight backward;
the base of each of these merges gradually into a strong list, and these two lists rum forward, nearly parallel, towards the posterior margin of the rostrum. Lateral margin of the head with a stripe of moderately long hairs, which from the posterior angle of the margin continues upward in a vertical line across the side and the back, but the hairs of this part are long. The whole tronk, except the foremost part of the ventral surface, is closely supplied with peculiar, small, transverse eminences, each of which (fig. 6 h) bears about ten hairs, which radiate backward and obliquely sideways; on the greater part of the trunk these hairs are short, but on its hindmost third part, following a line from the candal stylets obliquely backward and ontward towards the second pair of trunk-legs, and thence further, obliquely backward, they are pretty long. Trunk-legs comparatively small. The first pair (fig. 6a and fig. 61) consist of a clumsy peduncle with two branches, the onter one a little shorter than the peduncle and ending in two about equally long, hairy setæ, the longest of which is not twice the length of the branch, and rather thick; the inner branch is difficult to understand, it is of the same length as, but much thimer than the outer one, with an articulation in its middle and, especially outside this articulation, provided with a number of hairs. The second pair of legs (fig. 6 g) abont the length and breadth of the onter branch of the first pair; on the onter side, at a short distance from the basis, a short, blunt process (presumably an outer branch) ending in a seta, and the leg ends in two hairy seta, the longest of which is double the length of the leg and very thick. The caudal stylets are situated far to the firont on the ventral surface, a little behind the middle of the trunk; they are rather sleuder, each ending in a hairy seta, which is equal in length to the longest seta of the second leg.

OVISACS. They are middle-sized (fig. 1 c), oblong, somewhat flattened; the specimen represented has young ones in the Nauplius stage, and is 1.03 mm . in length and 69 mm . in breadth. Eggs numerons and small.

LARVA. Fig. 1 e is drawn from specimens pulled out of the egg-membranes. The front on each side inside the base of the antemnula has a long, oblique list, the ends of which are curved inward. Antemule 3-jointed; the olfactory seta about half the length of the cephalothorax. Antemæ ahmost the length of the antennulæ; secoud joint somewhat longer and considerably more slender than the finst one, the third joint very short, the terminal seta the same length as or longer thau the second joint. Maxillulæ as in S. Calliopii, with four brauches which, however, are shorter and more slender than in this species, and the hindmost branch only is hainy (not, as in the drawing, the penultimate one as well). The joints of the maxillæ each of medium length, smooth. Secoud joint of the maxillipeds considerably shonter than the third. Segments and setæ of the abdomen as in S. Calliopii, with the exception that the long seta of the candal stylets are only half the length of the body (and perhaps even relatively shorter in the free swimming larva).

POST-LARVAL DEVELOPMENT. Unknown.

HABITAT. The masmpinm of Amprlise mucrocephala Lilljelorg from Demmark. Only a single infested specimen has been fomm, and in the anterior part of its marsupinm orenired: a deformed femate, which had probahly finished laying eggs, one make and seven mutnally adhering avisacs, one of which contamed tinl-grown larrat in the hindmost part appared the large female represented, one male and six manally adhering ovisacs; one orisur had fallen ont before its place was asertamed.

REMARKS. The mame of the species points to the remakable cup on the frontal margin of the female. The male deviates mach from all other hitherto known forms.
26. Sphæronella microcephala (iiard and Bomnier.
(PI. VIII, fig. 2a-ok).
Spheeronella microcephulu Giard and Bonnier. Cumpt.-rend. de 1'Acad. des Sc., 25 sepl. 1893.
Bull. screntilique de la France el de la Beqgique, T. XXV, fasc. 2, 1895, p. 464, pl. XII, lig. 40-47.
FEMALE. The largest specimen, which had moly just begm laying eggs, was 1.4 mm . in length and of the same breadth and thickness (fig. 2a), sulb-globular, yet a little produced and almost pointed towards the front, which is due to the fact that the tronk merges evenly into the head withont any separation. The frontal border is present as a small crescent-shaped transverse plate (fig. 2 e), which is scarcely domble the length of the diameter of the month; lateral borders are wanting (fig. 2d); so we only find the varions ajmendages and a tolerably developed sub-median skeleton, but, as the lateral parts of the skeleton, viz. the lateral borders, are wanting, this parasite differs from all the preceding, but agrees with several of the following species of this genus, in laving no lateral limitation to the surroundings of the month-limbs. Antemnla very short, withont distinct restiges of articnlation, with a seta on the anterior margin at a slont distance from the base (no dombt corresponding to the nsual pretty long seta at the anterior angle of the first joint), and four terminal sete of mequal length, the longest of which are a little longer than the antemula. Antennæ seem to be altngether wanting. The month of medium size, with a rather narrow month-border. Maxillulx well developed, with good-sized additional branch. Maxillze far removed from the rostrum and much closer together than in any other species of the gemms; the basal joint large and smooth. Maxillipeds small and feeble; their basal joint pretty short, very slender and naked, the second and third joints finsed into a rery short and slender joint; the last joint scarcely hall the length of the preceding, rombled at the end; the reduced state of the two (or three) last joints, in particular, proves this pair of apmendages to be almost valueless as prehensile organs. The smb-median skeleton is provided with a somewhat prominent list on each side of and at a short distance from the
median line; a narow list is found hetween the maxills; the whole skeleton is naked. The tronk entirely naked; tronklegs wanting. The genital area (fig. 2 f) deviates strongly from all other species; it is considerably larger than the head (fig. 2 a) and much longer than broad. The solid chitine forms posteriorly a narow semi-circle which opens towards the front, each branch dilating anterionly on the internal side to a considerable breadth, after which both branches run on parallel a long way, at the same time gradually declining in breadth; the whole structure may also be described by saying, that there are two anteriorly pointed, pmsteriorly broader, mutnally parallel lists, which again decrease in breadth in their hindmost part, converge, aud at last join in a semi-circle. The somewhat curved genital apertures are situated at some distance from each other, so that their outer ends come close to the inner side of the semi-circle; their muscles run forward and a little outward towards the broadest part of the lists, close in front of the foremost part of the semi-circle. (Abont the orifices of the receptacula seminis which are omitted in the drawing, see above on p.14.) The whole area is naked, and caudal stylets are altogether wanting.

MALE. The body, apart from the rostrum, is 18 mm . in length; seen from below, it is ovate, only about one sixth longer than broad; the thickness in proportion to the breadth is almost like two to three; so it is exceedingly small compared with the female (fig. 2 b : fig. 2a). It deviates strongly from all other speries, and in spite of much study and long deliberation, I have been mable to understand all its details. Head and trme of abont equal size. The fontal border is not produced, its margin flatly corved, naked. Antemmixe long, withont articulation, with setie of medium length. Antemme wanting. Rostrum musually long, very broad at its base, and in the specimens fond, strongly protruding, which gives it, when seen from below, the shape of a large, distally bhunt cone, projecting considerably beyond the frontal margin. Maxilhure as in the female. Basal joint of the maxille somewhat compressed, broad between the foremost and hindmost angles; the basal margin is long, and its acnte posterior angle is futher removed from the head than the articulation of the second joint; its outer side is armed with a pair of conical taps. Maxillipeds of medinm length, the basal joint somewhat finsiform, on the imner and anterior sides some areas covered with numerous extremely short hairs; second and third joints coalescent, last joint pointed. The sulb-median skeleton possesses only the first pair of processes, each of which being long, very slender and nearly setiform (fig. 3 h , i), and being a prolongation of a list rmming inside the maxillæ. The lateral margin of the head is prolonged backward to the middle of the trunk, and it is provided with a stripe of rather short hairs which are situated more or less close together. The rentral surface of the trunk is for the most purt covered with tolerably short hairs, many of which are arranged in transverse rows, whereas the back, the lateral surace and the lindmost extremity are naked. I have been mable to muderstand the basal parts of the tronk-legs, I cannot even make ont with absolnte certainty which pair are the foremost. I consider the narrow pair of appendages which are sitnated near the median line to be the caudal stylets, and the limbs which are seen a little ontside
these appendages, to be the first pair of trunk-legs, the lateral legs would then make the second pair. The proximal part of the first pair of trunk-legs being incomprehensible to me, I must content myself with referring to fig. 2 g , which is drawn as accurately as possible; the distal part is a rather short and broad joint divided at the posterior outer angle by a rather deep incision into two unegual processes, the onter one of which is conical and ends in a shorter seta, while the imer one is broader and is cut off posteriorly in a straight line, bearing on its end a small joint which terminates in a pretty long seta, of more than half the length of the basal joint of the maxiliped. The second pair of legs resemble the distal part of the first pair, but their nnter process (outer branch?) is slorter, with the terminal seta somewhat longer, the inner process lacks the small joint, whereas its seta is a little shorter than in the first pair of legs. Each of the caudal stylets is a tap ending in a pair of conspicuous, though not long, setæ, besides having a short seta proceeding from an augular expansion on the outside at the base; each stylet is a direct prolongation of a long, anteriorly somewhat expanded, prominent list, which runs forward towards the base of the trunk. The candal stylets, the distal part of the first pair of legs and the second pair of legs are sitnated almost on the same transverse line.

OVISACS. They are wretty small, mostly somewhat flattened, their circumference varying between a circular and a very oval shape; the specimen represented in fig. 2 c is .72 mm . long and scarcely more than half as lroad. As many as fifteen ovisacs may he fomnd in one female. The eggs of medium size, not numerons.

LARVA. The body of a sperimen (fig. 2i) which had just attached itself, is 202 mm . in length. It deviates very much fiom all the other known larve of the genus, and partly of the family, in its extremely short antennæ, its long and very slender maxilla and maxillipeds, its slender natatory legs and rery slender abdomen. The front withont lists, in the specimen figured it is covered thronghont its whole breadth by the viscons substance which attaches it to the host. Antennule 2-jointed, olfactory seta rather long, about three fom ths the length of the cephalothorax. Antemne extremely short, almost rudimentary, 3 -jointed, with a proportionally thick, but very short, seta on the penultimate joint, and an exceedingly short terminal seta. Mouth very large. Of the maxillnle I have discovered three rery fine branches, the anterior one moderately long, the two others a little shorter. Maxillæ long and very slender; the basal joint, in particular, is comparatively rery long and extremely slender; all joints smooth. Basal joint of the maxillipeds long and rery slender, second joint musually long, and considerably longer than the third one. The posteriorly free potch on the ventral side of the cephalothorax small and rery short. The second section, the fiee segment, of the cephalothorax proportionally much smaller than in other speries. Perluncle of the natatory legs unnsually slender. Abdomen considerably more slender than in other species; the long seta projecting from the posterior angle of the first segment, is more than double the length of that part of the abdomen which is posterion to the point where this seta projects, the second somewhat shorter seta is also musmally bong. Second segment a
little shorter than the first one, and somewhat longer than the third one combined with the not defined caudal stylets; the terminal setr of these stylets almost two thirds the length of the whole body.

POST-LARVAL DEVELOPMENT. After the preparation I fomnd on the objectglass an individnal (fig. 2 k) which I consider to be a pupa of this species; it is mentioned above on p. 61.

HABITAT. The marsupium of Ampelisea typica Sp. Bate from Demmark. In one specimen occurred: one female, two males, twelve ovisacs, three of which were free, and nine adhering to each other in a lump (two of them with scarcely quite developed larva), and finally, two larve which had evidently been attached. In another specimen were fomd: one female and some ovisacs; in a third: one female and fifteen orisacs, thirteen of which adhered to each other in a lump (and one of them contained developed larvee); in a fomth specimen were fombl: one male (the largest represented), two free ovisacs and two of the host's own eggs.

REMARKS. This parasite in all its stages is far removed from all other species of this genns, still the differences are not of such a quality that 1 have felt justified in establishing the species as a type of a new genus, as which, in my eyes, it would not be fully equivalent to the other genera. Gard and Bomier lave described the female and ovisacs of a species taken in Ampeliscu tenuicornis Lilljeborg from le Croisic (Brittany), but in spite of the great differences between their description and my own of the head and its appendages, I nevertheless consider my species identical with theirs, and I refer to my detailed critique of their accomnt given above on page $13-14$.

b. Parasites on Cumacea.

In six species of Cmmacea I have found parasites in the marsmpium, and I have referred them to five rpecies. Hitherto they have occurred only in fully developed marsmpia. These five species show mutually very great difference in both sexes, nevertheless, they are distingnished in several features from the species found on Amphipoda; the larvæ of all these parasites, especially, are characterised by some peculiarities which are not noticed in any of the previously described larva, whereas a few of them appear in the larva of S. Munnopsidis which lives in Mumopsis typica M. Sars belonging to the order Isopoda. For several reasons, among others in order to avoid unnecessary repetitions in the description of the two sexes and the larre of each species, it may be to the purpose to give a view of their peculiarities.

THE FEMALES. Antemæ only 2-jointed or, mostly, wanting. The month-border moderately broad or narrow. The basal joint of the maxillipeds decorated on the anterior side with small groups or rows of very short or rudimentary hairs, which, in many cases, only look like small, distinct dots; the spine proceeding from the distal immer angle of the penultimate
joint is large, and one of its margins is provided with a row of very short setiform processes. Trunk-legs seem to be altogether wanting.

THE MALES. They are always distinguished by a very peculiar - though mutually extremely varying - development of the frontal border; the margin of which is in a great measme decorated with numerous fine, or exceedingly small, spiniform processes, which are mostly arranged in a single line. Trunk-legs and candal stylets either tolerably small, or - frequently - altogether wanting.

OVISACS. They are middle-sized or pretty small, but exceptionally numerous, for in three of the species occurred about twenty, in a fouth even twenty-pight sacs, which decidedly had been laid by the same female.

THE LARV E. The front is decorated, either with some good-sized lists, mutually comecter on each side, or (mostly) with mumerons fine processes, arranged in oue or more rows. Each maxillula has four branches. The basal joint of the maxillæ has a donble comb of fine, almost cylindrical, apically rounded processes along the margin, against which the second joint is folded (pl. VIII, fig. 3 o); the third joint has two or more pointed processes along its imer margin. The second joint of the maxillipeds moch shorter than the third. Abdomen of medim length. or (mostly) tolerably long and powerfin; first segment goodsized, and the seta proceeding from its posterior angle extending to, or somewhat beyond, the caudal stylets; second segment abont as long as or a little longer than the first one and a little more volminons; thind segment very short, and the candal stylets set off by a distinct articulation.

1. Conspectus of the Females.

1. Maxillæ well developed. 2
1’. Maxillæ quite rudimentary . 31. S. marginata n. sp.
2. An odd, good-sized, vanlted eminence, provided with a prominent median plate, a little behind and inside the hase of the maxilliperds. 27. S. decorata n.sp.
2 '. No eminence behind the maxilliperls . 3
3. The head well defined from the tronk, with frontal border and lateral horders well developed. Caudal stylets well developed. 2S. S. mordesta n. sp.
3'. The head not defined from the trmk, frontal border and lateral borders wanting. No caudal stylets

4
4. The solid chitine of the genital area smrombs the genital apertures posterionly and laterally, not anteriorly. 29. S. dispar 11.sp.

4'. The solid chitine of the genital area smronds the genital apertures on all sides.
30. S. insignis 11.sp.

2. Conspectus of the Males.

1. Trunk-legs present .

1'. Trunk-legs (and candal stylets) wanting altogether . 3
2. Frontal border produced into a gond sized, anteriorly blmen, plate. Candal stylets wanting. 27. S. decorata

2'. Froutal border slightly produced. Caudal stylets good-sized 28. S. modesta
3. Front strongly produced; seen from below, it tapers considerably towards the distal end, then expands into a tolerably broad disk, the margin of which - except posteriorly is provided with a single row of fine processes. 4
3'. Front broad and somewhat emarginate in the middle, the margin with some lows of fine processes. 31. S. marginata
4. Frontal disk nearly circular . 29. S. dispar
4^{\prime}. Frontal disk broader than long, with rectangnlar lateral angles so. S. insignis.

27. Sphæronella decorata n. sp.

(Pl. VIIl, fig. $3 \mathrm{a}-3 \mathrm{o}$; pl. IX, fig. $1 \mathrm{a}-1 \mathrm{~b}$.)
FEMALE. The largest specimen, represented in fig. 3 a , is 2.15 mm . in length and 2.47 mm . in breadth, and it has laid six ovisacs; another specimen, only 1.33 mm . long and 1.52 mm . broad, has laid eight ovisacs. Thus the body is hroader than long. The small head is distinctly defined from the trunk; it is comparatively well chitinised all over, except in the part which surromes the month-appendages and is limited by the low lateral borders, and this part, forming a triangle, is prolonged anteriorly beyond the antemmia, continuing a rather good distance along the florsal side of the head, where this peculiar extension terminates in an acute angle (fig. 3d). So there is no real frontal border. Antemulæ (fig. 3e) short, 2-jointed, the two first joints being coalescent; setæ short. Antemnæ tolerably short, 2-jointed, the basal joint short, second joint longer and thicker, terminal seta short. Maxillulæ well developed, additional branch good-sized, with a distinct foot. Maxillæ middle-sized, basal joint smooth, but munerous chitinons taps appear on the inner side of the large membrane between the first and the second joints. Maxillipeds powerful and comparatively pretty long; the basal joint on its anterior side and on a small part of its imer side, bears fonr or five gromps of very small prickles (udimentary hairs), arranged in transverse belts; further, at a short distance from the distal margin, a transverse row of very fine hairs, besides similar hairs on the distal margin itself; serond and third joints coalescent, the distal spine long and rather slender, with fine processes on its imner margin; last joint a little expanded towards its romded, flattened end, which terminates in nmmerons fine processes arranged in a line. The sub-median skeleton slightly developed; a ventral transverse list between head and trunk, and adjoining the anterior margin of this list, an odd, good-sized, considerably vanlted eminence, which is romded, a little broader than long, and provided at its median anterior part with a romided protruding plate. Lateral margin of the head naked. Trunk maked. Genital area (fig. 1a) considerably smaller than the head (fig. 3a), mearly as long as
broad; the solid chitine forms a somewhat inregnlarly shaped plate (fig. 1 a), in which a tolenably large area of the anterior thind part is thin-skinned and partly merging in the skin surfomding the plate (thongh in two dissected specimens the shape of the plate and of the membranons part were somewhat different, the present description will do for both). The genital apertures are seen fin to the front on the posterior half of the plate; they are stiongly cmed and sitnated at a moderately long or rather shot distance from each other, in such a position that their muscles turn very much sideways and a triffe forward. The spare hetween the genital apertures has some longitudinal stripes of very short hairs; the remainder of the area is naked. At a short distance behind the apertmres appear a conple of small cones, which doubtless are the rudimentary candal stylets.

MALE. A good-sized specimen is 5 mm. long and 42 mm . hroad, which is large indeed, thongh, considering the proportion between the sexes in other species, it is but middle-sized (fig. 3 b : fig. 3a) comparatively to the females, which are large. Seen from below, its shape is very characteristic, almost hexagonal, the posterior margin of the trmb forming a somewhat convex line, its lateral ontline being moderately long and somewhat concave, whereas the head has a long, slightly corved, lateral ontline and a rery short anterior margin. The head nearly the size of the trmk. The frontal border strongly produced, with converging lateral margins; teminal margin short, colt off' in a straight line, with a pretty deep incision in its median part, while distally each lateral margin has two deep and rather brod incisions and, somewhat in front of the antennula, a slight depression; these incisions fom three pairs of lobes, the hindmost of which are low, the others good-sized with alnost right angles; the teminal margin of all the lobes is furnished with a row of numerons minute processes. Antemule short, \because-jointed, with short seta. Antemme of scarcely medium size, 3 -juinted, second joint the longest; terminal seta the length of the last joint. Mouth-border a little broader than in the female; maxillule as in the female. Maxillat (fig. 1 b) nearly as in the female, and the two last joints coalescent as in the other sex. Maxillipeds of medim length, basal joint rather slender, otherwise this joint as well as the others constructed and equipped (fig. 3 f and fig. 3 h) as in the female. The sub-median skeleton has the two first pairs of processes, first pair abont middle-sized, second pair powerful, long and diverging slightly backward. The lateral border of the head has a peculiar shape, curving strongly towards the base of the maxillæ, then tmong backward and obliquely sideways almost at right angles; the margin fringed in the middle with moderately long hairs, anteriorly and posteriorly with lomg hairs, and from its hindmost end a narrow stripe of extremely long hairs runs upward across the side of the animal, where it emres slightly furward (fig. 3 g), then continnes across the back in an obliqne line. Behind this stripe the back and sides, as well as the ventral surface of the trimk, are densely covered with moderately long, and in front of the second pair of legs, with long hairs. About the middle of the back of the trmk is seen a short and very narrow transverse area. First pair of tronklegs pretty small, their basal part indistinctly defined, and from this part proceed two
tolerably small branches of eqnal length, each of which consists of a somewhat thicker, very short joint, from the end of which proceeds a thick, but rather short, partly hairy seta. The second pair of legs are sitnated at the posterior angles of the tronk and greatly resemble the first pair, hot the hasal part is even more indistinct, the joint of the imer branch much shoter than that of the onter branch, and the terminal setæ - particularly that of the onter branch - longer than in the first pair. Candal stylets altogether wanting.

OVISACS. They are pretty small or of medimm size, circular or oval and mostly somewhat flattened; the ovisac represented in fig. 3 c is one of the larger ones and is 94 mm . in length. Eggs numerons and comparatively small.

LARVA. Fig. $3 \mathrm{i}-30$ are drawn from specimens which had jnst broken out of the ego-membrane. The larva is 30 mm . long and so slender that its cephalothorax is a little more than twice as long as broal. The front is richly decorater (fig. 31): its margin with a series of rather short and very short processes which begin at some distance from the base of the antemmla and stop a short distance foom the median line; the eight or ten processes nearest to this line are really sitnated somewhat within the margin and are much longer than the more lateral processes which proceed from the edge; somewhat inside the more lateral part of the fiontal margin appears on earch side a long, oblique row of tolerably long, narrow processes, tmming forward and ontward in an oblique line; somewhat behind them we see a curved transverse list, and at the immer angle of this list - consequently in front of the month at a shont distance from the median line - four or five rather long, and especially comparatively thick, anteriorly somewhat diverging processes with romded apex. Antemubix 2-jointed, their olfactory seta somewhat more than half the length of the cephalothorax. Antennæ equal in length to the antemmlat; first joint broad, sometimes with a strong indication of being formed of two coalescent joints (fig. 3 m), the first of which is short (comp. the following species); second joint of the same length as or a little longer than the first; third joint short, with two teminal setz, one of them short, the other nearly the length of the two last joints combined. The maxillntæ have all fom branches well developed, the ontermost being the longest, cmrved ontward and backward, hairy. The basal joint of the maxillæ has two rows of processes (fig. 30), but one of them is often covered by the second joint (fig. 3 n), which has no setæ; the third joint has two good-sized processes on its imer margin, but the distal one, which is the largest, is smaller than the long, curved, teminal part of the joint. Abrlomen petty long; a description of it is fomd above on p. 14!. Setæ of the candal stylets more than three fifths the length of the borly.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. Found in the masupimm of six specimens of Diastylis Ratldiei (Kr.) from West-Greenland and in one specimen from the Kara Sea, but not in Demmark. It may be pointed ont that I have fomd parasites in nearly half of the adnlt females from the two localities mentioned, which I have seen, whereas an investigation of several scores of females from various Danish waters gave a negative result. In one specimen occmred: one
female (the one fignred), no male, but six free ovisacs; in another specimen were detected: one female, one male and eight fre ovisacs (all with eggs); in a thitd: one female, one male and nine orisacs (fom of these ghtued together); in a fourth: one female, me male, and nine orisacs (some of them with Nomplii). In a fitth specimen I discoreved: one femate, two males and twenty orisacs, ten of which adhered to each other in one lomp, four in another; several of them contained larwe, some of which had even thown off the eggmembrane. In a sixth specimen, at least serenteen orisacs adhered to each other in a big lump which surromded the female, so that only part of one of its sides helped to form the onter wall of the lump, while a male was sitting in a hole between the orisacs on the opposite side; the whole lump had shaped itself after the cavity of the masmpium, it was nicely smoothed and had a slight longitudinal groove on the smitace, which was tumed towards the rentral side of the animal; all the orisacs were more or less flattened and fitted together like mosaic; some of them contained eggs, some of them half-leveloped, whers quite developed larve.

28. Sphæronella modesta 11. sp.

(PI. IX, fig. 2a-2i).
FEMALE. It always seems to be longer than broad, ovate, and a specimen which had laid mmerous ovisales, was 1.23 mm . long and 87 mm . broad (fig. 2a). The hear is small, well defined from the trunk. The frontal border rather considerably produced; its margin naked and centrally a little emarginate; close behind this margin on the lower side is an odd, tolerably good-sized square area (fig. $2 \mathrm{~d}, \mathrm{x}$) with romuded corners; the area seems to be pierced with rather momerous holes. Antennule pretty long and powerful, 3 -jointed, with some setie of medium length. Antemne wanting. Principal banches of the maxilluat rather short, additional branch long. Basal joint of the maxillæ large and smoth; a mmber of taps are seen on the distal part of the comecting membrane between the first and the second joint; second and third joints separated. Maxillipeds good-sized, their basal joint has several rather shor transverse rows of very fine, short hairs, second and third joints separated; the last joint teminates in a point inside which it has some spines; the spine at the end of the third joint shorter than in S. decoratu, but of a similar shape and equipment. Sulsmedian skeleton well developed, with three pairs of longitulinal lists, parts of which are rather broad, inside the maxillx; 110 eminence helind the base of the maxillipeds. The lateral margin of the head has a row of short hairs. In one specimen the trunk is quite naked, in another it has a mmber of simple, moderately long hairs which are partly arangen in rows on a minor area behind the head. Genital mea smaller than the head (fig. 2a), much broader than, or about twice as broad as. long (fig. 吕e); it is a chitinsed, somewhat inregular and, according to the individuals, somewhat differently shaped plate with a centrally inflexed posterion margin; the genital apeltures oblifue and ronsiderahly rurver,
not very far apart, and their himdmost extremity pretty close to the posterior margin of the plate; the plate is naked but for rery few hairs between the anterior part of the genital apertures. The candal stylets, sitnated close together and near the posterior margin of the plate, are rery peculiar: each stylet consisting of a rather short, but thick joint, on the imer posterior angle of which is articnlated a joint« twice as long, but scarcely half as thick, which must be explained as a thansformed seta, ontsile which are seen one or two simple seta.

MALE. It is of medium size compared with the temale (fig. 2 b : fig. 2a); a goodsized specimen is -28 mm . long and $\cdot 22 \mathrm{~mm}$. broad. Seen from below, its broadest dimension appears far towards the front, off the maxille, and seen laterally, it is mmsually thick. The head - considered as extending to the limit of the hair-covered part - is considerably smaller than the trink (fig. 2 h). The frontal border but slightly produced; it has five incisions, and six small lobes (fig. 2 g), each of which is twice as broad as one of the lateral incisions, and their slightly curved terminal margin is furnished with a row of fine, spine-shaped processes. Antemulæ 3-jointed, scarcely of medium length, with tolerably short setæ. Antennæ wanting (fig. 2f). The mouth-border provided with long hairs, considerably longer than in the female. Maxillæ of medium size, their basal joint bearing some normal hairs at the margin of the distal comecting membrane, second and third joints scarcely seprated from each other. Basal joint of the maxillipeds rather long, at its base a small area with minnte prickles, and at its distal end a few hairs; the other joints as in the female. The sub-median skeleton possesses the two first pairs of processes; the first pair are removed further backward than msual, and a little overlapping the base of the maxillipeds, they appear as pretty good-sized, somewhat protuberant, thick cones; the second pair are all but rudimentary. The ear-shaped stripe surrounding the base of the antemmla is provided with long hairs, the short lateral margin of the head with moderately long hairs, and from its posterior extremity to off, or a litte behind, the base of the maxillæ the anterior limit of the hair-covered part rums obliquely forward and upward along the side of the animal (fig. $2 h$), then curves very slightly and continues in a straighter line across the back; the result is that the naked part of the budy becomes musually small, compared with the remainder. The median part of the ventral side of the trunk, in front of the candal stylets, has an extremely close covering of fine hairs of medimm length; the remainder of the ventral sufface, as well as the sides and the back up, to the boundary of the hair-coat are closely covered all over with pretty coarse, tulerably long, or long hairs, and each of these proceeds from a distinct little knot; rather frequently, though by mo means always, the long hair seems to proceed from the centre, and a much shorter one from each end of such a knot, but the denseness of the covering renders a close examination exceedingly difficult and meertain. The first pair of trunk-legs consist of a relatively small basal part, from which proceeds a single, short, almost cylindrical branch without terminal seta. The second pair are so small and so much hidden in the dense hain-coat, that I lave been unable to discern with certainty more than a single tap, which is shorter than the suromong hairs. The
candal strlets are fomb at a considerable distance from the posterior margin of the trumk; they are comparatively large and nearly of a similar structure to those of the female, only I hare not been able to find any ordinary seta heside the one which is slaped like a joint.

OVISACS. They are small (fig. 2c), nearly romd, fieqnently somewhat thattened, with but few egrss, but then again as many as twenty-eight orisacs may be found with one female. The longest diameter of one of the ovisacs represented (containing eggs) is 42 mm . The eggs of abont medimn size.

LARVA. The specimens examined, of which the one partly represented in fig. 2 i had a total length of 23 mm ., were pulled wut of the egr-membranes, so the shape of their body in a free state cannot be determined with absolnte certainty, however, their cephalothorax seems to be comparatively somewhat shorter and broader than that of the preceding species, and to agree more with S. dispor. The larva is easily distinguished from all the other species by having no processes whatever on its front, instead of which, however, we find half its surface occupied by three pairs of transrerse. partly cmred, ontwardly comnecter lists. In many specimens, e. g. the one fignred, the olfactory seta of the antemmle is remarkably short, not half the length of the cephalothorax, whereas in other specimens I have found it reaching to the natatory legs (this difference is inexplicable to me). Antemme much as in the preceding species, except, indeed, that the broad basal part consists of two pretty distinctly separated joints, the first of which is short; so the antema is 4 -jointed. Maxillulæ much as in S. decorata. First joint of the maxillæ as in the preceding species, second joint with some fine hairs on the ventral side of the distal end; third joint sometimes as in S. decorata, but most frequently with three processes on the immer side, and then the cmred end of the joint itself is generally shorter than the most distal of the processes. Abdomen as in S. decorata.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsupium of Eudorella emarginata (Kr.) from Demmark. In a large material I have fomd altogether seven infested specimens. The following statistics can be given. In one specimen were found: one sln mk female, three males and thirteen mutually adhering ovisacs, most of them with eggs, some of them with Nenplii; in another specimen occured: one good-sized female, one male and twenty-two mutually adhering ovisacs, a few of which contained developed larve. In a third specimen the female and the ovisacs together formed an oblong lump; the female, which was good-sized, was so closely surrounded by the considerably flattened, mutually pretty firmly adbering ovisacs, that mly a very small part of it was visible on the side turning towards the rentral suface of the host; of ovisacs I found twenty-eight, some of which contained eggs, most of them brood in different stages, but in hardly any of them were the larvæ ready to burst the egg-membrane; a single male was attached to the outside of the lump.

REMARKS. In the structure of the caudal stylets in both sexes, and in the froutal area of the female, this parasite differs from all other species.

29. Sphæronella dispar 11. sp.

(Pl. 1N, fig. 3a-3k.)
FEMALE. A large specimen (fig. 3d) ${ }^{1}$) which had only laid three ovisacs was 69 mm . long and 79 mm . brom, thes being hroader than long; two other specimens without ovisacs were of the same shaje and size, whereas a finth specimen (fig. 3 a), which hat laid about a seore of orisace, was much smaller, 49 mm . in length and 38 mm . in Ineadth, thms being longer than broad. The head is not defined from the tromk at all, and the area bearing the month-aprendages is suromoded by a soft membane; the usnal chitinised parts, such as tiontal border and lateral horders, are altogether wanting (fig. $3 f^{\prime}$). Antemule short, e-jointed, with abont three pretty shot setr. Antema wanting. The setat of the month-horder I have not heen ahle to discen with certanty. Naxillula smath, with tolerahly short principal hranches, and additional branch wanting. Basal joint of the maxillæ smooth; the connecting membane between the first and the second joint withomt chitinons taps; second joint distinctly separated fom the third, which is comparatively long and slender, and termimates in a few fine setaceoms hanches. Maxillipeds of medimm size, but appear to be weak; the basal joint being forvided on its anterion side with several irregular rows of very short and fine hairs; second and thind joints msed into one lather chmsy joint with a somewhat sinuons ontline, the distal spine being a little broader than in the preceding species; the last joint terminates huntly and its end is smromded by a row of mmerons, very short and fine sete. The sub-merlian skeleton is much reduced. The trme is naked. The genital area is tather small (fig. 3 d), moth broder than long (fig. $\mathbf{3} \mathrm{g}$); the solid chitine forms a kind of semi-circle which opens towards the front, its sides are narrow, and its posterior part hroad. Genital apertures comparatively large, much curved, anteriorly parallel, and not far apart, the space between them solidly chitinised. The whole area naked; candal stylets wanting.

MALE. It is middle-sized or pretty large in proportion to the female (fig. 3 b : fig. 3 d and fig. 3 a); its length is 21 mm . to 32 mm . Seen from below (fig. 3 h), its outline comes close to that of S. Necoruta, bat its fiont is very different. Head and tromk of about equal size. The fiont moch produced, its lateral margins converging strongly a long way, till the distance between them is a little shorter than the diameter of the month, after which their anterior extremity expands into a disk, which is a little larger than the month, and thus is sitnated on a short peduncle. The larger part of the free margin of the disk is fmonished with a mw of slender, almost setaceons processes, and on the ventral smface of the disk, towards its bise, we see a small chitinons ring; on its imer side this ring is provided with four expansions, which turn towards its centre and constitnte the suromuding of a

[^10]cross-shaped very small area. Close behind the pedmele of the disk, the lateral margin of the elongated fromt is movided with a low. lomgiturlinal keel (fig. $3 \mathrm{~h}, \mathrm{y}$), which bears a row of mather short setaceons processes. The antemmlat are short, withont distinct articulation, very simons in ontline, and most spangly provided with sete; one of these is a peculiar olfactory seta, placer at some distance from the alrex, on the posterior side. Antemme wanting. Mouth-borler rather narow. Maxillute somewhat larger than in the fenale, withont additional hanch. Maxillie small and constructed like those of the female, except the third joint, which is pointed. Basal joint of the maxillipeds long and somewhat slender, on their anterior side proximally decorated with areas and rows, patly of minnte prickles, partly of very short hairs, distally provided with several transverse rows of somewhat longer hains; second and third joints coalescent, last joint essentially as in the female. The submedian skeleton with the two first paics of processes conspicuous; the first pair (i) of medium size, triangular and situated a little behind the hase of the maxille; the second pair (\mathbf{j}), which are placed inside the base of the maxilliperls, are moderately long, shaped like marrow cones and strongly diverging. The lateral margin of the head essentially like that of the species which live typically on Amphiporda; in its whole length, from a point somewhat in front of the base of the antemula, furnished with long hairs; off the base of the maxilla, and hefore reaching the posterion end of the lateral margin, the motline of the haircoat roms upward and slightly forward on the side of the animal till, on the middle of the side, it tmons hackward, then again continuing straight npward across the back, in a line with the posterior end of the lateral margin (fig. 3 i). Sides and back of the tronk closely covered with proportionally long hairs; the central and posterior part of the ventral surface covered with hains of medimm length, while basally, and for a part, sub-laterally, it is quite or almost naked. Trunk-legs and candal stylets altogether wanting.

OVISACS. They are middle-sized in proportion to the females, but here I have met with the peculiar fact that the smaller ovisacs with few eggs, represented in fig. 3 e , have been laid by the small female drawn in fig. 3 a , whereas the larger ovisacs, each containing several more eggs, enlarged on the same scale and represented in fig. 3 e , have been laid by the large female drawn in fig. 3 ll . The eggs are comparatively large.

LARVA. A free specimen (fig. 3 k) is 21 mm . in length. The cephalothorax is an oblong oval (the length in proportion to the breadth is as $13: 8$). It can be distingnished from the other species by the decoration of its fiont: there are no maked lists, but from one antemula to the other, with only a very short central interuption, rums a transerse curve of fine processes; on the sub-median part of the front the anterior ends of the processes are decidedly a little removed from the frontal margin. whereas in the more lateral part, they almost reach the margin, and this is due to a break in the transverse curve just in the middle between the merlian line and each antemma, so that the sub-median processes recede a little. The olfactory seta of the antemmla is extremely long, nearly as long as the cephalothorax and, when turned backward, reaching the middle of the abdomen. Antemx
much like those of the preceding species, omly the pemltimate joint and the long terminal seta are comparatively a little shorter. Maxillula as in the preceding species. Basal joint of the maxillit as in S. decorata, secoud joint distally provided with a mmber of tolerahly long, stiff setie, thind joint has at its imer margin forr processes, the ontermost of which is much longer than the others and conspicnonsly longer than the curved end of the joint. Abdomen as in the two preceding species; the setr of the candal stylets somewhat exceeding half the length of the borly.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsmpium of Eudorella bruncatula (Sp. Bate) from Demark. In a large material I found only fom infested specimens; one of them has no special locality, whereas the three others were taken in the Kattegat on the crnises of the "Hanch", two of them at Stat. 383 (fomteen fathoms), the third at Stat. 387 (seventeen fathoms). In one specimen (from Stat. 387) occurred: only one female and one male; in another (from Stat. 383): one female, two larve (intuders) and about twenty-four of the host's own eggs; in a third specimen (from Stat. 383) were detected: one female, me male, three mutnally adhering ovisacs and one of the host's own eggs. In the fourth specimen were discovered: an oblong lomp consisting of about a score of firmly adluering ovisacs, partly covering a female which was lying towards the front, further: a male and a distorbed ovisac, the larva of which were breaking out.

30. Sphæronella insignis in. sp.

(PI. 1N. fig. $4 \mathrm{a}-4 \mathrm{~g}$; 11. X. fig. $1 \mathrm{a}-1 \mathrm{~h}$.)
To begin with, I will observe that I have assigned to this species specimens from two species of the gemms Diastylis, viz. D. laris Norm. and D. comuta Boeck. However, from each of these species I possess only one female, one male and some full-grown larve. To the differences between the two females I can attribute no valne, and the differences between the two males from the two species of hosts are not greater than those which I have found in other forms of the family between specimens taken on the same species of hosts; between the larva there is no difference. However; in order to present the deviations fomd, I give three donble sets of figmes, and point ont the differences in the corresponding text; but, in spite of the scantiness of my material, I really do not donbt that it is the same parasite which lives in both species of hosts.

FEMALE. A specimen (from D. laris) was 1.16 mm . long, 88 mm . broad (fig. 4 a), and somewhat flattened. The head is not defined from the thomk, and it agrees very closely (fig. 4 c) in all details with the preceding species. The antemnlæ (fig. 4 c from D. lazis, fig. 4 f from D. cormutte) scarcely offer any (characteristic, and the same remark applies to the mouth. The branches of the maxillnla, at least in the specimen from D. laris, is somewhat longer than in S. dispar; additional branch wanting. The maxillæ a little smaller
than in the former species. The last joint of the maxillipeds and the terminal spine on the pembltimate joint in the specimen from D. leris are not very different from S. dispar, and distally much less expanded than in the specimen from D. cormuta (fig. $4 g$), but this difference is sarcely of any valne. The tronk is naked. The genital area, in both specimens, is a rather small, transverse plate of irregnlar shape, and for the most part very thin, which, in the specimen from D. cormita (fig. te) is about twice as broad as long, on the whole reminling of a rectangle; in the specimen from D. lovis (fig. +d) it is comparatively a good deal longer, somewhat heart-shaped, having a concave front margin, and an irregnlar, lobed posterior margin; in both specimens the genital apertures are middle-sized, somewhat obligne and curred, anteriorly not far apart; the area is naked, candal stylets wanting. (The differences in the slape of the genital areas are indeed very considerable, but in both specimens the plate is so irregularly shaped, so msymmetrical and so feebly chitinised, that I dn not think its shape is of any importance; on the contrary, I expect that other specimens of this species will exhibit other shapes of the plate.

MALE. In proportion to the female, it almost exceeds medium size (fig. $4 \mathrm{~b}: \mathrm{fig} .4 \mathrm{a}$); the specimen from D. levis (fig. 4 b and fig. $1 \mathrm{a}-1 \mathrm{~b}$) is $\cdot 29 \mathrm{~mm}$. long, the one from D. cormita (fig. $1 \mathrm{c}-1 \mathrm{~d}$) 31 mm . long. The specimen from D. lavis is - seen from the side (fig. 1 a) - considerably thicker than the other specimen (fig. 1 d), howerer, this thickness seems to he due to a swelling of the body which is scarcely normal. Otherwise there are no other differences between the two specimens than those which may be detected in comparing fig. 1 b and fig. 1 c , viz. some slight deviations in the anterior part of the front and in the hair-covering in front of the antenmulx. - Seen from below, it bears great resemblance to S. dispar, but the greatest breadth of the body lies more backward, and it deviates especially in the somewhat different shape of the front, and in the equipment of the maxillæ and of the sub-median skeleton. The distance from the antemmłe to the narrowest part of the frontal plate is shorter than in S. dispar; the expanded distal part is not circular, but considerably broader than long, limited to the front by a regular arc, the third of a circle, and decorated with processes as in S. Itispar; the lateral angles are almost rectangular, and posteriorly the dilated part is limited by oblique lines. From the base of this expansion, backward along the lateral margin itself, rims a pretty good-sized keel (fig. $1 \mathrm{~b}, \mathrm{y}$), which is also limited by an arc of a circle, and which is armed with setaceons processes similar to those of the median expansion. In the middle of the ventral side of the expansion we find the small chitinous ring mentioned in the description of S. dispar, but in S. insignis the fomr processes are prolonged and meet in the centre so as to form a cross within the ling. Antenulx, month and maxillulie nearly as in S. dispar. Maxillæ small; their basal joint has on its posterior side proximally a row of tolerably small, rather clmmsy, processes directed backward, distally some much smaller processes; the third joint is well set off and acute. Basal joint of the maxillipeds scarcely as long as in S. dispar, its anterior side fumished with several rows of hairs; the other joints nearly as in the precediug species.

The sub-median skeleton without processes, but the part obliquely inside and behind the base of the maxillæ is covered with pretty numerous setæ. Shape and hair-covering of the lateral margin of the head uearly as in S. dispar; from its posterior extremity the boundary of the hairy part proceeds at first rertically upward across the side of the animal, then somewhat obliquely backward across the back. The back and sides of the tuonk and the posterior part of the ventral surface are closely covered with rather long hairs, nearly all the remainder of the ventral side has hairs of medimm length. Trunk-legs and candal stylets wanting.

OVISACS. Iu D. lavis they were small, almost globular, with few eggs; in D. cornuta they differed considerably in size, from rather small to middle-sized, and were irregular on account of mutual pressure. Eggs of medium size.

LARVA. There is no appreciable difference between the larve found in D. Trevis and in D. cornuta. A well-developed firee larva from D. cornute is 20 mm . long and has served as type for fig. $1 \mathrm{e}-1 \mathrm{~g}$. It bears great resemblance to S. disper, but is sharply distinguished by several characters. The cephalothorax like that of the last-mentioned species. The decoration of the front is very characteristic (fig. 1 f): a transverse list is fomm inside the base of the antemulat; further, a simate transverse series of processes, with a broad central intermption, runs from one antemmla to the other; the inner half of this series begins far behind the fiontal margin, below the anterior side of the rostrum, thence it continnes in an oblique rlirection runing forward and ontward towards the margin, consisting only of five or six longer processes; then comes a little break in the row, the next process being somewhat further removed from the frontal margin, after which the row is continued to the anterior angle of the antemmla, but in its latter part the processes are shorter than the sub-median ones. The olfactory seta of the antennule is even longer than in S. dispar, as, when bent backward, it may reach as far as the posterior end of the second abdominal segment. Antennæ and maxillnlæ as in the preceding species. Second joint of the maxillæ without setæ (fig. 1 g), third joint with three or four processes on its imer margin, the ontermost of which is longer than the curved extremity of the joint, but scarcely longer, at least not considerably so, than the pemultimate process. The abdomen and its setæ as in the preceding species.

POST-LARVAL DEVELOPMENT. In D. cornuta a single prpa was found (fig. 1 h), which is 14 mm . in length and sub-globular. It is described in detail above on p. 56.

HABITAT. The marsupinm of Diastylis cormuta Boeck and D. lavis Nom. from Demmark. In a specimen of D. cornuta were fomd: an empty skin of one female, one male and seven small ovisacs with young ones in different stages, as well as twelve free larve and one pupa. In one specimen of D. lavis occurved an oblong lump of adhering ovisacs surmunding a female; they were inegmarly shaped on accomnt of pressure; on one side of the lump the larger part of one side of the female was uncovered, and on the side turning towards the abolomen of the host, there was a longitudinal impression in the lump, in which a
small part of the body of the female was visible, and a male was sitnated somewhat behind it ; there were at least twenty orisacs, some of them containing egges, most of them young ones in very different stages of development, and one of them contained perfectly developed larvæ.

31. Sphæronella marginata n. sp.

(Pl. XIII, fig. 6a-6h).
FEMALE. The only specimen fornd (fig. 6a) was 58 mm . long and 39 mm . broad, oblong ovate. The head (fig. 6 d) is not defined from the trunk. A frontal border is rather feebly developed and rus in a slightly curved line trom a point a little in front of one to a little in front of the other antemnla, and behind this line the skin is sunk and a little softer than in front of it; but lateral borders and lateral skeleton are entirely wanting, and the sub-median skeleton is reduced to a posteriorly geniculate, anteriorly ramified list between the rostrum and the base of each maxilliped. The antemma (a) are short, with two well separated joints, with a tolerably long seta at one angle of the first joint, a much shorter one at the middle of this joint, and two very short setre at the end of the last joint. Antemne wanting. Hairs of the month-border rather long. The maxillulæ lave very short principal branches; additional branch wanting. The maxilla (f) are quite rudimentary, each consisting only of a very small pointed conical joint, which looks rather like a process. Basal joint of the maxillipeds extremely swollen, especially its proximal part, which on its immer side and on half of its anterior side is fimmed with fom long, straight, transverse rows of fine, short hairs, while the distal part of its exterior side and the outer part of its anterior side have two transverse rovs' of similar hairs; second and third joints are coalescent and form together a long and very thick joint, the apieal spine of which is very broad and flattened and provided with a number of extremely fine points at its obliftle terminal margin; the last joint is short, very broad, dilated towards the flattened end, the oblique terminal margin of which is furnished with mumerons very fine points. On the head, a little in front of the base of each maxilliped, are seen rows and stripes of more or less short or long hairs. The trunk is naked. The genital area (fig. (6e) is somewhat broader than long and consists of a thin plate surromed by a thick border, which is wanting on the greater part of the anterior margin, and its free anterior angles are curved somewhat inward and backward; the plate with curved lateral margins and posteriorly emarginate. The genital apertures are very large, very close together, and their posterior extremity nearly reaches the hind margin of the plate; moreover, they are considerably curvel, and their anterior ends are somewhat diverging, their posterior ends very much so, while their muscles are turned obliquely outward and strongly forward. Close behind one of the genital apertures appears a very small caudal stylet, which is furnished with a pair of very short
seta; the other stylet is wanting; the whole area is maked. (In fig. 6 e to the front the two receptacula seminis are indicated by dotted lines).

MALE. The only specimen fond is tolerably large in proportion to the female (fig. 6 b : fig. 6a); it is 21 mm . in length, but on accomnt of pressure it is somewhat crooked, so that the normal shape of its body camot be precisely determined. The frontal borler is rather considerably prodnced, its margin very long, somewhat emarginate in the middle and forming on each side of this invard curve a gently convex margin, which on its upper, as well as its lower side. is' provided with a narrow border of nmmerous short (in the drawing a little too short) setaceous processes; further, across the lower side of the front a little in advance of the rostrmm, runs a long, straight, very narrow list, which almost reaches the lateral margin, and which is armed with a series of very small conical processes. Antemmux small, terminating in a setaceons point and with only a single, moderately long seta, which no donbt is olfactory. Antemne wanting. Mouth-border with long hairs. Anterior principal branch of the maxillula developed only as a somerrhat protruding romided comer; the hindmost principal branch extremely short, tap-shaped; additional branch wanting. Maxille small, all three joints entirely finsed together, with no vestige of articulation, but the general ontline of the maxilla nearly as in S. dispar, however, its distal part is very slender and terminates in a point. Basal juint of the maxillipeds a little more than medimm length, not swollen, smooth; on its anterior side near the apex it has a large process, the basis of which is constricted, while the remaining part forms an oval knot parallel with the outline of the joint; second and third joints are fised into a single short joint with a short and broad terminal seta, whereas the last joint is very short, broad and flattened, with denticnlated terminal margin. Nearly on a line with the anterior angle of the base of the maxilipeds are seen, close to each other, two small, short, conical processes, whereas other processes are wanting; but inside of and behind the posterior angle of the maxillipeds are fommd peculiarly shaped lists. The lateral margin of the head developed as in the two preceding species; from the base of the antemula it is furmished with rather long hairs, and from the posterior angle of the margin, as far as I have been able to see, the bomndary of the hairy part runs upward and somewhat obliquely hackward across the side and the back. The trouk, on its back, its sides and the posterior half of its ventral surface, is covered with long hairs; the anterior half of its ventral surface is naked. Trme-legs and candal stylets wanting.

OVISACS. Those that have been found are lather small (fig. 6 c), yet, as each of them contains six or seven nearly or filly developed larva, they must be considerably larger than when they were laid. The ovisac represented is 34 mm . in length and 27 mm . in breadth.

LARVA. Thongh very similar to those of the nearest preceding species, it presents various good characters (fig. 6 g). Length of the body ab. 21 mm . The cephalothorax is au oblong oral, a little narrower than in the two last-mentioned species. The front has a
curved list in advance of the base of the antemnula; from the margin, in front of this list, runs a transverse series of shorter processes; finally, from the part before the rostrum, extending outward and forward m to the anterior margin, we see an area covered with some rows of similar processes placed close together. The olfactory seta of the antemmle extends at least far back on the second abdominal segment. The antennæ differ widely from those of the fom preceding species; they are short, 2-jointed, the first joint is moderately long and rather thick, the second joint is only half its length and ends in two setz, one of which is short, the second a little longer than the first joint. The innermost and foremost branch of the maxillulæ, which e.g. in S. dispar is sitnated far in front of the three other branches, in S. marginata is placed finther backward, so as to be nearly at the same height as the two branches closest to it, besides being reduced to a short process; the outermost branch here is shorter than the two intermediate ones, and seems, moreover, to be naked. First joint of the maxillæ as in the four preceding species, second joint without terminal setæ, the third one (fig. 6 h) serated, having some very fine acnte processes at its imer margin. Second joint of the maxillipeds short, third joint exceptionally long, sereral times the length of the second. Abdomen comparatively somewhat smaller than in the nearest preceding species, but the mutnal dimensions between the segments are the same; the long setie of the first segment extend pretty considerably beyond the end of the caudal stylets, and the terminal setæ of these stylets are more than half the length of the body.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The marsupium of Iphinoë trispinosa (Gonds.) from Messina. In a specimen which had Homoeoscelis mediterranea (s. p. 97) in its branchial cavity occured: one female, one male and fomr orisacs containing larve. This was the only specimen infested with this parasite in the material mentioned more specially above on p. 97.

REMARKS. The most noteworthy feature in this interesting species is no donbt that its maxilla as well as its maxillipeds differ so much in the two sexes, and at the same time, in both sexes, especially in the female, deviate widely from these appendages in all other hitherto known species, not only of this genus, but of the whole family.

a. Parasites on Isopoda.

In three species of Isopoda, all helonging to the gromp Asellota, I have discovered three species of the genus Spharonellu. The temales of two of the species show great similarity to the normal species of the gemms which live on Amphipoda, lut the third species deviates very considerably from these parasites. The only characters common th the females of all three species are: antemme seem to be wanting; the month is large with a broad ur very broad month-border, the lairs of which are remarkally thick; the maxillulie are well developed, with long principal branches and at least very distinct additional branch; the
maxillee are normal, with a large, thick basal joint; the maxillipeds are t-jointed; the genital area is plate-shaped. The male is known only in one of the two first mentioned species, but it differs widely liom all the other males known of the family. Of the species (S. Mumnopsidis), the female of which deviates most from the species found in Amphipoda, I have found sarcely quite develnped larvæ, which in the structure of antenne and maxillæ come close to the species of the genns which live in Cumacea, but they differ from these parasites in having the second joint of the maxillipeds much longer than the third, whereas the fourth joint is armed with three spiniform processes on the distal part of the imer margin The larva of the two other species, mnfortmately, is mannown. So the knowledge of this little group is rather defective.

Conspectus of the Females.

1. The head distinctly defined from the trunk, frontal and lateral borders well developed. Genital apertures oblique and close together \qquad
1'. The head not defined from the trink, no frontal or lateral borders. Genital apertures transverse, comparatively far from each other
2. S. Munnopsidis 11. sp.
3. The genital area is a very large plate, only a little broader than long, and the longest dimension of the miscles of the genital apertures is shorter than the distance from their outermost extremity to the margin of the plate 32. S. curtipes n. sp.
2'. The genital area is a large plate, considerably broader than long, and the muscles of the genital apertnres are a good deal longer than the distance of their ontermost extremity from the margin of the plate 33. S. affinis n. sp.

32. Sphæronella curtipes n. sp.

(Pl. X, fig. 2a-2g).

FEMALE. The only specimen found (fig. 2a) is 24 mm . long, 22 mm . broad and considerably flattened; anteriorly the body tapers a little. The head is well defined, but very small, and especially very short, nearly twice as broad as long (fig. 2d). The slightly curved frontal margin is furnished in its whole length with excessively short hairs. Antemmlæ of about medinm length, 3 -jointed, the terminal setæ somewhat shorter than the antemmila. Antemm not fonnd. Mouth very large, with extremely broad month-border. The maxillule have tolerably long and powertal principal branches and a good-sized additional branch. Maxillie very large, the basal joint long and very thick, smooth. Basal joint of the maxillipeds long and slender, bearing a few short hairs at the distal end, otherwise naked; the three other joints slender, and the last joint provided with a single spine a little inside its pointed end. The sub-median skeleton has a broad list inside the maxillæ,
and a transverse row of long hairs is seen in fromt of the base of each maxilliped; two lists are fomd hetween head and tronk behind the maxillipeds. The lateral margin of the head has a tolerably broad stripe uf rather short hairs; this hair-covering extends mpward on the proximal part of the lateral suface of the head, hesides forming a narrow transerse belt immediately behind the head across the anterior part of the trunk. Except this hary belt the tronk is naked, and trmk-legs I have not been able to fiud. The genital area is much larger than the head (fig. 仓a) and consists of a very large romd plate which is a little broader than long (fig. 2e); the central part of the plate is more thinly chitinised (marked in the drawing by a light greyish tint), Whereas the larger part of it is thick and light brown. The genital apertures which are situated a little in front of the centre of the plate, are exceedingly small in proportion to its size and are found close together; their anterior extremities run nearly parallel, further backward they diverge considerably; their muscles are tmmed a little forward and strongly outward, lout do not reach half the distance to the margin of the plate. The thin part of the plate in front of and partly outside the genital apertures is furnished with a number of short hairs, and a considerable part of the thimner area of the plate behiud the muscles has some rery short hairs; close behind the genital apertures we see the candal stylets which are exceedingly small, and in front of these a dimintive transverse area very closely covered with extremely short hairs; the remainder of the plate is naked (in the dawing one of the receptacula seminis is indicated by a dotted line and marked r).

MALE. It is large compared with the female (fig. 2 b : fig. 2 a), and in reality comparatively very large, exceeding in size all other males of the whole family: the smaller one of my two specimens measnring 84 mm ., the larger one 02 mm . in length. In shape it stands far apart from all species known. Seen from below (fig. 2 f), its length is to the breadth as 5 to 3 ; the animal is broadest at or a little in front of the middle, somewhat narrower towards both flatly romuded ends; moreover, the head is much shorter than the trunk. Off the posterior margin of the mouth the lateral border of the head is very sloping, bending strongly outward, and more backward it forms a deep inward curve stretching posteriorly to a point a little outside the base of the maxillæ; these arched borders and the fiontal border combined form the sides of a deep cup, the posterior part of which - if it were not wanting - wonld pass across the base of the maxillæ; in the middle of this cup the rostrum is situated. Seen laterally (fig. 2g), the body is strongly curved, its ventral side being pretty deeply concave, the dorsal outline very convex. This line, moreover, is divided by three bends which are rather far apart and at ermal distance from each other; the foremost of these bends is on a line with the month, and coinciding with it at the back the boundary of the hair-covering runs in a slightly obligue line towards the posterior angle of the outstanding lateral border of the head, whereas from the two other dorsal bends transverse depressions contime a good way on the lateral smface of the trmak. Finally, we see on the bindmost half of the ventral side of the trunk a large, but not very thick, flatly
vaulted, almost square protuberance, which in a lateral view of the trunk makes it appear very different from other species. The frontal horder is considerably produced, the larger median part of the margin is slightly cmred, naked, separated by a rather deep incision from a lower, evenly rounded lohe which extends to the angle close in front of the base of the antemmala; this lobe is moch thinner than the remainder of the frontal border and supplied with rely short marginal hairs. The antennulæ are moderately short, 3-jointed, with short setæ. The antennæ are very short, probably only 1 -jointed, with a short seta. The month rather large, the mouth-border of medium breadth. Maxillulæ normal, with a long additional branch. The basal joint of the maxillæ is small and smooth, the two following joints (as in most other species) are coalescent. Maxillipeds farly small, with the normal proportion between the joints; the basal joint is slender, provided on the anterior side with some hairs at both ends; the last joint is sligthly digitated at its end. The sub-median skeleton has two pairs of processes, the first pair robust, the second pair rather short and strongly diverging; the part between the maxillæ and the maxillipeds is funished with numerons moderately short hairs. The above-mentioned bomdary of the hair-covering between the head and the tronk has a pretty narrow belt of rather short hains and dorsally of hairs of medium length; the back, the sides and the posterior end of the trunk are fminished with extremely short hairs, and this covering reaches ventrally to the second pair of legs and to the protuberance on the posterior half of the trmok; the anterior ventral half is naked, except a pretty good-sized transverse area stretching from the first pair of legs to the lateral margin which is furnished with rather short hairs, and finally, the protuberance is covered nearly all over with pretty similar hairs. The trunk-legs very small, each consisting of two generally somewhat oblong joints of about equal size and ending in one or two seta which are of the same length or a little shorter than the leg. Each of the posterior angles of the afore-mentioned protruding ventral part is prodnced into several rather short, ustally rounded eminences and processes, some of which are very thick, others fairly slender; the stontest of them bears a single pretty long, thick seta, and on the posterior part of the protnberance, closely inside of the imnermost eminence of the posterior angles, we find a short, oblong candal stylet jointed on; the two stylets accordingly being very far apart. (Spermatotheca appear underneath the foremost third of the protuberance).

OVISACS. They are middle-sized, shortly ovate (fig. 2c) or sub-globular, but slightly differing in size; the largest specimen is 1.6 mm ., the smallest 1.3 mm . in length. The eggs compraratively small and numerous.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.
HABITAT'. The marsupium of Janira spinosa Harg. from the Davis Straits at lat. $66^{\circ} 32^{\prime}$ N., long. $55^{\circ} 34^{\prime} \mathrm{W} ., 100$ fathoms; Th. Holm $9 / \mathrm{yn} 1884$. In a specimen occmred: one female, two males and twelve ovisacs, two of them with eggs and two with Nauplii.

33. Sphæronella affinis n. sp.

$$
\text { (PI.X, fig. } 3 \mathrm{a}-3 \mathrm{~d} .)
$$

FEMALE. The only specimen in hand is 97 mm . long, 90 mm . broad, and its thickness is about $3 / 4$ of its breadth; seen from below (fig. 3a), it is posteriorly broad and flatly ronnded, anteriorly somewhat prodnced, and its lateral ontline a little concave at some distance from the head. The head is small, well defined, somewhat broader than long (fig. 3 e) and thus considerably narrower than in S. curtipes. The frontal margin curves strongly forward and is naked. Antennule, maxillulie and maxillipeds exactly like those of the preceding species, whereas the month-border is a little narrower. Basil joint of the maxille a little less clumsy, with two tolerably small processes situated at some distance from each other where the imer and lower sides meet. The sub-median skeleton has a narrow list inside the maxillæ, and behind their base a transyerse stripe of long hairs (drawn only on one side in the figure). The lateral margin of the heal has a rather narrow stripe of tolerably short hairs, and this covering does not continue nuward on the lateral surface of the head. Somewhat more than the anterior half of the tronk is furnished with short hais; trunk-legs are wanting. Genital area much larger than the head (fig. 3 a), consisting of a fairly solid, yellowish, centrally somewhat thimer and lighter plate (fig. 3d), which is considerably broader than long, rounded; its anterior margin is almost straight, its posterior margin convex; a little behind the middle the proportinally very small genital apertures are situated close together, their moscles tmming ontward and a little forward and reaching beyond half the distance towards the margin of the plate. The area is naked, except the part between the genital apertures, which is provided with a number of short hairs; candal stylets I have not been able to find. (Fig. 3d. shows a fragment of the stalk of a spermatoplone and the outlines of both receptacula seminis.)

MALE. Unknown.
OVISACS. With a female occured six ovisacs mutnally glued together; all of them short and broad, somewhat angnlar, the largest a little flattened; none of them contained advanced larvæ. They differed very much in size, the largest being $\cdot 77 \mathrm{~mm}$. in length, the specimen drawn (fig. 3 b) 63 mm . long and broad, the smallest 47 mm . long. The eggs ummeroms and tolerably small.

LARVA and POST-LARVAL DEVELOPMENT. Unknown.

HABITAT. The marsupimn of Janire maculosa Leach from Herö, Norway. Prof. G. O. Sars discovered a single infested specimen and lent it me; [found one female, the posterior half of which was surrounded by six ovisacs mutually glned together. The parasite was lying with its head turned obliquely forward and somewhat sideways. - An examination of our pretty considerable material of this Isopod from Greenland and Demmark gave a negative result.

34. Sphæronella Munnopsidis n. sp.

(Pl. X, fig. $4 \mathrm{a}-4 \mathrm{~d}$.)
FEMALE. The only specimen found was torn and half empty; it was ab. 5 mm . in length and a little shorter than broad. The liead is very small and not separated from the trimk at all; frontal and lateral borders are altogether wanting, whereas the snb-median skeleton is developed into a single, good-sized, solid plate, to which the maxillæ and maxillipeds are articulated (fig. 4b). Antemmlar lather short, not distinctly jointed, but the length of the first joint is easily seen, as its distal anterior angle protrudes in the usmal way and is fimmished with setæ which, however, are short; the setæ on the distal part of the antenula are scarcely of medium length. Antemat are wanting. The month is good-sized and the month-border broad. The principal branches of the maxillulx are pretty long, the additional branch a little sloorter. The maxillæ are good-sized; their basal joint smonth, supplied with two rows of short, thick, blunt seta or small processes along the imer margin of the skin that comnects it with the second joint. Basal joint of the maxillipeds of medinm length; on the imner side of its distal half are two areas of extremely short hairs; second joint of normal length, somewhat dilated towards its distal end, on the imer side of which are seen some minnte hairs; thind joint slort and clomsy; in the left maxilliped it has at its distal imer angle a short and rery broad, romded spine which is furnished with exceedingly short hairs; in the right maxilliped this spine is wanting, but the joint is still shorter and broader, and its imer margin is hairy; in the left maxilliped the fonrth joint is tolerably short and hairy along the rombed end, in the right maxilliped excessively short and hairy along both margins. Snb-median skeleton quite naked. Trme naked; tronk-legs wanting. Genital area somewhat larger than the part occupied by the month-appendages; it consists of a transverse plate which is a little more than twice as broad as long, fairly rectangular, but the ontline is irregularly simate; properly speaking, this plate consists of a moderately broad ring of thick yellow chitine smroming a thinner light area, which, however, is somewhat more solidly chitinised than the skin which surounds the ring. The genital apertmes are situated comparatively far apart, each at one end of the thimer area and on its posterior margin; their distance fom each other somewhat exceeds the length of each; their direction is almost rectangular to the longitndinal axis of the animal, so that their muscles are tmmed nearly straight in advance parallel with the axis, and their lindmost lip is strongly curved. Somewhat in front of each genital aperture we see at the posterior margin of the foremost transverse list of the frame a circular hole (k), which is no doubt the orifice of a gland which otherwise I have been able to detect only in Alysidion abyssorum and in Aspidoccia. Only one of the receptacula seminis (\mathbf{r}) is shown in the drawing, but to the orifice of each receptaculum is fixed a spermatophore, one of which (s) is well preserved, whereas of the other (s^{\prime}) only the stalk is left. These orifices are sitnated
obliqnely in front of and at some distance firm the genital anertures and somewhat closer to the median line than the apertures. The whole genital area is naked. Candal stylets are wanting.

MALE. Unknown.

OVISACS. They differ widely in size, as fig 4 a shows; in the marsupinm represented occured twenty ovisars, which are irregularly slaperl and angular on account of motual pressme, and the largest of them which comtains half developed young omes, is 2.73 mm . in length and 1.74 mm . in breadth, the smallest ah. 42 mm . long and 75 mm . broad. In another specimen the orisacs are oral or sub-globnlar.

LARVA. None of the ovisacs contamed fully developed larrae. I took some larrae out of the orisac which contained the most adranced specimens and prepared them out of their membranes, so that I succeeded in giving a representation (fig. 4d) of several of the most important appendages, but about the fimal shape of the larva etc. no detailed account can be given. The front has no decoration, at most a small list inside the anterior angle of the antemmule. The ulfactory seta of the antemula is tolerably short, may be about half the length of the cephalothorax. The antemm of medimm lengtl, 4 -jointed, the two first joints broad, the third one slender, longer than the second, the fourth joint short, and its longest terminal seta shorter than the third joint. The month-border exceptionally broad with distinct, thick hairs. The basal joint of the maxille has two deuse combs of fine processes (one of which is not visible in the drawing), second joint is slenter, third juint has some spines on its imer margin. Second joint of the maxillipeds much longer than the third; the fourth joint has three conspicnons, slender and spiniform processes at the distal part of its immer margin. The abdomen of less than medimm size; its first segment almost longer and somewhat broader than the second one, and its long spines reach far beyond the caudal stylets, which are distinctly set off from the small third segment. The setæ of these stylets seem to be proportionally pretty short.

POS'T-LARVAL DEVELOPMENT. Unknown.

HABITAT. The marsupium of Mmmopsis typica M. Sars from the Kara Sea. Fig. +a represents the greater part of a large specimen of the lost, in which the ovisacs of the parasite are visible throngh the diaphanoms plates of the marsupimm. The marsupimn was petty strongly extended, it contained twenty ovisacs, partly with eggs, partly with Nouplii or with more developed larre, but - as stated above - nome of these was ready to swin ont; the above described female was lying against the ventral side of the host towards its anterior end. In a smaller specimen were discovered nine orisacs; the female and some sacs had evidently been washed out.

IV. Choniostoma н. J. н. (1886).

EEMALE. The body is somewhat flattened; seen from below, it is broader than long, nearly pentagonal, with romided angles, one of which forms the centre of the posterior margin, and two on each side, whereas the anterior margin forms but a slight curve and is longer than the distance between the lateral angles on each side, and between the hindmost lateral angle and the posterior central angle. The head is situated on the ventral side a little behind its anterior margin, and the skeleton is transformed into a transverse ling-shaped frame which is considerably broader than long, and the anterior part of the frame, which forms the frontal border, may sometimes rise a little above the skin in front of it, whereas the remainder, or sometimes the whole frame, is on a level with the ventral plane. The frame surromds a good-sized, thin-skinned area, in or a little behind the middle of which the rostrim and the month-appendages are found. The antemmer are normal, 3-jointed and inserted on the ring. The antemæ are certainly 3-jointed and finmished with a terminal seta. The month is good-sized, the month-border of about average breadth. Maxillulæ well developed, with a long additional branch. Maxillæ powerful, constructed as in the typical species of Spheronella. Maxillipels rullimentary, each consisting of two very small or quite diminutive joints. Trunk-legs and candal stylets - where such are found as in Splueronella. The genital area is more than twice as broad as it is long; the thickest chitine is found in the middle and along the lateral margins; the genital apertures are situated close together in the middle of the area, and close in front of them appear the orifices of the long sansage-shaper receptacnla seminis, which are turned oblignely forward and ontward. - No spermatophores have been observed.

MALE. Unknown.
OVISACS. They are always deposed freely, their shape is sub-globular, and as many as eleven or twelve may be fomd in one female. Each ovisac contains an exceedingly great momber, on an average at least one thonsand, mimute eggs (comp. my figures p. 47).

LARVA. Is known of both species and is quite similar in structure to the larve of some of the species of Spheronella living in Amphipoda; the only differences are, that the cephalothorax is shorter and broader, and the spiniform setæ at the posterior angles of the first abdominal segment longer, and especially thicker, than in any Spharonella known to me.

POST-LARVAL DEVELOPMENT. The pupæ found are described in detail above on p. $56-57$.

HABITAT. The branchial cavity of two species of the geuns Hippolyte Leach belonging to the order Decaporda, and the presence of the parasite canses the part of the carapace which is situated above the intruder aud its ovisacs to vault strongly, so as to form a large swelling, which as a rule is exactly similar to that caused by Gyge Hippolytes
(Kr.). Hitherto tomd only in the Kara Sea, the Mmman Sea, near Tromsio (Norway) and off the West-const of Greenland, and the genns has heen fomed only on Hipp. Gaimardii M.-Edw, and Hipp, polaris (Sab.).

REMARKS. The genus contains only two species. As, in spite of the most careful investigation, the male has not been fomb, om knowledge is defective in an important point. Judging from the structure of the female, the ovisacs, the lara and the pupa, the genus comes very near to Splucromella, and the only really good character appears to me to be the rudimentary maxillipeds of the femate. A biologically important character is that - as stated above - it lives in the branchial cavity of Decaporda Caridea, as the genns Homocoscelis lives in the branchial cavity of Cumacea.

Conspectus of the Females.

The frame of the head is an almost regranly transverse oval and provided exteriorly on each side with a very long list which proceeds from the centre of the lateral outline and runs ontward, and especially backward, in an oblique direction 1. Ch. mivabile H. J. H.

In the frame of the head the foremost lateral angle is strongly produced, forming a good-sized, faily broad and not quite shost projection, a large part of which is covered by the skin, whereas the rery long lateral, essentially backward ruming list mentioned in the preceding species is wanting' . . . 2. Ch. Hunsenii Giard and Bunnier (withont description).

I. Choniostoma mirabile H.J. H.

(Pl. X, fig. $5 \mathrm{a}-\mathrm{s} \mathrm{c}$; pl. XI, fig. $1 \mathrm{a}-1 \mathrm{k}$.)
Choniostoma mirabile H. J. Hansen, Dijmphna-Togtets zool.-bot. Udbytte, 1887^{1}), p. 271 -78, Tab. XXIV, fig. 7-7h.

- - Giard and Bonnier, Bull. scient. de la France et de la Belgique, T. XX, 1889, p. 346, etc.
- - Giard and Bonnier, Bull. scient. de la Fr. et d. l. Belg. T. XXV, 1895, p. 479.

FEMALE. The specimen represented in fig. 5 a is 35 mm . in length, 4 mm . in breadth; its shape is described in the diagnosis of the genus. The smallest specimen found is a young one, $1 \cdot 35 \mathrm{~mm}$. long and $1 \cdot 28 \mathrm{~mm}$. broad, this a little longer than broad, almost circular in appearance, and somewhat flattened like the adult. The area surrounded by the frame of the head (fig. 1 a) is regularly romded, somewhat shorter than broad; the anterior part of the frame is fairly narrow between the antennulæ, scarcely rising above the suromding soft membrane and exhibiting outwardly only a very narrow list, while its broader part (indicated by a dotted line) is covered by the skin. The lateral and posterior parts of

[^11]the atmost regularly oval transverse frame are fainly broad, and from the centre of the lateral outline proceeds a very long solidly chitinised list (k^{3}) ontward, and especially backward, in an oblifue direction; its proximal part is pretty broad, and its hindmost extremity extends even a little beyond the posterion margin of the fiame. Inside the acnte angles formerl at the origin of the lists, and at the points where the corved lateral margins of the frame meet the almost straight posterior margin, we perceive thick solid parts ($\mathrm{k}^{\prime \prime}$) whiclt, as lying beneath the skin, in this as in the following species ate indicated by dotted lines, and ontside the frame by a light shade. In the soft membrane between the anterior part of the fiame and the rostrum appear two small, oval, tolerably solid chitinons rings (t) situated rather far from each other, and each smromding a very small area; obliquely in front of them, and somewhat closer together, are two smaller and feebler, almost circular rings (in). The antennule (a) are short, with setæ of nearly medinn length, among which is a single sensory seta (b). Antemm (c) of ahmost average length; they seem to be 3-jointed, laving an exceedingly short hasal joint, whereas the two next joints are well developed, the terminal seta being of the same length as, or Ionger than the last joint. Mouth-border of medium breadth. Maxillat middle-sized; basal joint smooth. Maxillipeds (g) quite rudimentary and difficult to detect, each consisting of two diminutive joints, the last of which is pointed. The sulb-median skeleton (h) forms on each side, obliquely inside and partly behind the maxille, a plate which is piercer with a hole and divided by incisions into irregular lobes. The liead is naked all over. The trunk is naked in the adults as well as in the abovementioned very young specimen; the latter has small trunk-legs, whereas I have not been able to discover these appentages in the large specimens. The genital area (fig. 1 b) has very oblique and anteriorly strongly converging lateral margins; one of the receptacula seminis (r) is represented in the drawing.

MALE. Unknown.

OVISACS. They are scarcely middle-sized (fig. 5 b and $\overline{\mathrm{c}} \mathrm{c}$: fig. 5 a), sub-globnlar, with slight difference in size where the contents are equally developed (while fig. 5 b compared with fig. 5 e shows the usual difference of size between an orisac containing eggs and another with full-ghwn larre). The longest dianeter in the ovisac shown in the drawing fig. 5 b, is 1.8 mm . As many as twelve ovisacs may be found in one female. The eggs are relatively extremely small and excessively numerous.

LARVA. The specimen represented in fig. 1 e is 24 mm . long, but, as it was hinged to a gill (by the adhesive plate s) in order to undergo its metamorphosis, the cephalothorax is somewhat shorter and broades than in a specimen, which has not yet hinged itself (aud the third joint of the maxillæ is bent forward); fig. $1 f$ slows the front part of a larva prepared ont of au ovisace. As I have met with no larva abont to swim out, or with one which had just entered the branchial cavity of a new host, I am nuable to determine the shape of the cephalothorax in the free larva with absulute certainty, however, it seems to be somewhat broader than in any other of the larvæ I have observed, and not much longer than
broad. The firont has a curved list inside the anterior angle of each antemmba (some transverse stripes shown in fig. 1 f , I am mathle to explain). Antemmle : B-jointerl, oltactory seta comparatively short, not half the length of the cephaththorax. Antemme a little longer than the antenmla, in all respects like those of Sphrer. dispor, except that the hroad basal part sumetimes seems clearly to consist of two joints (fig. 1 fi), while sometimes only one joint is discernible (fig. te) The maxillule consist of three monlerately long naked branches, which spring from a low eminence. The juints of the maxillae are smooth, the last one seems to end in two extremely short prints. Second joint of the maxilliperls a little shorter than the third. The pedmele of the natatory legs lairly broarl. First ahdominal segment somewhat longer and considerably broader than the second, and the seta of its posterior angles twice the length of the following segments and the candal stylets, exceptionally thick and hairy min their distal half; third segment much smaller than the second; the candal stylets pretty well defined, and their sete about $3 / 4$ the length of the cephalothorax.

POST-LARVAL DEVELOPMENT. On the gills of a Hippolyte appeared specimens uf all the thansitional stages between larva and prpa, besides numerous pmee (fir. $1 \mathrm{~g}-1 \mathrm{k}$) of somewhat different shape and considerable difference of size. With regard to these pupe I refer to p. $56-57$ where a detailed accoment of them is given.

HABITAT. The branchial cavity of Hippolyte Gaimardii M.-Edw. from the Kara Sea. In a female without eggs I discovered under a swelling of the carapace on the left side: one female and twelve ovisacs, the contents of which presented the most different degrees of development; in one ovisac, for instance, appeared fill-grown larvit; the five gills of the host, belonging to the trmk-legs, were all a little curled, the two foremost, especially, were distinctly deteriorated. Beneath a large swelling of the carapace of another female Hippolyte without egg's occurred one female and nine ovisacs, which, however, have not been all taken out, nor the gills examined. In a third female without eggs one female and six owisacs appeared muder a swelling on the right side of the carapace; the two foremost of the gills of the trmak-legs were atrophied, the three others were normal. A female of the host with numerous eggs containing half-developed young ones, had on its right side a swelling on the carapace about $\frac{2}{3}$ of the normal size, but parasites and ovisacs had disappeared, and so had the two foremost of the gills of the trmik-legs; the three hindmost were normal, without brood of parasites. There was no swelling on the left side of the carapace, but far to the front appeared the small above-mentioned female which was 1.35 mm . in length, moreover, in the two foremost of the gills of the trmb-legs, occurred ummerous pupæ and linged larve in all stages transitional to that of the pupa, altogether twenty-one pure and fonteen larvæ; the hindmost gills also revealed some larra and pupe, but each of then only a few, except the penultimate, which contained many at one end. The larvæ and prpe were attached to the surface of the foliaceons gill-fibres at their brse; sometimes, though seldom, two were situated close to each other, sometimes they were fomnd far in between the origin of two gill-fibres.

REMARKS. What I described and figured in "Dijmplma-Togtet as Ch. mirchuite, were specimens of this species; besides, I was of the opinion that all my specimens on Hipp. Gaimaraii, and an exceedingly large specimen on Hipp. polaris, belonged to the same species. Giard and Bommer, in their paper of 188!, supposed that the large specimen detected on Hipy poluris, was of another species, especially becanse it ocemred on another species of host, and they maned it Ch. Hansmi, but without material of comse they conld give no description. Their smposition proved right to a certain extent, as the parasite on Hipp. polaris did really belong to a species which differs fiom Ch. mirchite, but it became evident at the same time that Ch. Hansmii is fomd in Hipm. Gaimardii as well. After this discovery I examined in our Mnsemm all the specimens kept of both species of Hippolyte, and in a very large material of Hipm. Gumardii from the Kara Sea I succeeded in finding two more specimens infested with small parasites, one of which is the above-mentionerl specimen with larvæ and pupæ on its gills, whereas the parasites on the other specimen belong to Ch. Hansenii. I smplose the larro and pupa fomd to pertain to this species, becanse they occurred together with the small female ($1: 35 \mathrm{~mm}$. in length), but I must point ont that this proof is not guite decisive, as allowance must be made for the pmssibility that these larvæ and pmpe may belong to the following species, or some of them to Ch. mirabile, others to Ch. Hunsenii. It is worth noticing that I have not been able to detect any difference between larvæ taken ont of the ovisacs of either species.

Max Weber describes ovisacs taken in the branchial cavity of Hipp. Gamaraii from the part of the Mmman Sea which is Sonth of Nova Zemblia, and these ovisacs decidedly belong to this genus, but the species cannot be determined. - J. Sparre Schneider in: "Tromso Mnsemms Aarshefter 14, 1891«, p. 112, says that be has formd "Choniostoma mirabilise on a specimen of Hipp. Gamardio from Hilleso in the Malangen-Fjord (on p. 98 he furthermore states that the same specimen was also infested with a Phryxus [Hemiarthres abdominalis (Kr.)]), and that he had moreover nbserved it near Tromsö; but it camot be ascertained here either, whether it is Ch. mirabite, Ch. Hansenii, or both species, which have been seen.

In a large specinen of Hipp. Gaimarfii fiom the Davis Straits, lat. $66^{\circ} 30^{\prime} \mathrm{N}$., long $54^{\circ} 50^{\prime} \mathrm{W}$., forty fathoms, morder a swelling of the carapace eight ovisacs occurved, and the foremost gills were reduced and contained two pupæ, but as the female was wanting, in this case also it is impossible to determine the species. However, we may state at once that not this species, but Ch. Hensenii was discovered later on at the coast of West-Greenland.

2. Choniostoma Hansenii Giard and Bonnier (withont description). (Pl. X, fig. 6a-6b; pl. XI, fig. 2a-2f.)

Choniostoma Itunsenii Giard and Bonnier, Bull. scient. de la France et de la Belgicue T. XX, 1889, p. 366 [without description].

- - Giard and Bonnier, Bull. scient. de la Fr. et d. l. Belg. T. XXV, 1895, p. 479.

FEMALE. The largest specimen is $5 \cdot 3 \mathrm{~mm}$. long, 5.5 mm . broad and ab. 39 mm . thick; the specimen represented in fig. 2a, which lad laid eleven orisacs, was 3.15 mm . long, 3.65 mm . broad and 2.7 mm . thick; the yomg specimen drawn in fig. 2 b , was 1.7 mm . long and broad. The anterior part of the frame of the head (fig. 2 d) rises somewhat above the skin in firont of it; it is tolerably narrow in the middle, broader towards the base of the antemmb; the foremost lateral angle of the frame is strongly produced and forms a considerable, tolerably broad and not quite short, ontstanding, rounded projertion, a large part of which, however, is covered by the soft skin. A gool deal of the lateral borders and of the short hindmost part of the frame is likewise corered by soft skin similar to that of the surroudings, and on each side, where the lateral and the anterior parts meet, we see, moreover, two good-sized chitinons parts beneath the skin. On the other hand, the long list which in Ch. mirabile runs ontward and backward from the centre of the exterior side of the frame, is altogether wanting. The two pairs of small rings in the skin in front of the rostrom are advanced to close behind the anterior part of the frame; the sub-median pair are larger; the more lateral pair much manower than in the preceding species. The antennule are a little longer than in Ch. mirabite, and have longer sete. The antenne are also longer than in the last-mentioned species: distinctly 3-jointed, the basal joint short, the two next joints about sub-equal in length, the terminal seta longer than the third joint. Montlo-border fairly broad. Maxillæ good-sized, larger than in Ch. mirabite. Maxillipeds rudimentary, yet somewhat larger than in the preceding suecies and otherwise of the same structure. The hindmost part of the sub-median skeleton consists on each side of a tolerably narrow, posteriorly somewhat expanded list; as in the preceding species a long and robust branclı proceeds anteriorly from the exterior side outward just behind the base of the maxilla. In front of the anteunulx, before and outside the foremost free lateral angle of the frame, and thence more or less backward ontside its lateral margins, we see in the alult specimens a number of fairly short or short setæ (fig. 2d), obliqnely outside the lateral angle some very long setæ; fig. 2a, moreover, shows a fairly broad stripe furnished with scattered seta rmming from each lateral angle somewhat forward and strongly outward along the rentral surface of the animal towards its anterior ontline. Yomnger specimens (fig. 2 b) not only hare seta - some of them very long - on these last-mentioned parts (fig. 2 e), but also a number of similar setæ on the sides and on a small part of the ventral surface, as well as a few scattered setæ on the back, whereas the greater part of the ventral side is naked. The trunk-legs are very distinct in the smaller specimen represented in fig. 2 b , but in the larger animal (fig. 2a) I have not been able to find any. The lateral margins of the genital area (fig. 2 f) differ somewhat in shape from Ch. mirabile, being geniculate in the centre, so that only their foremost half turns inward. As in the preceding species, the genital area sends forth from its posterior central part two strongly diverging, tolerably short lists, between which, in the half-grown as well as in the adult specimens, we find the
candal stylets sitnated close together; they are very small, and each of them is providen with a pair of fairly long seta.

MALE. Unknown.
OVISACS. They resemble those of the former species. The ovisac remesented in fig. 2c is 1.7 mm . long and 1.4 mm . broad. In one female were fomd eleven ovisacs.

LARVA. Specimens which are full-grown thongh they have been pulled out of an ovisac, resemble those of the former species to such a degree that I have not been able to find a single distinguishing mark which appeared to me valid.

POST-LARVAL DEVELOPMENT. Unknown.
HABITAT. The branchial cavity of Hippolyte polaris (Sab.) and Hipp. Gamardii M.-Edw. from the Kara Sea. My material from this locality is as follows: in a female withont eggs of Hipp. polaris appeared beneath a large swelling on the left side of the carapace, the above-mentioned gigantic specimen. In an adult male of Hipp. Guimardii occurred under a swelling on the right side of the carapace: a female (represented in fig. 2 a) and eleven ovisacs (containing eggs, Nouplii and fully developed larve respectively); besides an adult male and a much smaller, exceedingly young female of Gyge Hippolytes (Kr.); the two foremost gills of the host, pertaining to the trunk-legs, had disappeared, the three hindmost ones were well preserved; moder the apparently somd left-hand side of the carapace of the host, one male Gyge was discovered. In another somewhat smaller male of Hipy. Gaimardii occured in the fiont part of the left branchial cavity three rather small females, placed obliquely in a longitudinal row, in the right branchial cavity five similar females, three of them far to the front. All the parasites were of sub-equal size and about 1% to 1.7 mm . in length; the gills were somewhat crmmpled, and the carapace showed small cavities on its imer side in the parts which covered most of the parasites, thongh its outside did not as yet show any leal swellings. No Epicaridea were discovered.

This species has been found besides at the West-coast of Greenland: in the KarajakFjord, district Umanak (on ab. lat. $70^{2 / 30}$ N.), by Dr. E. Vanhoffen. This naturalist having informed me in a letter that he had found Choniostoma, I asked him to lend me his material, and he kindly placed it at my disposal, as well as his uwn particulars abont it. He possessed in all form females; two of these belonged to Ch. Hansenii, he had fomd them fiee in a bow-net, and le writes about them: ». . . die ich lose fand, und die ans Krebsen stammen miissen, welche in meiner Rense sich hänteten oder verzehrt wmolen«; abont the others he writes: »Ein drittes Exemplar wurde in H. Grumurdii...., ein viertes in H. polaris.... gefunden«; one of these was Ch. Hansenii, but the other was "zmr Hälfte antgeschnitten«, so that I could not determine it, and I do not know in what species of host the specimen had been found. So at least three of the fom parasites pertained to this species, moreover, it seems very probable that it lives in both species of Hippolyte.

Besides, it is not at all mulikely that at least some of the specimens from the Davis Straits, from the most northem part of Norway (Malangen and Tromsio) and fiom the Mmman Sea mentioned mider the preceding speries, belong to this one.

RENARKS. This species is sharply distiogushed trom Ch. miralite, especially by the shape of the frame of the head. It offers an exellent example of the lact that the same speries of parasite may be found in two different speries of hosts; hesides, the sperimen with the eight yomg females shows rery clearly indeed that it is the parasite itself which canses the swelling in the carapare of the host, and that it dones not - as suggested by Giard and Bomnier - lodge itself on or together with a Gyge, or in a swelling formed and atterwarts left lyy this parasite.

V. Mysidion n. gen.

FEMALE. The body shortly ovate. The head pretty well defined from the trunk, but in elderly specimens it is usually found in front on the rentral side of it, as an anteriorly and laterally rather well defined eminence; frontal border is wanting, and the skin in front and on the sides of the wanting or at most rery indistinctly marked lateral border is rather thin. The antemnle are either faily shor and 2-jointed or almost rudimentary; 1-jointed. Antemæ seem to be wanting. The month moderately large, the month-border narrow, but frequently partly covered with a viscons substance. Maxillula well developed, with a good-sized additional branch (pl. XII, fig. Da, e'). Maxille powerful; the basal joint has at its terminal margin one or two processes, against which the last joint can be folded up. The maxillipeds rather short and weak; their basal joint has an inregularly sinuate outline; second and third joints fused into one short joint, terminal joint of nearly average length, pointed. The trouk is now naked, now in a few places most sparingly provider with single hairs of abont medium length; tromk-legs and candal stylets altogether wanting. No genital area is fomd; the genital apertures are placed very far apart at the place where the posterior and the lateral ontlines meet ($\mathbf{1}$. XI, fig. 3 b); each aperture has - besides its usnal two lips - its own skeleton consisting of a list which forms a semicircular curve (pl. XII, fig. 2 b), or the greater part of an oral (pl . XI, fig. 3 f), the longitudinal direction of which is parallel with the median line of the animal, and whose open side turns towards this line (pl. XI, fig. 3 e); the hindmost lip of the genital aperture is quite close to the posterior part of this list, and the muscles radiate forward to its anterior part. The entrance (0 perhaps rather: entrances) to the odd receptaculum seminis ($p \mathrm{l} . \mathrm{XI}$, fig. $3 \mathrm{e}, \mathrm{r}$) is or are sitnated at the median line far in firont of the genital apertures; the membrane which covers the receptaculum is often closely covered with a great number - as many as twenty six - of spermatophores, among which are seen, moreover, stalks of other spermatophores, the resicles of which have disappeared. - The spermatophores (at least in Mys. commune) are somewhat elongated ovals. - Varions parts of the head, as lateral margins, month etr., are frefuently
partly covered with the giney substance, by which the female is attached to the inside of the marsupirm, and it seems as if in these cases the animal had got its head irregularly covered with glue just atter this substance had been secreted and before its becoming stiff (dry).

MALE. This sex is known in both species. The body is short and clumsy. On the dorsal side of the head, somewhat in front of the hair-coat and at some distance from the median line, we see a knot or short cone (pl. XI, fig. $3 \mathrm{~h}, \mathrm{x}$). The head is provided with well developed frontal and lateral borders. Antemulæ short, 2-jointed. Antenuæ wanting. Hairs of the month-border short, but distinct. Maxillnlæ and maxillæ as in the female. Maxillipeds rather anomalons: their basal joint curved, at least with one good-sized, thick process on the outer side of its distal end; second and third joints coalescent, the terminal joint conical. The sulb-median skeleton withont processes at the base of either maxillæ or maxillipeds. The trmk hairy; tronk-legs and candal stylets wanting. The frontal thread furnished with peculiar expansions.

OVISACS. Typically they are shortly pyriform and attached to the lips of the genital aperture by a fairly short stalk. Fig. 2 b in pl. XII shows the genital aperture (g), the lips of which are covered with a stiffened secretion, which, besides, forms a pretty large plate (h) covering the hindmost end of the semicircular list and the skin nearest to it; from this plate proceed numerons, distally thickening threads, which are cut off in the drawing (i); they are the stalks of the ovisacs, so the plate must be molerstood as being the coalescent basal parts of these stalks. The ovisacs are mumerous, twelve, fourteen, seventeen, or even more (see Mys.abyssorum), sometimes varying exceelingly in size (pl. XI, fig. 3c), and mntnal pressure not unfrequently having cansed their shape to become irregnlar and their attachment difficult to discern (pl. XI, fig. 3a); frenuently again, they are af about equal size, of regular shape, and their attachment easy to observe (fig. 3 b).

LARVA. It is known in both species, and on the whole only differs from the species of Splueronclla living in Amphipoda by the shortness of the setie of the candal stylets, these sete being not nearly half as long as the cephalothorax.

POST-LARVAL DEVELOPMENT. Is partly known in one of the species, and the stages known, which are very remarkable, are described in detail above on p. $61-63$.

HABITAT. In the marsupimm of species belonging to the genera Erythrops G. O. Sars and Parerythrops G. O. S. (family Myside, order Mysidacea) from Norway.

REMARKS. This gems is admirahly distinguished from the three preceding genera by the following characters: the genital apertmes in the female are placed far apart from each other and from the odd receptaculum seminis, each has a skeleton of its own, finally, the ovisacs are attached to the lips of the genital apertures. In the three last characters it agrees with the following genns, but in the latter the female lacks maxillipeds, the genital apertures are much closer to each other etc. The males differ from all the preceding genera and agree with the following in possessing the two dorsal knots on its head. The metamorphosis deviates very strongly from anything else I have observed of this kind.

For my whole abmidant material of this and of the following genus I am indebted to Professor G. O. Sars. It consisted partly of intested Mysidæ with indication of their localities, partly of similar amimals withont such indication, fmrther, of parasites taken out of their hosts, the latter not heing mentioned; these last animals have scarcely been used at all. [have determined the hosts in accordance with the abore-mentioned naturalist's wellknown excellent work about the Mrsidæ of Norway, but I have felt bound to follow Stebbing in adopting the older names of two of the species. - Besides, in his »Report on the Challenger Schizopoda« G. O. Sars himself mentions having observed in the genus Erythrops "a peculiar Lermæid, apparently the Spheronella leuckartii of Salensky", otherwise he does not give any more details about his finds.

Conspectus of the Species.

1. The Females.

Antemæ almost rudimentary, 1-jointed. Head naked. 1. MI. commune n. sj).
Antemme larger, 2-jointerl. A lateral longitudinal belt on the head and a considerable area behind the maxillipeds covered with hairs. 2. M. abyssorum n. sp.

2. The Males.

The head tapering considerably towards the front, provided with a narrow frontal border. The hasal joint of the maxillipeds has on its outer side a shorter process in the centre and a long one at its distal end. The tronk is covered with immmerable minnte transverse eminences, from each of which project several short hairs 1. M. commune

The head anteriorly broad, almost trimeate, with a moderately broad frontal border. The basal joint of the maxillipeds has on its onter side only a single tolerably large process placed at its distal end. The tronk is withont transverse eminences, the hairs normal, of average length
2. M. abyssorum.

1. Mysidion commune n. sp.

(Pl. X1, fig. 3a-3i; pl. Xll, fig. $1 \mathrm{a}-1 \mathrm{~d}$).
FEMALE. In fig. 3 a are represented the essential contents of a marsmpim, consisting of a shrivelled female and seventeen ovisars; the whole Jonlk was 29 mm . long and 2.3 mm . broad. The female represented in fig. 3 b is more normal, large, and had probably not finished laying eggs; it is 1.14 mm . in Iength and 94 mm . in hrealth, shortly orate, and
part of its posterior margin is nearly straight; it is seen from the dorsal side, the frontal part of the head is turned backward, and the maxillipeds ((g) forward; however, this position is an anomaly, no doubt produced by pressure acting on its very soft skin in the marsupinm during its growth. - The head (fig. 1 a) withont real lateral borders, and in the adults, the part surromding the month-appendages is irregularly folded up against these appendages, or even overlapping the outer side of the maxillipeds. The antennulæ (a) almost rndimentary, as broad as long, 1-jointed, ending in several very short setæ. Somewhat in front of the antemnix are seen two taps (11), the nature of which is quite incomprehensible to me (possibly cones of viscons substance secreted throngh the orifices of glands?). The terminal margin of the basal joint of the maxilla is concave, rising at its posterior angle into a broad, rather short process. The maxillipeds have no spine at the distal inner angle of their penultimate joint. The lower side of the head naked all over. The list of the genital apertures forms about two thirds of an oval ring.

MALE. It is small in proportion to the female (fig. $3 \mathrm{~d}:$ fig. 3 b). The specimen represented in fig. 3 h is 164 mm . long, the one drawn in fig. 3 g , measures 174 mm . The body is not flattened. Seen from below, the head nearly equals the trunk in length, but the latter is somewhat thicker; seen sideways, the ontline of the hair-coat rums from the base of the maxillipers somewhat obliquely backward mp across the side and the back, so that the dorsal line of the head becones much longer than that of the trunk, and the short comical processes (x) are placerl a little in front of the hair-covering. Seen from below, the lateral borders of the head converge from behind their centre up to a point in front of the base of the antemulæ, so that the frontal border becomes very narrow; in proportion to its breadth it is considerahly produced, and has a strongly curved, naked anterior margin. Antennule short, 2-jointerl; second joint somewhat shorter as well as narrower than the first one, furnished with a few short setre. Maxillæ large; the terminal margin of the basal joint essentially as in the female. The basal joint of the maxillipeds has on its outside in the centre a fairly short, thick, romoded process, and distally a thick and very long, slightly curved process; the next joint (second and third fused together) has a larger or smaller outstanding process somewhat on the bomndary between the anterior and the outer side. The lateral margin of the head is fumished with a row of fine, rather short hairs, and a similar row is seen somewhat ontside the margin. The trunk is closely covered all over with very small transverse eminences, from each of which sping several short, fine hairs. - The frontal thread, il foumd, is long and of peculiar shape; in fig. 3 h such a thread, lettered with an s, is shown as fixed to a marsupial plate (t); it is somewhat longer than the male, thin in the greater part of its length, then dilates pretty quickly and evenly towards its distal end, forms a collar-like ring, contimes dilating, and forms a second ring at the thickest part of its expansion; beyond this ring it is still thick, though slowly decreasing in circumference, and at last increases a little up to the distal end, by which it attaches itself.

OVISACS. They are mentioned in the description of the gemus. In pl. XI, fig. 3b and fig. 3 c are drawn on the same scale of enlargement, thereby illnstrating the relative size etc. of the orisacs. The largest of the orisacs, represented in fig. 3 d , is 90 mm . in length and contams larvie, of which only six are drawn.

LARVA. Full-grown larve prepared out of an ovisac agree closely with those of the following species; the only difference I have been able to find is, that the imner side of the terminal joint of the maxillipeds is smooth in this species and spinons in the following one. As for the rest, the reader is referred to the description of the next species.

POST-LARVAL DEVELOPMENT. The stages found are described in detail above on p. 61-63.

HABITAT. The marsupimm of Erythrops serratu: G. O. Sars and Parerythrops obesus G. O. S., and a female together with the following species in the marsupimm of Erythrops abyssorum G. O.S.; all from Norway. The following special data can be given. In a specimen of Parer. obesus withont special locality, one large female was found attached to the inner side of the hindmost right marsupial plate near its base; it camried fifteen ovisacs, one of which was empty; and two males appeared together with it. In an Er. serratus (with two specimens of Aspidoecia) withont special locality, occmred: an almost empty female (with twenty-one spermatophores), carrying fourteen ovisacs of widely difiering sizes, one of them half emptied of young ones, another cquite empty, and to the latter were attached six males, one of which had form spermatophores fixed to the ventral side of its tromk; further: an empty, partly destroyed skin of a seventh male, another male (the eighth) fixed by a frontal thread, and a larva abont to become a pupa. In another Er. scrutus, the locality of which was not specified, was discovered one large female (type specimen of fig. 3 b) attached by its head to the basal part of a marsupial plate and carrying thirteen orisacs (six and seven), and together with it a half-grown female and a female in the stage represented in fig. 1 d , each fixed to a separate marsmpial plate by a dorsal thread. In one specimen of Er. serratus (with at least one Aspicloccia), from Kvalo, a part of the contents of the marsupium was washed away, but still three adnlt females, all with ovisacs, and one male were fomd; in a specimen of the same species from Sunde, the marsmpium contained only one female with two ovisacs. Another specimen of the same species from Sunde was highly interesting. Its marsupimm contained, to begin with, the bolk represented in fig. 3 a, the greater part of which consisted of a rather shrivelled fentale with seventeen ovisacs, some of which contained eggs, others Nunplii or pretty old larve, two were nearly emptied of larra, and one of the ovisacs was thee-lober, the majority of the others more or less distinctly pyriform. The bulk was placed as follows: the part of it which is mplermost in the drawing, was foremost in the marsupimm, the part of it which tmmed tuwards the abdomen of the host, was Hat, but the npposite, ventral side strongly arclued, as shown in the illnstration. This bulk contained, moreover, two males, the pupa fastened by a dorsal thread and drawn in fig. 1 c , and a very small pupa, like the one represented in fig. 3 i .

Between the marsupial plates of the host were further fonnd: three males, two of them attached by frontal threads to a marsupial plate, on its elge and a little inside it on the surface; and finally: the minnte pma drawn in fig. 3 i , and the very yomg femate represented in fig. 1 d , which was attached to one of the plates by a dorsal thread.

And lastly, in the marsmpium of an Er. abyssorm, infested with the following species (to which we refer), occmred a very yomg female which adhered to the femate of the other species.

2. Mysidion abyssorum 11. sp.

(PI. XII, fig. 2a-2i).
FEMALE. A specimen containing fourteen ovisacs was 1.39 mm . long and 965 mm . hroad; its shape much like that of the specimen of Mys. commune represented on pl. XI, fig. 3 b , hot its head was not tmmed mpward on the dorsal side, it was placed as usual anteriorly and, if anything, on the ventral side. The general outline of the head as in the preceding species. Antemnlæ (a) rather short, 2-jointed, basal joint thick, second joint short, terminating in some short seta and a much longer olfactory seta. No taps on the anterior side of the lead. The basal joint of the maxillæ has on its terminal margin two good-sized processes, one of them near the centre, the other at its posterior end. The maxillipeds are armed with a conspicuons spine at the distal imer angle of the pennltimate joint. The part of the head which corresponds to the lateral border is furnished in its whole length with a fairly broad belt of rather short lairs, and somewhat behind the base of the maxillipeds we see a very good-sized, odd, triangular area, covered with morlerately short lains; the longest line of this triangle is turned towards the fiont, the opposite hindmost angle is on the median line; and finally, on each side, between the maxilla and the maxilliped, is a rather small, transverse, hair-covered area. On the tromk behind the head we see some scattered hairs. The list of the genital apertures is ahonst semicircnlar (fig. 2 b), with a hole (h) at its anterior end. (This hole, no doubt, is the orifice of a gland, and - strangely enongh - I have not been able to find it in the preceding species, but I have fomd it in Aspidoccia and in Spheronella Mumopsidis; however, I camot make ont with certainty whether it is one tolerably large hole, or perhaps rather a small area with a very thin membrane piercerl with a number of small holes).

MALE. A specimen of normal size is 164 mm . long, nearly of the same breadth and somewhat flattened (fig. 2e and fig. 2f), thens of small size compared with the female. A conple of specimens were abnormally small, one of them only 099 mm . in length (their size in proportion to the normal male is shown by compring fig. 2d and fig. 2c), smilar in shape to the larger specimens, so these males are considerably smaller than any other male of this family, but it remains an open question, whether they are adults, or - perhaps more
likely - receutly hatched animals (comp. my observations about other species, stated above 011 p. 58 and p. 60). - The head is much narrower and somewhat shorter than the trmuk; seen laterally (fig. 2 f), the limit of the hair-coat roms from the base of the maxillipeds upward and in a slightly oblique direction forward acruss the side and the back, and the two flatly conical eminences (x) are placed somewhat in front of the limit. Seen from below, the distance between the outstanding lateral borders of the head is much shorter than its broadest diameter; in fig. 2e - partly on account of the position of the animal - the ontstanding frontal border does not reach the front outline of the head. The frontal borders scarcely attains to medium breadth, yet it is much broader than in the preceding species, slightly produced, with pretty well curved margin. Antemula rather short, 2-jointed; second joint somewhat shorter and a little narrower than the first one, with comparatively short setae and a sensory seta which nearly equals the others in length. Maxille of medinm size; the terminal margin of the basal joint as in the female. The basal joint of the maxillipeds has on its outer side only one process which is placed at its distal end and which, though grood-sized, is much smaller than in Mys. commune; the next joint has no process, but bears a pretty large spine inside the base of its short terminal joint. Everywhere, except on the front part of its ventral surface, the tromk is covered with simple hairs of nearly average length. We see furthermore on the ventral side two long lines (fig. 2e, 11), rmming right and left of the median line at some distance from it; posteriorly they are finther removed from this line, and near the posterior margin they recurve, continue forward and ontward, and soon ranish altugether; what these two lines are meant for is quite incomprelrensible to me. - The atore-mentioned dwarfish specimens were attached by a peculiar frontal thread (fig. 2 d and fig. $\boldsymbol{2 g}$), which is a little longer than the body; the thread (in hoth specimens) was finsiform near its centre, and thickened by a high collar at its broadest point, and somewhat in front of its distal end appeared a similar, but still wider expansion with a similar collar; the distal end by which it is attached (not drawn in the fignre), seems to have been discoid.

OVISACS. They are exactly like those of the preceding species, varying in the same way as to size and shape.

LARVA. A full-grown specimen pulled ont of an ovisac is represented in fig. 2 h , (the natatory legs are omitted); it is 196 mm . long. The cephalothorax very elongated, scarcely twice as long as broad. The front has a simuate oblique list inside the base of each antemula. The purpose of the two transverse stripes rendered in the illustration, is not clear to me. Antennulæ 3-jointed; olfactory seta scarcely half the leugth of the cephalothorax. Anteune very short, consisting of three very short, comparatively thick joints, the last one terminating in an exceedingly short seta. Of the maxillule only two branches are seen, one of them long, powerful and originating comparatively far towards the front, the other very short, spiniform and situated further backward. The basal joint of the maxillæ bears some very short hairs at the distal end of its inner
margin, the second joint tolerably short, the third one of about medium length, smooth, and in the specimen drawn, as well as in other larve taken ont of the same ovisac, this joint is curved forward in the same way as in the hinger specimens of other species. The basal joint of the maxillipeds is long, the second joint a little shorter than the third; the fourth joint has five or six setifom processes along the central bart of the inner margin. The pedumele of the natatory legs is rather slender. The ablomen of medium length; the first segment somewhat longer and broader than the secom, and the seta of its posterior angles reaching only a little beyond the caudal stylets; the thind segment somewhat narrower and shorter than the second; the caudal styleis well set off, their seta mmsually short, not nearly half the length of the cephalothorax. - Fig. 2 i shows a larva in the act of changing into a pupa (or a male?); it is represented in a dorsal view; the cephalothorax is short and broad; the outline of the contents is shown by an imer line.

POST-LARVAL DEVELOPMENTT. Unknown.
HABITAT. The marsupium of Erythrops cliyssorum G. O. S. from Norway. In a specimen withont indication of locality (bearing a sperimen of Aspidocciu), occured a large female with fifteen ovisacs of widely differing sizes, as well as a considerable lump of empty ovisacs, which conld not be comted; no male. In another specimen withont locality (with two small specimens of Aspidoccia), appeared one lemale with fomreen ovisacs, extremely varying in size, and a great deal of them adhering to each other, one of them being empty; moreover, a female glued to an ovisac; no male, hont the above-mentioned small female of Mys. commune. In a specimen from Kvalö (hearing ome large and four small specimens of Aspidoccin on its carapace), occured one completely tom female with twelve fine, almost equally large, mostly slont and hroan, somewhat flatened owisacs, which on account of mutual pressmre were somewhat polyherrous in shape; among them were fonnd a male, also the head and the skin of the anterior form part of the tronk of another female, and to this skin were attached five males and the broad larva remesented in fig. 2 i ; finthermore, I found two good normal males and the two above-mentioned dwarfish males, which were fastened to the marsupial plates by their frontal threads, - which makes altogether ten males - ; finally fom broad larva which had no donbt been hingen, and the contents of which were undergoing the transformation.

VI. Aspidoecia Giard and Bonnier (1889).

FEMALE. The body is considerably broader than long. The head, which is pretty well defined, occupies a somewhat different position relatively to the genital apertures, from that of the earlier forms: in fig. 3 c the genital apertures in relation to the head are placer
some distance up on the dorsal side of the animat; fig. 3 f is drawn in such a position as to show the head a little behind the middle of the tronk, and fig. 3 g presents the same animal turned half romd, with its genital apertures (\mathbf{r}) behind the central point, and the entrances of receptaculum seminis (r^{\prime}) far to the front; so we arrive at the result that the distance from the anterior limit between the trunk and the head along the dorsal surface of the animal to the genital apertures is considerably shorter than the distance from the base of the maxille past the receptaculum seminis to the genital apertmres. (The same proportions also appear in fig. 3 b). - The head is pretty well chitinised; the anterior and lateral parts evenly romnded (fig. 3h); no outstanding frontal and lateral borders. Antenmulæ (a) rather short, 1 -jointed; antemæ wanting. The month exceeding average size; mandibles robust; hairs of the month-border not to be detected (thongh they probally exist). Maxillulæ very small, principal branches short, additional branch wanting. Maxille middle-sized, normal, with smooth joints. Maxillipeds altogether wanting. The snb-median skeleton forms a plate which fills up the whole surface between the maxillæ, but ends a little behind their base. The head quite naked. The tromk naken; trunk-legs and caudal stylets wanting. As in Mysition, no genital area is found, but each genital aperture possesses (besides the lips), its own skeleton, which consists of a tolerably good-sized, somewhat wry ring (fig. $3 \mathrm{e}, \mathrm{e}$; fig. 3 i , e) formed of a pretty broad list, but the part of it (fig. $3 \mathrm{i}, \mathrm{f}^{\prime}$) which is turned obliquely inward and forward is more thinly chitinised than the remaining larger part. The genital aperture (g) is placed against that part of the ring which turns towards the median line of the animal, and the muscles (m) by which the aperture opens go in the opposite direction; to the front, in the list of the ring itself, is a good-sized hole (k), which is the orifice of a gland. The distance between the two rings varies from being a little larger (fig. 3 g) to much smaller than the diameter of each ring. Far in front of the genital apertures are seen tro knots at a short distance from each other (fig. $3 \mathrm{~b}, \mathrm{r}^{\prime}$; fig. $3 \mathrm{~g}, \mathrm{r}$ ', and especially fig. $3 e, 0$, which show, as it were, irregular cracks in the thick chitine; most likely we stand here at the entrances of the receptaculum seminis, though I have not been able to trace regular holes, nor have I fom spermatophores on the females. The receptaculum seminis (fig. $3 e, r$) is large, odd and much broader than long; at each end it curves evenly backward, and continues as a wide, centrally somewhat narrower, and distally again expanding duct, which is about parallel with the other duct and runs up to the genital aperture itself.

MALE. The body is not a third longer than broad, of a tolerably normal slape, but altogether hairless (fig. 3 k and fig. 31). The head somewhat longer than the trunk, but the latter somewhat broader; the frontal border strongly produced, and the lateral borders well developed; on a line with the front extremity of the maxillæ, and on the border between the sides and the back, we see the two low conical eminences. Antemnte extremely short, 1-jointed, with a single seta (b) which is olfactory and several times the length of the antemula.

Antemæ wanting. Mouth middle-sized; mouth-border provided with very distinct hairs. Maxillulæ small, probably constructed like those of the female, and without additional branch. Maxillæ extremely large, the basal joint much compressed and very broad; the two last joints, which are entirely fused, form a long and powerful, proximally somewhat curved, distally almost straight joint. The basal joint of the maxillipeds somewhat smaller than in most species of Spheronella, second and third joints fused into one exceedingly short joint, which has no spine at its distal imer angle; last joint slender, pointed, perceptibly longer than the penultimate one. The sub-median skeleton without processes on its posterior part. The tronk without legs and candal stylets. (Fig. 3 k only shows one single, but exceptionally large spermatotheca (\mathbb{q}), but this no donbt is an anomaly in the specimen illustrated, as in two other individuals I found, as usual, two much smaller and normally situated spermatothecæ.

OVISACS. They are hinged to the lists of the genital apertures, sub-globular or shortly pyriform, from scarcely middle-sized to small; their number can amount to thirteen or fouteen. Eggs of average size, not mmerons.

LARVA. Resembles in nearly all its features (fig. 3 m) the larve of certain species of Sphicronella parasitic on Amphipoda. The essential differences found are as follows: the second joint of the maxille is short and comparatively thick (fig. $3 n$), the third joint is finely serrated at its inner margin; the seta of the candal stylets is short, not half the length of the cephalothorax.

POST-LARVAL DEVELOPMENT. The male comes out of the larva (fig. 3 m) directly, withont any intermediate stage. Whether the female passes through the pupa stage is not known, but it appears more probable to me that its development resembles that of the male.

HABITAT. The females live attached to the eye-stalks, the carapace, the back and sides of the free thoracic segment and the six first abdominal segments of all species of the genus Erythops G. O. Sars (order Mysidacea), in Norway.

REMARKS. The gems comes very near to Mysidion, and the characters by which both genera are distinguished from those previously described are stated in the remarks about the last-mentioned gemus. From the latter the female differs in the lack of maxillipeds, in the tolerably short distance between the genital apertures, in the ring by which each of these apertures is surrounded, and by the two conspicnous chitinons knots above the receptaculum seminis. The male deviates both from Mysidion and from all other genera in the minute size of the antennulx and in the smalmess of the distal part of the maxillipeds. And this genns deviates from all other forms by living attached to the outside of the free surface of its hosts. - The whole of my large material collected by Prof. G. O. Sars I have referred to one species; the subsequent remarks abont this parasite will form a supplement to the above account of the type.

I. Aspidoecia Normani Giard and Bomnier.

(Pl. Att, fig. $3 \mathrm{a}-3 \mathrm{H})^{2}$).
Aspildocia Normani Giard and Bomnier, Compt.rend. de l'Acad. d. Sciences, 29 avril 1889.
(iard and Bomier, Bull. seient. de la France et de la Belgique, T. XX, 188:, p. 342 etc., pl. X-XI.

- - Giard and Bumier, Bull. scient. d. J. Fr. et d. 1. Belg. T. AXV, 1895, p. 479. FEMALE. The specimen represented in fig. 3 b is an adult female (with two rudimentary ovisacs and three attached larve), which is 65 um . long and 75 mm . broad and is attached to Er. serrahus G. O. S.; the specimen represented in fig. 3 e and taken on the same species (with two males, x, linged by frontal threads) is 536 mm . long and 685 mm . broad; the individnal drawn in fig. Bf and fig. 3 g and found on Er. abyssorum G. O. S. is .82 mm . long, 1.03 mm . broad and one of the largest in hand. Fig. 3h shows the head, seen from below, cleaned with canstic potash, so as to slow the antennule, whereas fig. 3 d shonrs the head partly in front, as it is attached to the female by a large adhesive plate (s) which covers the antemnulæ. Far to the front on the head, beneath the skin, and far apart from each other appear a pair of peculiar rather large hollow spaces (t) with a strange refraction of light, somewhat like that of a viscons substance, but what they are meant for I camnot make ont. In the specimen cleaned with potash the antemmlæ (fig. $3 \mathrm{~h}, \mathrm{a}$) are seen to consist of one single, comparatively broad joint with convex inner margin, whereas the outer margin is fumished with several short setw. In most individuals the genital rings are closer together than the length of the diameter of each (fig. 3e); in the larger, but not in the smaller, younger specimens living on Er. abyssorum, they are further apart than this line (comp. the remarks below).

MALE. The smallest specimen from Er. servatus is 138 mm . long (fig. 31), another specimen from the same species is 147 mm . long and 120 mm . broad (fig. 3 k); a specimen from $E r$. abyssorum is 158 mm . in length. The frontal border is strongly prodnced in all specimens and slightly emarginate in the middle. The frontal thread is even, though a little expanded at its distal end; in the specimen dawn in fig. 3 k , it is scarcely half the length of the body, in another specimen (fig. $3 \mathrm{a}, \mathrm{m}$) between twice and three times the length of the animal.

OVISACS. Mentioned in the diagnosis of the genus.
LARVA. Of larvæ I have found only a few specimens, one of them attached at the front to the carapace of a host (fig. 3a, l), the others fastened to females, and about to develop into males. So the shape of a free specimen cammot be described. Proportionally the cephalothorax of the attached specimens is not broad; in one of them its breadth is $\cdot 12 \mathrm{~mm}$., the length of the body 20 mm . Antemmulæ 3-jointed, the olfactory seta about half the length of the cephalothorax, minus its free segment (fig. 3 m). Antennae fairly short,

[^12]3-jointed, basal joint thick and pretty long, the two next joints thin and short, terminal seta short. Maxillulæ? - Maxillæ (fig. 3n) with smooth basal joint, second joint short and comparatively thick, thind joint of average length with finely servated imer margin. Naxillipeds (fig. 3n) proportionally rather below medimm size, second joint longer than the thirt, terminal joint smooth. Peduncle of the natatory legs moderately broad. Abdomen much as in Mysidion, but the third segment is as long as the second.

POST-LARYAL DEVELOPMENT. My observations and conclusions are stated in detail in the general part p. 54.

HABITAT. In the diagnosis of the genns I have emmerated the different parts of the body to which the females may be seen attached. They have been found in all the northerm species of the genus Erythrops, viz. Er. erythrophthalmus (Goës) (= Er. Goësii G. O. S.), Er. elcgans G. O.S. (= Er. pygmeuts G. O. S.), Er. microphthalmus G. O. S., Er. serratus G. O. S. and Er. ubyssorm G. O. S. Abont the depth in which these species live, and abont the remainder of their biology, I refer the reader to the monograph by Sars. Most of my twenty-one infested specimens were without special locality, some specimers of Ef. serratus and Er. alyssorum were taken off Kvalö, one Er. erythrophthalmus off Tjötö. The parasites appear on adult males, on immature females and on females with marsupium, but in the latter the marsupium was either empty or filled with a parasite of the genus Mysidion. To show the occurrence of the parasites, I will give the following extract of my notes arranged according to the hosts.

1. Er. erythrophthalmus (Goës). On a female from Tjötö in which the development of the marsupium had commenced, appeared a large parasite with fourteen ovisacs on the back of its second abdominal segment.
2. Er. elegans G. O. S. In a female whose marsmimm was disturbed, occured three parasites, two on the back of the second abdominal segment; one of these animals was nearly full-grown, the second somewhat smaller; the third, almost adult, female, was found on the back of the sixth abdominal segment near its posterior margin. On a female without marsupium were found altogether five females: one halfgrown specimen on the upper side of the right eye, at the bomdary between the cornea and the stalk; another somewhat smaller specimen on the inner side of the same eye-stalk; on the dorsal side of the carapace were two good-sized individuals, and a large one with three ovisacs, each containing only one egg; was attached to the second abdominal segment, at the centre of its dursal side.
3. Er. microplithatmus G. O. S. On a specimen with empty marsupimm appeared a large female withont eggs on the dorsal side of the last thoracic segment. In a female without marsupinm was fomn a large parasite with six orisacs on the dorsal side of the second abdominal segment. On a male I met with a large parasite with six ovisacs on the back of the first abdominal segment.
4. Er. serratus G. O. S. In an adult male was seen a good-sized female on the upper side of the right eye close behind the comea. In a female with marsmium containing

Mysidion, occmred two parasites, one of which - a female with twelve ovisitcs - was placed to the front on the canapace, a little to the left of the median process, the other a female with three ovisacs - was placed on the dorsal side of the last thoracic segment. On a young individual withont marsupium appeared two parasites, one of them - a female withont eggs - nearly in the centre of the back of the second abdominal segment, the other, a female with two males hinged by their frontal tlneads (fig. 3 (.), somewhat to the right side on the back of the first abdominal segment. In a hardly adult female (from Kralö), on the dorsal part of the second abdominal segment (fig. 3b), I found an adult female with two minute ovisacs without eggs, and four larve (r), one of which fell oft on being touched, so that it was not drawn in fig. 3 b , but it is the specimen represented in fig. 3 m with an adult male beneath the larval skin.
5. Er. abyssorum G. O. S. Ou a female with empty marsupium: five parasites, viz. two very small females on the right side of the thorax close behind the carapace; and at a short distance in front of these animals, on the caranace itself, one small and one good-sized female, to the latter of which was attacled near its mouth a strongly impaired male with a large spermatophore, and the anterior half of another male was fixed by a thread to the side of the trimk; finally: at the centre of the dorsal surface of the sixth abdominal segment, a good-sized female (fig. 3 f and fig. 3 g) - all parasites without ovisacs. In a female (from Kvalö) with Mysidion abyssorum in its marsupium, occured five parasitic females, all on the carapace; one of them, which was very small, was sitnated somewhat behind the middle of and a little above the left lateral margin, the four others were placed close together at some distance behind the centre on the back and a little down on the right side; one of these was very small, the two others a little larger, the fourth large, without ovisacs, but with two larvit attached to it. On an adult male (fig. 3a) appeared altogether nine parasitic females and one larra: one female (a) with six orisacs is placed on the left hand side of the carapace; somewhat behind it and further up towards the back, the larva (1) is sitnated; in an irregular transverse row on the dorsal side of the first abdominal segment are fom altogether five females, one of them pretty small, the four other's large (a), two of them each with one, the two others together with many ovisacs, which can scarcely be counted accurately withont a dissection; on the back of the second abdominal segment is placed a female with seven ovisacs, as well as a male (m) hinged to the female by a long thread, which had the larval skin on its anterior end; to the right of the latter large female is fonnd a very small female, and on the boundary between the secoud and the third abdominal segment, a tolerably small female (in the illustration the last two specimens are marked b.)

REMARKS. I must consider the parasites on all five species as belonging to the same species. In the females of the fom smaller species of hosts, the distance between the genital apertures is from much to a little smaller than the diameter of each ring, in not full-grown individuals of the largest specimen, Er. alyssorum, this distance varies from being a little shorter than to about the same length as the diameter, but in the adnlt spe-
cimens it is appreciably longer. The females which are parasites on the smallest species of Erythrops, in their adult stage attain to a much smaller size and, as a rule, produce a smaller number of ovisacs than the females which live on larger and the largest species; thus: the females are small in Er. elegans ($=$ pygmeus), larger in Er. serratus, largest in Er. abyssorum. That the distance between the genital apertures is larger in Er. serratus than in Er. elegans or Er. microphthatmus, and largest in Er. abyssorum, seems to me to be accounted for by the fact, that the entire skin of the trunk, and, as a matter of course, also the part between the genital apertmes, grows more in the large than in the small species, whereas the rings themselves and the head of the anmals do not grow; this will also be seen by comparing fig. 3 c with fig. 3 f plus fig. 3 g , for in the first mentioned figure is represented on a larger scale a specimen which is abont one third narrower than the one drawn in fig. 3 f and fig. 3 g : in the two last figmres the head and the genital rings are much smaller, compared with the tronk, than in fig. 3 c , but the distance between the genital rings is much greater in fig. 3 g than in fig. 3 c . I have come to this conclusion by examining the material, and the fact that I have not been able to find any difference between the males of the parasites from Er. serratus and Er. abyssorum - the male from Er. microphthalmus will be mentioned presently - speaks strongly in favom of my opinion, that all these parasites belong to the same species.

Giard and Bomnier have established the genms and the species on a female with five ovisacs and two males taken on Er. microphthalmus from Solemsfjord near Florö, Norway. Finding the female with her males sitting muder one end of an obliquely placed specimen of Aspidophryxus Sarsi G. and B., they were led to suppose that the Copepod was parasitic on the last-mentioned form, but this is not the case, and the occurence of the two parasites close to each other is quite accidental. (In my large material I have found no more than one Aspidophyyus, which was placed on the back of an Er. crythrophthalmus, which had no Aspidoccia on it). Based on the examination of the female, and especially of one of the males, which has been studied by the anthors, I have given a detailed critique of their account above, on p. 6--8, to which the reader is referred. Here I will only observe that in examining their male, I did not find any difference between this specimen and those which I had in hand myself, so I am perfectly sure of the correctness of my determination.

EXPLANATION OF THE PLATES.

PLATE I.

1. Stenothocheres egregius n. gen., n. sp.

Figure

1 a. Female seen from below, $X 58$; a. antennula, c. antenna, f. maxilla, g. maxilliped, m. first trunk-leg, n. second trunk-leg, p. caudal stylet, r. genital aperture.
1 b . The same female seen from left side.
1 c. Male seen from below, $\times 58$; s. frontal thread.
1 d . Three eggs, $\times 58$.
le. Head of female, $\times 192$; b. olfactory seta of the antennula, c. antemna, e. maxillula, h. submedian skeleton.
1 f . First trunk-leg of female scen from the inner side, $\times 240 ; i$ inner branch.
1 g . Abdomen and posterior part of the trunk of female seen from below, $\times 240 ; g$ genital aperture, t. caudal stylets, u. trunk-leg of second pair.
1 h . The same parts as in fig. 1 g seen from left side, $\times 240 ; g$.genital aperture, m. its muscles, r. receptaculum seminis, u. trunk-leg.
1 i. Nale seen from helow, $\times 255$; a. antennula, b. its olfactory seta, c. antenna, d. mouth, e. maxillula, f. maxilla, g. maxilliped, m. first trunk-leg, n. second trunk-leg, o. abdomen.
1 k . The same male seen from left side; e. maxilhula.
1 1. Larva seen from below, $\times 230$; on the right side of the figure the second trunk-leg, on the left side the brauches of the first trunk-leg are omitted. b. olfactory seta of the antennula, e. maxillula, l. pouch, m. first pair of trunk-legs, m^{\prime}. transverse outstanding list hetween the legs of the first pair, n. second pair of trunk-legs, n '. trausverse list between the legs of the second pair, o. abdomen, p. long seta of the caudal stylet.

2. Stenothocheres Sarsii n. sp.

2 a. Large female seen from below, $\times 26$; s. frontal threads.
Qb. Male seen from below, $\times \underline{(0)}$.
2 c. Lump of egge, $\times 26$.
2 d . Smaller female seen from below, $X 48$.
2 e. The same female seen from left side.
2 f . Head of female, $\times 16 \overline{3}$; antemulæ omitted; c. antenna.
2 g . Antennula of female, $\times 170$; the olfactory seta partly broken off.
2 h . Trunk-leg of first pair of female seen from below, $\times 170$; e. exterior branch.
2 i. Abdomen and posterior part of the trunk of female, $\times 170 ; \mathrm{g}$. genital aperture.

Figure
2 k. Male seen from below, $\times 170$; s. frontal thread, x. spines, perhaps rudiments of a third pair of trumk-legs.
2 I. The same male seen from left side, $\times 170 ; x$. spines, perhaps rudiments of a third pair of trunk-legs.

3. Homoeoscelis minuta n. gen., n. sp.

3 a. Genital area and surroundings of female, $\times 190 ; e$. solid chitinous list, r. receptaeulum seminis, s. spermatophore, t. caudal stylets.
3 b. Pupa hinged by a frontal thread to the epipod of the host, $X 170$; a. antennula, c. antenna, f. maxilla, g. maxilliped, m. first trunk-leg, n. second tronk-leg, p. candal stylet, s. frontal thread, x. rudiment of a third trunk-leg?

PLATE II.

1. Homoeoscelis minuta n. gen., n. sp. (continued).

I a. Nol full-grown lemale, with four spermatophores, $\times \mathbf{i} 2$.
1 b. Large female which had not begun laying eggs, $\times 62$.
1 c. Female which had nearly fimished laying eggs, $\times 62$.
1 d. Male, $\times 62$.
1 e. Rather small ovisac, $\times 62$.
1 f. Fairly large ovisac, $\times 62$.
1 g . Free larva, \times fig.
I h. Head of female, $X 226$.
1 i. Male seen from below, $X 182$. (The hairs on the frontal margin are too long).
1 k . The same male seen from left side.
1 . Larva, prepared out of the egg-membrane, $\times 266$.

2. Sphæronella elegantula n. sp.

2 a. Adult female with two spermatophores, $\times 27$.
2 b. Male, $\times 27$.

- e. Ovisac, $\times 27$.

2 d. $P u_{1}$ a, $\times 27$.
y e. Genital area and its surroundings of female, $\times 162$. Of most of the membranous hairs only the lrase is drawn.
2 f. Male seen from below, X 147. The maxillijed and the distal part of the first trunk-leg on the left side were wanting.
2 g . Another and very large male seen from left side, $\times 143$.

3. Sphæronella Atyli n. sp.

3 a. Head of female, $\times 132$.
3 b . Genital area and its surroundings of female, $\times 232$.

4. Sphæronella danica n. sp.

4 a. Geuital area and its surroundings of an adult female, $X 213$.
4 b . Frontal thread of male, $\times 236$.

Figure
4 c. Pretty large pupa seen from below, $\times 70$.
4 d. Small pupa seen from right side, $\times 70$.
4 e. Anterior part with the thread of the pupa shown in fig. 4. $\mathrm{d}, \times 285$.

5. Sphæronella vestita n. sp.

5 a. Female, with a spermatophore, $\times 100$. The hair-covering of the trunk is only indicated on its anterior part, but with the exception of the outline on the left side of the figure, only the bases of the hairs, the "scales", are drawn.
5 b . Genital area and its surroundings of female, $\times 251$; r. receptacula seminis, indicated by dotted lines.

6. Sphæronella chinensis n. sp.

6 a. Female, $\times 38$.
6 b. Male, $\times 38$.
6 c. Pretty young pupa, $\times 38$.
6 d . Old pupa, $\times 38$. The hair-covering omitted.
6 e. The pupa shown in fig. 6 c seen from below, $X 148$.
6 f . The pupa shown in fig. $\mathrm{f} d \mathrm{seen}$ from below, $X 1 J 4$. Appendages, mouth and genital apertures of the young female are seen through the skin of the pupa.

PLATE III.

1. Sphæronella chinensis n. sp. (continued).

1 a. Male seen from below, $\times 198$.
1 b . The same male seen from left side.
1 c. Antennula of female seen from below, $\times 284$.

2. Sphæronella antillensis n. sp.

2a. Young female, having thrown off the anterior third part of the skin of the pupa, $\times 48$.
2 b. Ovisac, $\times 48$.
2 c. The young female shown in lig. 2a, $\times 188$; r. antenna.
2 d. Genital area and its surroundings of female, $X 994$. On the right side of the figure the receptaculum seminis is indicated by a dutted line, and a spematophore attached to its orifice.
2 e. Larva seen from below, $\times 316$. Of the natatory legs only the base of the peduncles is drawn.
2 f. Pupa seen from below, $\times 119$.

3. Sphæronella Calliopii n. sp.

3 a. Female, $\times 12$.
3 b. Male, $\times 12$.
3 c. Ovisac, $X 12$.
3 d. Head of female, $\times 83$. The hairs on the lateral borders and on the suln-medim skeleton drawn only on the left side of the figute.
3 e. Distal part of the left maxilla of female seen from helow, $X J 6 i f$.
3 f . Left maxilliped of female scen from below, $X I t i f$.

Figure

3 g . Genital area and its surroundings of female, $\times 150$.
3 h . Male seen from below, $\times 121$.
3 i. Another male seen from left side, $\times 151$.
3 k . Larva seen from ahove, $\times 117$.
3 l. Larva scen from below, $X 185$. Most part of the long setæ of the caudal stylets and the hairs on the branches of the left matatory leg of the first pair (thus on the right side of the figure) and of the right natatory leg of the second pair are omitted.

4. Sphæronella paradoxa n. sp.

4 a. Female seen from below, $\times 30$.
4 b. Another female with a spermatophore seen from right side and attached by its ventral thread to a marsıpial plate, $\times 30$.
4 c. Male, $\times 30$.
4 d. Ovisac, $\times 30$.
4 e. Hinged larva, developing itself into a male, $\times 30$.
4 f . "Female pupa" seen from below, $\times 30$.
4 g . Young female that has just burst the "skin of the pupa" (the shrivelled skin of the larva), $\times 30$.
4 h. Male scen from below, $X 134 ; q$. spermatothece, s. frontal thread.
4 i. Another male seen from left side, $\times 134$.
4 k . The dorsal side of the head of the male shown in fig. 4 i , exhibiting the hollow spaces beneath the skin, $\times 134$.
41. Much protruding rostrum of a male, exhibiting the mouth-border, the antenna and the maxillna with its two principal branches and the additional branch, $X 270$.

PLATE IV.

1. Sphæronella paradoxa n. sp. (continued).

1 a. Head of female, $\times 263$.
1 b . Genital area of female, $\times 220$. The receptacula seminis indicated by dotted lines; the candal stylets without setr.
1 c. Free larva, $\times 167$. Parts of the natatory legs omitted.
1 d . Hinged larva, developing itself into a male, $X 103$. Comp. pl. III, fig. 4 e.
I e. Anterior balf of the cephalothorax of a larva which had been hinged a rather short time, $\times 236$; s. adhesive plate.
1 f. "Female pupa" seen from below, $X 170$. The fomale develops itself beneath the larval skin which has shrunk extremely, and most of the appendages of which are seen: a. antennula, c. antenna, g. maxilliped, m. first natatory leg, n. second natatory leg, o. ahdomen, s. adhesive plate.

1 g . Young female that has just burst the "skin of the pupa" (the same animal as shown in pl. 111, fig. 4 g), seen from right side, $\times 150 ; s$. adhesive plate.
1h. Rather young female, seen from below, $X 8 S: t$. ventral projection terminaling in a thread; u. the disk-like expanded end of the thread.

Figure

2. Sphæronella abyssi n. sp.

2 a. Female with two ovisaes adlering to its anterior outline, $\times 26$.
2 b. Nale, $\times 26$.
2 c. Genital area of female, $X 174$. The genital apertures are open; one caudal stylet is absent; two spermatophores and the proximal part of the stalk af a third one are seen.
2 d . Male seen from below, $\times 152$.
2 e. The same male seen from left side.

3. Sphæronella Argissæ 11. sp.

3 a. Adult, but slrunk and crooked female with a male attached to it near the genital area, $\times 30$; m. male.
3 b . Ovisac, $\times 30$.
3 c. Recently hatched female attached to a gill, $\times 30$.
3 d . The same female, $\times 240$.
3 e. Part of the sub-median skeleton, right maxilla and the proximal part of right maxilliped of the adult female, seen from below, $\times 276$; e. mavilla, f. base ol the maxilliped.
3 f . Genital area, with one spermatophore, of female, $\times 150$.
3 g . Male seen from below, $\times 205$.
3 l . The same male seen from left side.
3 i. Outlines of hollow spaces beneath the dorsal skin of the head of the male, $\times 205$.
3 k . Right maxilliped of male seen from the anterior side, $\times 316$. At the proximal end is shown a process of the second pair of the sub-median skeleton.
3 l. Female pupa seen from below, $X 162$; a. antennula, c. antenna, c. maxillula, f. maxilla, \%. maxilliped, p. caudal stylets, s. funnel-shaped adliesive plate.
3 m . The same female pupa seen from left side.
3 n . Anterior half of ceplialothorax of larva, $\times 260$.

4. Sphæronella Metopæ n. sp.

4 a. Genital area of female, $\times 254 ; 0$. orifice of one of the receptacula seminis.

PLATE V.

1. Sphæronella Metopæ n. sp. (continued).

1 a. Female, $\times 68$.
1 b. Male, $\times 68$.
1 c. Ovisac with about half-developed young ones, $X 68$.
1 d. Head of female seen from below, $\times 224$.
1 e. Greater part of the head of female seen from left side and showing the antennula (the setæ omitted), rostrum with antenna and maxillula, the maxilla, and the base of the maxilliped.
1 f. Male seen from below, $\times 185$.
1 g . The same male seen from left side.
2. Sphæronella Holbölli n. sp.

2 a. Female, $\times 20$.
2 b. Male, $\times 20$.

Figure

2 c. Ovisac, $\times 20$.
2 d. Head of female, $\times 152$. The distal part of one maxillijed broken off.
2 e. Genital area of female, $\times 125$.
2 f. Male, somewhat crooked, secn from below, $X 173$. The distal part of one maxilliped broken olf.
g g. The same male seen from left side.

3. Sphæronella intermedia n. sp.

3 a. Smaller female, with two spermatophores, $\times 48$.
3 b. Male, $\times 48$.
3 c. Ovisac, $\times 48$.
3 d . Head of female, $\times 270$.
3 e. Genital area of female, $\times 181$.
3 f . Male seen from below, X 203.
3 g . The same male seen from left side.
3 h . Gephalothorax of larva, $\times 293$. Natatory legs totally and appendages on right side of the figure almost totally omitted.

4. Sphæronella capensis n. sp.

4 a. Female, $\times 53$.
4 b. Male, $\times 53$.
4 c. Ovisac, $X 53$.

PLATE VI.

1. Sphæronella capensis 11. sp. (continued).

1 a. Head of female, $\times 342$.
1 b . Genital area of female, $\times 196 ; o$. orifice of one receptaculum seminis, r. The other receptaculum not drawn, but its orifice is seen.
1 c . Male seen from below, $\times 243$.
1 d . The same male seen from left side.

2. Sphæronella Gitanopsidis n. sp.

2 a. Female, $\times 28$.
2 b . Nale, X פS.
2 c. Ovisac, $\times \bumpeq$.
9 d. Head ol' female, $\times 202$. (The antennæ not quite correct, comp. the description).
\simeq e. Genital area of female, $X 205$; t. caudal stylets.
2 f . Nale seen from beluw, $\times 955$.
2 g . The same male seen from left side.

3. Sphæronella Giardii n. sp.

3 a. Adult female which had not yet begun laying eggs, $X 28$.
3 b. Male, $\times 98$.
3 c. Female which no doubt lad finished laying eggs, and with a male adhering to its ventral surface, $\times 28$.
3 d. Ovisac, $\times 28$.

Figure
3 e. Head of fomale, $\times 230$.
3 f. Genital area, $X \simeq 39$.
3 g . Male seen from below, $\times 183$.
3 h . Another male seen from left side, $X 183$. In this and in the preceding figure the hairs of the trunk are not correctly drawn, comp. the description p . 135.
3 i. Nale pupa seen from beluw, X 191; the distal part of the frontal thread broken off.
3 k . Another male pupa seen from left side, $X 190 ; a$, antennula, c. antenna.
3 l. Female pupa seen from left side, $\times 190$.

4. Sphæronella Bonnieri n. sp.

4 a. Female, $\times 30$.
4 b . Male wrapped up in threads (comp. p. 137), $\times 30$.
4 c. Ovisac, $\times 30$.
4 d. Genital area, $\times 168$.

PLATE VII.

1. Sphæronella Bonnieri n. sp. (continued).

1 a. Nale seen from below, $X 174 ; q$. spermatuthecæ.
1 b . The same male seen from left side.

2. Sphæronella longipes 1. sp.

2 a. About half-grown female, $\times 37$.
2 b . Ovisae, $\times 37$.
\leftrightharpoons c. Basal part of antennula, rostrum with antenna (c) and maxillula, and maxilla of very young female seen from left side, $\times 310$.
2 d. Very young female, $X 37$.
2 e. The same female, $X 205$.
2 f. Cephalothorax of larva, $X 288$. The natatory legs omitted.
$\mathscr{2 g}^{\mathrm{g} .}$ Pupa seen from below, $\times 16$.
3. Sphæronella Amphilochi n. sp.

3 a. Head of female, $\times 264$.
3 b . Genital area of female, $\times 254$.

4. Sphæronella Dulichiæ n. sp.

4 a. Female, $\times 41$.
4 b. Ovisac, $\times 41$.
4 c. Head of lemale, $\times 120$.
4 d. Genital area of female, $X 194$.

5. Sphæronella Acanthozonis n. sp.

5 a. Female seen from right side, $X^{11 / 2}$.
5 b . The same female seen from below, $X^{11 / 2}$.
5 c. Head of female, $\times 79$.
5 d . Genital area of female, $\times 77$.

6. Sphæronella frontalis in. sp.

Figure
6 a. Male seen from below, $\times 66 ; q$. spermatotheca (the other spermatotheca is seen to the left). The laais on the lateral margin of the head and on the trunk drawn only on the left sicle of the ligure; of the maxilliped on the same side only the basal joint is drawn and its hairs are omitted.
6 b. Another male seen from Jeft side.
6 c. Antemna of male, $\times 280$.
6 d . Naxillula of male seen from the exterior side, $X 280 ; e$. additional branch.
6 e. The proximal larger part of the basal joint of the left maxilliped of male seen from the anterior side, $\times 185$.
6 f. First right trunk-leg of male seen from below, $\times 265$.
6 g . Second right trunk leg of male seen from below, $\times 265$.
6 h . Small part of the shin of male from the dorsal side of the trunk a little in advance of the middle, $\times 280$.
6 i. Genital area of female, $X 166$; t. caudal stylets (their sete no doubt bruken off).

PLATE VIII.

1. Sphæronella frontalis n. sp. (continued).

1 a. Female, $\times 16$.
1 b. Male, $\times 16$.
1 c. Ovisac, $\times 16$.
1 d . Head of femate, $X 10 \mathrm{~s}$. The antennula on left side of the figure almost totally omitted.
1 e. Larger part of cephalothorax of larva (with the peduncles of tirst pair of natatory legs), $X 200$.

2. Sphæronella microcephala Ciard and Bonnier.

2 a. Large female, $\times 21$.
2 b. Male, $\times 21$.
2 c. Ovisac, $X 21$.
2 d. Head of female seen from below, $\times 334$.
2 e. Plate representing the frontal border, mouth and one maxilhata of another female seen from below, $\times 334$.
2 f. Genital area of female, $X 116$. Peceptacula seminis and their orifices omitted.
2 g. Male seen from below, $\times 206$.
21. The same male seen from left side, $X 208 ; i$. process of the first pair from the sul-median skeleton.
2 i. Larva with an adhesive plate covering the lront, $\times 196$. The branches of the natatory legs omilted.
2 k . Animal considered to be a pupa of this species, $\times 135$.
3. Sphæronella decorata n. sp.

3 a. Large female, $X 11$.
3 b. Male, $\times 11$.
3 c. Ovisac, $X 11$.

Figure

3 d . Head of female seen from in front, $\times 66 \mathrm{f}$.
3 e . Head of another female seen from below, $\times 117$.
3 f . Male seen from below, $\times 81$.
3 g . Another male seen from left side, $\times 81$.
3 h . Distal part of a maxilliped of male, $\times 996$.
3 i. Adult larva seen from below, $X 154$. The setee of two of the natatory legs omitted.
3 k . Another similar larva seen from left side. A part of the olfactory seta, the greater part of the long caudal seta and most of the seta of the natatory legs omitted.
3 l . Frontal decoration of larva, $\times 30$.
3 m . Antennæ of larva seen from helow, ab. \times פ.50.
3 n . Right maxilla of larva seen from helow, $\times 312$.
30 . The two proximal joints of left maxilla of larva seen in an oblique direction.

PLATE IX.

1. Sphæronella decorata n. sp. (continued).

1 a. Genital area of female, $\times 94$.
1 h . Left maxilla of female seen from helow, $\times 323$.
2. Sphæronella modesta n. sp.

2 a. Female, $\times 23$.
2 b. Male, $\times 23$.
2 c. Ovisacs - some containing eggs, others young ones -, X 23.
2 d. Head of female, $\times 230 ; x$. peculiar area.
2 c. Genital area of female, $\times 180$.
2 f. Male seen from below, $\times 138$.
2 g. Frontal border and one antemula of the same mate, $X 264$.
2 h . Another male seen from left side, $\times 138$.
2 i. Anterior part of larva, $\times 294$.

3. Sphæronella dispar n. sp.

3 a. Small adult female, $\times 37$.
3 b. Male, $\times 37$.
3 c. Ovisacs laid by the female shown in fig. $3 \mathrm{a}, \times 37$.
3 d. Large adult female, $\times 37$.
3 c. Ovisacs laid by the female shown in fig. $3 \mathrm{~d}, \times 37$.
3 f . Head of female, $\times 185$. Of the antennula on the right side of the figure only the base is indicated.
3 g . Genital area of female, $\times 243$.
3 h . Male seen from below, $\times 202$; i. first process of the sulb-median skeleton, j. second process of the same, y. lateral keel behind the peculiar frontal plate.
3 i. Another mate seen from left side, $\times 219$.
3 k . Larva, $\times 275$. The seta of two of the natatory legs omitted.

4. Sphæronella insignis n. sp.

Figure
4 a. Female from Diastylis lavis Norm., $\times 95$.
4 b . Wale from Diast. Levis, $\times \mathbf{2 5}$.
4 c . Head of the female shown in fig. $4 \mathrm{a}, \times 160$. Of the antennula on the right side of the figure only the base is indicated.
4 d . Genital area of the female shown in fig. $4 \mathrm{a}, \times 186$.
4 e. Genital area of a female from Diust. cormuta Boeck, $\times 173$.
4 f . Right antennula of the female from Liast. cormuta seen from below, $\times 290$.
4 g . Distal part of right maxilliped of the female from Diest. cormuta, $\times 290$.

PLATE X.

1. Sphæronella insignis in. sp. (continued).

1 a. Male from Diust. lavis seen from left side, $\times 67$.
1 b . Anterior part of the male shown in fig 1 a and seen from below, $\times 208$; x. peculiar ring, y. lateral keel, v. frontal plate.
1 c. Male from Diast. cornuta seen from below, $\times 160$.
1 d . The same mate seen from left side.
1 e. Larva from Diast. cornuta, $\times 151$. The branches of the natatory legs omitted.
1 f . Front part of the larva shown in fig. 1 e, $\times 275$.
1 g . Right maxilla of the same larva, $X 350$.
1 h. Pupa from Diast. cornuta seen from below, $\times 207$.
2. Sphæronella curtipes n. sp.

2 a. Female, $\times 12$.
2 b. Male, $\times 12$.
2 c. Ovisac, $\times 12$.
2 d. Head of lemate, $\times 192$. The distal part of one maxilliped broken off.
2 e. Genital area of female, $\times 71 ; r$, one receplaculum seminis - the other omitted.
2 f. Male seen from below, $\times 51$.
2 g . Another mate seen from left side, $\times 47$.

3. Sphæronella affinis n. sp.

3 a. Female, $\times 28$.
3 b. Ovisac, $\times 28$.
3 c. Head of female, $\times 29$. The hairs of the sub-median skeleton drawn only on the right side of the figure.
3 d . Genital area of female, $\times 146$. Both receptacula seminis are indicated by dotted lines, and on the orifice of one a stalk of a spermatophore is attached.

4. Sphæronella Munnopsidis n. sp.

4 a. Anterior half (namely: the head with the basai part of the antennæ, and the larger part of the thorax with the first pair of legs and the basal portion of the three following pairs of legs) of an adult female of Mumnopsis typica M. Sars, the extended marsupium of which is occupied by a femate parasite with twenty ovisacs; many of the ovisacs are seen through the marsupial plates. The host is seen from below, $X^{14} / 3$.

Figure

4 b . Area on the female answering to the head and showing the antennulie and its other organs, $\times 122$.
4 c. Genital area of female, $X 68 ; 9$. genital aperture, h. hole (or very small thin-skinned area with minute holes), r. one receptaculum seminis indicated lyy a dotted line, with a stalk of a spermatophore, s., attached to its orifice; s. spermatophore attached to the orifice of the other receptaculum which is not drawn.
4 d. Antennula, antenna, maxilla and maxilliped from the right side of a not quite fullegrown larva seen from below, $\times 196$.

5. Choniostoma mirabile H. J. H.

5 a. Female seen from below, $X 4$.
5 b. Ovisac with eggs, $\times 4$.
5 c. Ovisac with full-grown larve, $\times 4$. (These three figures, fig. $3 \mathrm{a}-3 \mathrm{c}$, are also found in my report in "Dijmphna-'Togtets zool.-bot. Udbytte".)

6. Choniostoma Hansenii Giard and Bomier.

6 a. Rostrum of female cut off and seen from right side, $X 203 ; a$. membrane of the mouthborder, b. hairs of the mouth-horder', c. maxillula, c^{\prime}. additional branch of the maxillula (its distal part is broken off, but indicated by dotted lines).
6 b . Larger part of the terminal face of the rostrum shown in fig. 5a, $\times 321$; d. labrum, e. mandible.

PLATE XI.

1. Choniostoma mirabile H. J. H. (continued).

1 a. Head of female, $\times 104$; a. antennula, b. olfactory seta, c. antenna, q. rudimentary maxilliped, h. sub-median skeleton, k. frame of the head, k^{\prime}. lateral process of the frame, $k^{\prime \prime}$. chitinons knots belonging to the frame and lying partly beneath the soft skin, t. posterior chitinous ring, u. anterior chitinous ring.
1 b . Genital area of female, $\times 104$; e. solid chitine, r. one receptaculam seminis indicated by dotted lines (the other receptaculum is omitted). The genital apertures are open.
1 c. Young one in the Nauplius stage seen from left side, $\times 81$.
1 d . Young one in the Nauplius stage seen from below, $X 81$. (Fig. Ic and $1 d$ are found in "Dijmphna-Togtet".)
1 e. Hinged larva, $\times 210$; s. adhesive plate. The setæ of the two natatory legs on the left side of the figure are omitted.
1 f. Anterior part of a full-grown larva pulled out of its egg-membrane, $\times 261$.
l g. Pupa seen from below, 110 ; u. antennula, s. adhesive plate. Posteriorly and on the sides the outline of the contents is somewhat removed from the margin, and posteriorly are seen the hairs of the animal shining through the skin of the pupa.
1 h. Large pupa seen from below, $\times 40$.
1 i. Smaller pupa seen from below, $X 40 ;$ s. athesive plate. The contents marked with a greyish tint.
1 k . Small pupa seen from below, $\times 40$.

2. Choniostoma Hansenii Giard and Bonnier (continued).

Finure
$\times^{29} / 4$.
2 b. Small female, $X^{29 / 4}$.
9 c. Ovisac, $\times{ }^{29} / 4$.
2 d. Head of an adult female, $\times 130$.
2 e. Part of the skin of the ventral side outside the head of a small female, $\times 130$.
2 f . Genital area of an adult female, $\times 128$.

3. Mysidion commune n. gen., n. sp.

3 a. The contents of the marsupium of an Erythrops s rutus G. O. S. seen from below and consisting of the female parasite with its seventeen ovisacs, $\times 12$.
3 b. Another female with its ovisacs from Er. serratus seen from above the head situated on the dorsal side and its front lurning backward), $\times 25 ; g$ maxillipeds. The contents indicated only in three of the thirteen ovisacs.
3 c . Four ovisacs of another female, $X 95$. In the largest ovisac only a small part of the contents, namely six larvæ, are drawn.
3 d . Male, $\times 25$.
3 c. Posterior half of the ventral surface of fentale, $\times 42$; e. skeleton surrounding one genital aperture; r. fransition between the receptaculum seminis and one of its ducts, spermatophores.
3 f . Left genital aperture with its lips, muscles and the surrounding skeleton seen from below, $X 190$.
3 g . Male seen from below, $\times 258 ; q$. spermatothecæ. The hair-covering of the trunk drawn only on one side.
3 h. Another male scen from left side, $X 258 ; s$. frontal thread, t. part of a marsupial plate of the host, x. conical eminence on the dorsal side of the head.
3 i. Very small pupa seen from below, $X I S 8$; x. outline of a mouth (?) beneath the skin of the pupa. - This and all the other figures of this parasite are drawn from animals taken on Erythrops serratus G. O. S.

PLATE XII.

1. Mysidion commune n. gen., n. sp. (continned).

1 a. Head of female, $X 1 \S \Omega$; a. antennula, u. process of unknown nature (perhaps stiffened viscous substance on the opening of the gland producing it).
1 b. Pupa with dorsal thread, $X 25$. (The same enlargement as in fig. $3 \mathrm{~b}-3 \mathrm{~d}$ on pl . Xl.)
1 c. Pupa seen obliquely, $X 182$; a. (misscript for c.) antenna, f. maxilla, g. maxilliped, r. skeleton surrounding the future genital aperture, t. (misscript for α.) antennula, u. basal part of the dorsal thread shining through the animal, v. distal part of the thread, x. eminence at the mouth of the pupa stage, y. month of the pupa stage, y '. chitinous lists on the side of the rostrum of the pupa. The mouth and the maxillula of the young female are seen at the anterior end of the animal.
1 d . Very young female in possession of characters which it loses afterwards, $\times 189$; a. (misscript for ϵ.) antenna, r. skeleton surrounding the future genital aperture, t. (misscript for a.) antennula, u. hasal part of the dorsal thread, v. distal part of the dorsal threarl, x. odd ventral process situated at the place of the month of the pupa stage, 2 . body of unknown nature.

Figure

2. Mysidion abyssorum n. sp.

2 a. Head of female, $\times 182$; a. antennula, e^{\prime}. additional branch of the maxillula.
2 b . Genital aperture and the surrounding skeleton of female, $\times 123$; g. genital aperture, h. plate formed of a kind of viscous substance and covering the lips of the genital aperture and the skeleton behind them, i. stalks of ovisacs, the hasal parts of which are confluent and form the plate mentioned, k. hole (or very small thin-skimed area with minute holes) at the anterior end of the skeleton.
2 c. Male, 43.
2 d. Very small male with frontal thread, $\times 43$.

- c. Normal mate seen from below, $\times 256 ; c$. maxillula, \%. spermatothec:, u. line of unknown nature.
2 1. Normal male seen from left side, $\times 236$: x. conical eminence on the dorsal side of the licad.
2 g . Firontal thread of one of the minute males, $\times 260$.
@l. Larva seen from below, $X 264$. The natatory legs are omitted.
2 i. Hinged larva seen from above, $\times 125$.

3. Aspidoecia Normani (iard and Bomnier. ${ }^{1}$)

3 a. Male of Erythrops "byssorum G. O. Sars seen from above and infested with nine female parasites of very different size and one larva, $\times{ }^{13} / 2$; u. larger female, b. smaller females, l. larva, m. male. The posterior part of the abdomen of the host is omitted.
3 b . Female with two rudimentary ovisacs (u.) and three larvæ (v.) attached to the dorsal surface of the second abdominal segment of Erythrops serratus G. O. Surs, $X \underline{9} ; r^{\prime}$. chitinons knots where the entrances to the receptaculum seminis must be found.
3 c. Sub-adult female attached to the back of the first abdominal segment of an Er. serratus and seen from the dorsal side, $\times 39 ; x$. two males hinged by their frontal thread, y. part of the skin of the host.
3 d . Head of a female from Er. serrutus, seen much from in front, $\times 350$; d. mouth, p. maxillula, s. adhesive plate, t. internal space possessing a peculiar refiaction of light.
3 e. External genital organs and receptaculum seminis of the female whose head is shown in fig. 3 d , $\times 70$; e. solid ring, g. genital aperture, k. hole in the ring, o. chitinous knots, r. receptaculum seminis with its ducts.
3 f . Adult female from Er. abyssorum, $\times 24$; the head is seen in the middle.
3 g . The same male seen from the side opposite of that of fig. $3 f ; r$. ring around a genital aperture, r^{\prime}. chitinous knots.
3 h . Head of the female shown in the two preceding figures, cleaned with caustic potash and scen from below, $\times 350 ; a$ antennula.
3 i . Genital aperture and its surroundings of the female shown in fig. $3 \mathrm{f}, \mathrm{X} 170$; e. ring-shaped skeleton, f^{\prime}. less solidiy chitinised part of the ring, g. genital aperture with its lips, k. hole in the ring, m. muscles.
3 k . Male from Er. serratus seen from below, $\times 291$; b. olfactory seta of the antennula, \%. spermatotheca. (ln other specimens two spermatotheca were found.)
3 l. Another male from Er. serratus seen from left side, $\times 324$.
${ }^{1}$) On the plate is written Normanni instead of Normani.

Figure
3 m . Larva which was attached to the femate shown in fig. 3 b , its skin is burst along the tateral margins, and it contains a fully developed male, $X 184 ; a$ antemula of the larva, b. olfactory seta of the antennula, s. viscous substance proceeding from the front of the male.
3 n . Right maxilla and maxilliped with a part of the sub-median skeleton of the larva shown in fig. 3 a as attached to the carapace of Er. abyssorum and marked l.; the organs are seen from below, $\times 330 ; h$. sub-median skeleton.

PLATE XIII.
(Supplements to pl. II, III and X.)

1. Homoeoscelis mediterranea n. sp.

1 a. Female, $\times 110$.
1 b. Male, $\times 110$.
1c. Ovisac, $\times 110$.
1 d. Head of female, $\times 312$. The short hairs on the lateral margins omitted.
1 e. Genital area and its surroundings of female, $\times 322$; the receptacula seminis are indicated by dotted lines; on the orifice of one are attached a spermatophore and the basal part of the stalk of another spermatophore, on the orifice of the other are seen parts of the stalks of two spermatophores.
1 f . Male seen from below, $\times 230$.
1 g . Male seen from left side, $\times 230$.
1 h . Full-grown larva seen from left side, $\times 297$. Most of the matatory legs omitted.
2. Sphæronella danica n. sp. (Supplement to fig. 4 on pl. II.)

2 a. Genital area and its surroundings of a scarcely half-grown female, $\times 216$.

3. Sphæronella Leptocheiri n. sp.

3 a. Female, $\times 36$.
3 b. Male, 36.
3 c. Head of female, $\times 165$.
3 d . Genital area and its surroundings of female, $X 216 ; c$. solidly chitinised ring, g. genital apertures, m. muscles, r. receptacula seminis, t. caudal stylets.
3 e. Ontline of a part of a male seen from below, showing the processes of the sub-median skeleton, one maxilliped, the legs on the right side and the caudal stylets, $\times 276$.

4. Sphæronella messinensis n. sp.

4 a. Female with two spermatophores, $X 62$.
4 b . Head of female, $\times 214$.
4 c. Genital area of female, $\times 274$. The receptacula seminis are indicated by dotted lines, and a spermatophore is attached to the orifice of one.

5. Sphæronella irregularis n. sp.

5a. Femate with three spermatophores, $\times 41$.
5 b . Ovisac, $\times 41$.

Figure
5 e. Heat of female, \times 204. Antennulx, one maxilliped and the distal part of the antennx are broken off; the hairs almost totally omitted on the right half of the figure.
5 d . Genital area of female, $\times 202$.

6. Sphæronella marginata n. sp.

6 a. Female, $\times 41$.
6 b. Male, $\times 41$.
6 c. Ovisac, $\times 41$.
6 d. Head of female, $\times 190$; a. antennula, f. rudimentary maxilla.
6 e. Genital area of female, $\times 280$. Only one of the caudal slylets is found. The receptacula seminis indicated by dotted lines.
6 f . Male seen from below, $\times 190$. The trunk misshaped by pressure.
6 g . Cephalothorax of a full-grown larva, $X 273$. The natatory legs and most of the olfactory seta on the right side of the figure omitted.
6 h . The two distal joints of a maxilla of the larva, $\times 273$.

ERRATA.

Page 4, line 6, for "J. Sparre-Schneider" read "J. Sparre Schncider".

- 7, line 5 from bottom, for "antennulæ" read "antennula".
- 9, line 5 from bottom, for "in" read "within".
- 11, line 1, for "new a" rectd "a new".
- 11, line 8 from bottom, for "twenty-four" reud "Iwenty-one".
- 11, line 2 from bottom, for "Stenotocheres" read "Stenothochercs".
- 13, line 5 from bottom, for "Croisie" read "le Croisic". - The same error is found in j. $\mathbf{t 4}$, line 4 from bottom, and in p. 16, line 11 from bottom.
- 18, line 17, for "larve" read "larva".
- 33, line 1 and 2, for "of medium length" read "comparatively long".
- 37, fine 4, for "acule" read "rectangular".
- 37, line 7 from bottom, for "S. Holbolli" read "S. Holbülli".
- 47, line 12 from bottom, for "larra" read "larve".
- 52, line 18, for "Homooosrelis" read "Homoeoscetis minuta".
- 52, line 16 from bottom, for "larva" read "larvie".
- 54, line 17 from bottom, for "smaller, 125 mm ." rad "hetween $\cdot 125 \mathrm{~mm}$. and 147 mm .".
- 55, line 9, for "at least the female pure" read "the pupa of bolli sexes".
- 55, line 13, for ".125 mm." rad " 147 mm .".
- 93 , line 7 , for "body" read "trunk".
- tto, line 2, for "maxilla" ead "maxillula".

1. Spheerometla rhenernstis a ap
 f ippleare perverelonere on ap

ㄹ. Sphorer Villiopoii n wp at 5 Ammsen drl.

 4. Splecer Metopore in ap.

$3 f$

1. Sphiveronella cimpensian os

2 iphaer dillanopesides nosp

IT. I Bumsen iry
4. Spheer. Bennieri n sp

3. Sphuer Amplitherli n sp (i. spluer. fiennealias a mp Jumental .ar

1. Spheronellat insigntis nos ? Splacer. surfipes n sp 3 Spblwer. attimis n ap.

.3 Mysidion \square

 \qquad

[^0]: ${ }^{1}$) In the Herpyllobius the male atlaches itself a second lime by its front end, but the genital aperture is found at some distance behind this fixation (Entom. Meddel. l. c. p. 230).

[^1]: ${ }^{1}$) A special copy of this paper, kindly sent me by the author, arrived on Febr. 11th 1897, so that the present remarks had to be written and inserted in my work when a large part of the fair copy ol it was already written.

[^2]: ${ }^{1}$) It may be added here that in my lreatment of the Malacoslraca from the "Ingolf"expedition I slaall sive more detailed information ahout the arctic Epicaridea.

[^3]: 1) In the above-mentioned ${ }^{\text {n }}$ Grundzüge ${ }^{4}$ (p. 557-58), Claus enumerates most of its characteristics and refers to the most important accounts of its structure and development.
[^4]: ${ }^{1}$) J. Bonnier, in his alove-mentioned treatise, published probably in Febr. 1897, under the name of Spheronella sedenturia Bonn. deseribed a species belonging to this genus. He found it in the branelial cavity of Cycluspis longicoudutu G. O. Sars, taken in a deptlı of 960 metres in "Le Golfe de Gascogne".

[^5]: ${ }^{1}$) Details about the exact localities of these stations, the description of the bottom etc is found in: , C. G. Joh. Petersen: Det videnskabelige Udbytte af Kanonbaaden ${ }_{n}$ Hauch"s Togter i de danske Have indenfor Skagen i Aarene $1883-86^{\circ}$, p. 1-33, 1893. In my descriptions of several ol the following species, nilher statiuns from these cruises will be quoted and may be looked for in the afore-mentioned work.

[^6]: ${ }^{1}$) For a long time I considered the branch on the first pair of legs to be not the outer but the inner one, and the conical process to he the outhe branch of the leg, lut a comparison with some of the other species (e. £. S. Metopre and S. Giardii) will prove the interpretation adopted to be correct. Perhaps the interpretation of the branches of the second pair of legs will not prove to be correct, but lor the present it is inpossible to decide this question with any certainly.

[^7]: ${ }^{1}$) With regard to two of these larva notes are wanting; they were possibly found together with the third one.

[^8]: ${ }^{1}$) G. O. Sars, in his excellent work: "A" Account of the Crust. of Normay, Vol. I ", admits altogether tive species of Bathyporeil from Norway and the Baltic. Of these species B. norvegica G. O Sars and B. yracilis G. O. S. are decidedly good, and well distinguished from the three others, but whether these three species can be roaintained, or lave to be reduced at least to two (in regarding B. pilosa Lindstr. as a Ireshwaterform of B. pelagica), perhaps even to one, is diflicult to decide, and must be submitted to a new, thorough

[^9]: investigation. In this work l have accepted the established species in separating B. pulagice and B. Roburtsonii from each other according to the existence or non-exintence of spines on the dursal part of the fourth abdominal segment.

[^10]: ${ }^{1}$) The mouth-appendages (as is partly shown in the drawing) were placed in an abnormal position by pressure.

[^11]: ${ }^{1}$) Separate copies of $m y$ contribution were distributed in the beginning of July 1886, whereas the whole volume with the ressumé appeared in 1887.

[^12]: ${ }^{1}$ On pl. XII the name of the species is written Normanni instead of Normani.

