# 18. Studies on Japanese Mysidacea 

I. Descriptions of New and Some Already Known Species Belonging to the Genera, Neomysis, Acanthomysis and Proneomysis

By Naoyosi It<br>Fisheries Institute, Farulty of Agriculture, Tokyo Imperial University-<br>(With Text-figures 1-116)

Collected materials of Japanese Mysidacea contain many interesting species and reveal new facts with respect to their taxonomy, distribution and habits. The study of the specimens is in progress and among them so far examined ten species, that is, two belonging to the genus Neomysis, four to Acanthomysis and four to Proncomysis, are dealt with in the present paper. Of these species seven are new to science, one can be identified with certainty as an already known species and the remaining two are doubtful whether they are referable to already known ones or not. All of them are described and figured in minute details for comparison with each other and to clear up some doubtful points in their structure and taxonomic position.

It is my pleasant duty here to express my deep gratitude to Professor Ikusaku Amemiya, by whose suggestion and guidance the present study was undertaken and carricd out. I am also indebted to Mr. Kiichi Nakazawa for his kind information given to me as well as valuable specimens placed by him at my disposal. Thanks are due to Mr. Hiroaki Aikawa, Mr. Katuaki Tuzinaga and other gentlemen who all kindly sent me materials for the study.

## Genus Neomysis Czerniawsky, 1882

Zimmer (1915) amalgamated the genus Acanthomysis Czerniawsky ( $=$ Dasymysis Holt and Beaumont (1900), Metamysis Nakazawa (1910), not Sars, Orientomysis Derzhavin (1913)) with the genus Neomysis Czerniawsky (1882) on the ground that the distinctions between these two genera have been broken down in the light of the species described by Nakazawa and Derzhavin. In the structure of the male pleopods both genera are identical and the only difference between them lies in the antennal scale. In Neomysis the antennal scale is very long, with a sharply pointed apex, while in Acanthomysis the antennal scale is comparatively short, with a rounded apex.

The numerous species referred to the comprehensive genus of Zimmer may be divided into two groups according to the character of the antennal scale, as follows:

Group I. Antennal scale with an acute spiniform apex.
N. awatchensis (Brandt)

Mysis awatschensis Brandt 1851, Czerniawsky 1882 Syn: N. nigra Nakazawa 1910, Tattersall 1921
$N$. intermedia (Czerniawsky)
Heteromysis intermedia Czernawsky 1882
N. intermedia, Nakazawa 1910

Syn: N. awatschensis Tattersall 1921, Derzhavin 1923
N. isaza Marukawa 1928
N. mercedis Holmes 1897

Holmes 1900, Tattersall 1932
N. rayii Murdoch 1885

Syn: N. toion Derzhavin 1913
N. integer (Leach)

Mysis integer Leach 1815
Syn: Mysis vulgaris Thompson 1828
N. culgaris Czerniawsky 1882
N. franciscorum Holmes 1900

Hansen 1913, Schmitt 1919
N. mirabilis (Czerniawsky)

Heteromysis mirabilis Czerniawsky 1882
N. kadiakensis Ortmann 1908

Schmitt 1919, Tattersall 1932
N. japonica Nakazawa 1910
N. americana (Smith)

Zimmer 190t
Mysis americana Smith $187+$
N. spinosa Nakazawa 1910
N. czerniauskii Derzhavin 1913

Syn: N. andersoni Schmitt 1919
N. patagona Zimmer 1907
N. meridionalis Colosi 192.
N. monticelli Colosi 1924

Group II. Antennal scale with a rounded apex.
N. longicornis (Edwards)

Mysis longicornis Edwards 1837
Acanthomysis longicornis, Czerniawsky 1882
Dasymysis Iongicornis (Edwards), Holt and Beaumont 1900
Syn: Acanihomysis playdens. Czerniawsky 1882 Acanthomysis spinosissima Czerniawsky 1882
N. sagamiensis: (Nakazawa)

Metcmysis sagamiensis Nakazawa 1910
N. mitsukurii (Nakazawa)

Metamysis mitsukurii Nakazawa 1910
N. schrencki (Czerniawsky)

Mysis schrencki Czerniawsky 1882
N. stelleri (Derzhavin)

Orientomysis stelleri Derzhavin 1913
N. costata (Holmes)

Illig 1930, Tattersall 1932
Mysis costata Holmes 1900, Hansen 1913
N. dybowskii (Derzhavin)

Orientomysis dybowskii Derzhavin 1913
N. indica Tattersall 1922
N. hodgarti Tattersall 1922
N. macropsis Tattersall 1932
N. columbiae Tattersall 1933
N. pseudomacropsis Tattersall 1933
N. sculpta Tattersall 1933

As far as I can make out consulting with the keys in Illig's (1930), Tattersall's (1932) and Zimmer`s (1909) papers, the present genus, therefore, comprises 28 already known species, as listed above, and is becoming somewhat unwieldy. Therefore, Tattersall inclines to the opinion that it would be better to separate them into two genera according to the character of the antennal scale. In his paper (1932) he says, " it seems probable that Group II will have to be separated generically from the remainder on the character of the antennal scale. It forms a ready means of separating the species into two groups which may well be given generic rank. In such case the name Acanthomysis must be used to designate the second group of species." In his later paper (1933) he also says." When the numerous species belonging to the genus Neomysis come to be revised, it will probably be found convenient to group them into a number of closely allied genera." Tattersall, however, in both of his papers (1932. 1933), did not divide the genus Neomysis into two genera and adopted Zimmers arrangement, and it seems that he hesitated before dividing them into two genera and awaited the discovery of some definite distinctions between the two groups beside the character of the antennal scale.

Tattersall in his paper (1932) described interesting facts he observed in the three species belonging to the group I, viz. N. mercedis Holmes, N. franciscorum Holmes and $N$. kadiakensis Ortmann. The facts, namely, are the following two points which until then had escaped notice. The first point is the presence of a small posterior setose lobe on the posterior pair of oostegites, projecting backward, and rather sharply marked off from the main oostegite. The second point is the presence in the female of a rather long, delicate, somewhat curved and forwardly directed spiniform process on the median line of the last three thoracic sterna.

Especially on these points I examined the five species in my material, viz.
N. japonica Nakazawa, N. spinosa Nakazawa, N. intermedia (Czerniawsky), N. czerniawskii Derzhavin? and N. nakazawai n. sp. The results of my examination slightly differ from Tattersall's observation. As to the first point, I found the lobe (Fig. 1) which seems to correspond to that observed and described


Figs. 1-2. Nemnysis intermedia Czerniawsky
Fig. 1. Seventh thoracic limb with the anterior oostegite to show the posterior
Fig. 2. Middle part of the body to show the processes ( $\mathbf{P}$ ) on the last two thoracic sterna and the marsupial pouch.
by Tattersall to be present on the 'posterior' oostegites in his species. The lobe more or less developed is, on the contrary, on the anterior oostegites in all above named species, and I could not find out any peculiar lobe on the posterior oostegites. Judging, however, from his figure. Tattersall seems to have mistaken the term 'posterior' for 'anterior'. Similar lobe also can be observed in some species belonging to the group II, viz. N. mitsukurii (Nakazawa), N. dybouskii (Derzhavin)?, Acanthomysis longirostris n. sp. and A. dimorpha n. sp. As to the second point, I could find such processes (Fig. 2) only on each of the last two thoracic sterna as far as concerned to all my specie: belonging to the group I except $N$. spinosa. In $N$. spinosa 1 failed to find such process.

From the above said results of my examination, I think that these two points may or may not be the distinctive characters between the two groups Further examination is necessary and I reserve here to decide the weight of
these points to count for the generic importance. But at any rate, I believe that the difference in the character of the antennal scale forms a ready means of separating the species into two genera.

In my material I found three new species belonging to the genus Neomysis in Zimmer's sense. One of them belongs to the group I, and the other two to the group II. I believe that Japan and her adjacent seas are rich in species of Neomysis, and expect that a considerable number of new species may further be discovered hereafter.

Hence, so as not to complicate the genus Neomysis, here I separate the group II from the group I generically only on the ground of the difference in the character of the antennal scale and use the name Neomysis to designate the group I and Acanthomysis the group II.

$$
\text { Neomysis nakazawai }{ }^{\text {D }} \text { n. sp. }
$$

Figures 3-13.

Locality. Noda, Karafuto (Sakhalin).
Type specimen. 24 females, no males
The material was kindly sent to me by Mr. Nakazawa, to whom I am greatly indebted for the privilage of examining and describing the present species.

There are no male specimens in the collection, therefore, the following description is based only on female specimens.

Describtion. Body stout. Last thoracic somite has 2 rather faint depres sions on dorsal side. Anterior 5 abdominal somites have obscure grooves on dorsal side, 3 on the first somite, 2 on each of the second and the third, and 1 on each of the fourth and the fifth.

Front margin of the carapace produced into a wide subquadrangular plate with rounded angles, about : as long as broad, but the carapace leaves the whole of the eye-stalks and antennules uncovered; front margin of the rostral plate concave with a broad ob-trapezoidal indentation and somewhat depressed at the middle. Antero-lateral corners of the carapace long and acutely pointed.

Eyes, including the stalk, about $1^{2 / 3}$ times as long as broad, cornea occupy ing about ${ }^{1} / \%$ of the entire eye in dorsal riew

Antennular peduncle long and slender ; basal joint almost as long as the 2 distal joints combined.

Antennal scale long and narrow, about 15 times as long as broad, and about 3 times as long as the antennular peduncle, setose all round, 2 -jointed, the distal joint about $\quad \therefore$ of the entire length of the scale and terminating in an acute spiniform apex: basal joint, from which the scale arises, with a prominent spine on both inner and outer corners

Antennal peduncle about ${ }^{\prime}$; of the length of the scale; the third joint
${ }^{1}$ In honour of Mr. Kiichi Nakazawa
slightly shorter than the second.
Mouth parts, first and second thoracic limbs show no feature of special interest.

Third to the eighth thoracic limbs rather slender, propodite divided into 9-15 subjoints which increase in number posteriorly ; basal plate of the exopod with posteriorly; basal plate of the
a spiniform outer distal angle.

Marsupial pouch consisted of 2 pairs of oostegites; the posterior margin of the anterior pair of the oostegites with a tiny, setose. backwardly projecting lobe. Each of the last 2 thoracic sterna provided with a long, delicate, spiniform process on the median line.

Sixth abdominal somite about $1 \%$ times as long as the fifth.

Pleopods of the female are all rudimentary.

Telson linguiform, about $1^{2} \%$ times as long as the last abdominal somite and about $2^{1,}$ : times as long as broad at the base; lateral margins concave in the first $1 /$ part, convex in the second ${ }^{\prime}$ part and then gradually narrowing toward a narrowly rounded apex; the margins densely armed throughout their length with many stout spines; in the proximal of the margins the spines are rather widely spaced. in the next half of the margins the spines growing larger posteriorly and grouped into $\overline{3}-7$ sets, each set composed of a large spine followed by 2-5 slightly smaller spines, and in the last $1 / 11$ of the margins around the apex the spines are short. blunt. very closely set and of even size.

Inner uropod slightly shorter than the telson and its rentral inner margin armed with a dense row of about so spines.

Outer uropod $1^{\prime}$ a times as long as the telson.

Length. Adult females, 30 mm .
Lateral view of adult fennale.
Remarks. Although I could not obtain male specimens, the present species must be included in the genus Neomysis, diagnosed clearly by the combination of the characters afforded by the antemnal scale. propodite, telson, pleopod
of the female, oostegite, etc
The present species is very closely allied to N. patagona Zimmer, from Magellan Straits, in the peculiar shape of the rostral plate, and easily distinguishable in this point from other species hitherto described. But the present species differs from $N$. patagona in the following points:
(1) Last thoracic somite and anterior 5 abdominal somites have grooves on dorsal side, whereas in N. patagona the body is smooth.


Figs. 4-s. Nenmysis nakazauai n. sp.
Fig. 4. Anterior end of a female to show rostral plate. eye. antennule and antennal scale.
Fis. 5. Antennale scalc and peduncle Fiy. 5. Antennale scale and peduncle.
Fig. 6. Mandible and palp.
Fig. 8. Second maxilla
(2) In the present species the rostral plate leaves the whole of the eyestalks and antennules uncovered, while in $N$. patagona the rostral plate reaches to the middle of the eye-stalks.
(3) Antennal scale is relatively longer, 15 times as long as broad in the present species, while in $N$. patagona it is 9 times as long as broad. (4) Propodite of the third to the eighth thoracic
5 joints in the present species and $8-9$ in $N$. patagona.


Figs. 9-13. Nenmysis nakazauai n. sp.
Fig. 9. First thoracic limb.
Fig. 10. Endopod of second thoracic linb.
Fig. 11. One of the posterior thoracic limbs.
Fig. 12. Telson
Fix. 13. Inner uropod.
(5) The present species is rather easily distinguishable from N. patagona in the armature of the telson.
(6) Inner uropod is provided with a dense row of about 80 spines on the entral imner margin in the present species, while in $N$. patagona with only 1 spine on the same part.
(7) Outer uropod is setose all round, and has no spines not as in $N$ patagona.
studies on Japanese mysidacea I

## Neomysis czerniawskii Derzhavin?

## Figures 14-21.

Neomysis czerniauskii Derzhavin 1913
Neomysis andersoni Schmitt, 1919; Rept. Canad. Arctic Exp. 1913-1918. 7, Crustacea, (B), 1 B-8 B, 3 text-figs.
Localities. Port Samé, Aomori Prefecture. Abundant, adult males and females.

Off the coast of the Sikotan Peninsula, Hokkaido. Abundant, adult males and females.

Present specimens from the two localities, especially the Sikotan samples ree very well with Derzhavin's description of N. czerniaushii in many essential points. But to my regret, as Derzhavin's description is very brief and rather incomplete, and he made no mention about the features of the fourth pleopod of the male in his text, I can not make full comparison of the present specimens with the Derzhavin's. Recently Tattersall united N. andersoni Schmitt with $N$ czerniauskii by the examination of Schmitt's co-types. But it is a regret for me unable to say anything about the matter, as I can not consult with Schmitt's original description of $N$. andersoni.

Judging from scrutiny of Derzhavin's figures in his paper the present specimens from the two localities slightly differ from $N$. czerniauskii in the apical armature of the telson. In $m y$ specimens the apex of the telson is armed with 4 equally long spines, while in Derzhavin's figure of N. czerniawshii the $\&$ spines show different features, e. i., the inner pair of the spines are horter than the outer. As to the fourth pleopod of the male of Derzhavin's shorter than length by his figure of specimens, I can only cognise vaguely its form and length by his figure of the male. In his figure only tiny fourth pleopod is shown. But I think his ligure depicts an immature male with tiny fourth pleopod which has not yet fully grown. Immature males in my specimens from Port Samć, which measure 9 mm . in length also show the same condition as Derzhavin's figure. Thus, it is quite certain that Derzhavin's figure was drawn from some immature specimen. ts to the shape of the rostrum Derzhavin gave no description thereof and in his comparison of $N$. czerniauskii with $N$. spinosa Nakazawa he made also no reference to the rostrum, but in $m y$ present specimens the rostrum clearly differs from that of $N$. spinosa.

On the other hand, there are slight differences between the Same and the Sikotan specimens, that is. in the body length of the adult, and in the number of joints of the propodite and in that of the spines on the ventral inner margin of the inner uropod, as are shown in the following table.

However, I think that these differences cannot be considered more than variations in a species, as in many other important characters all these specimens are very similar. It is not seldom occurrence that the number of joints of propodite and that of spines on the ventral inner margin of inner uropod are liable to variations in the same species. Nevertheless, the Same specimens

|  | Number of joints <br> of propodite | Number of spines on <br> the ventral inner <br> margin of rupopod | Body length |
| :--- | :---: | :---: | :---: |
| Samé specimen | $8-10$ | $44-5 t$ | 16 mm |
| Sikotan specimen | $9-12$ | $54-60$ | 21 mm |
| N. czerniawskii <br> (after Derzhavin) | $9-12$ | $5+$ | 21 mm |

show fairly noticeable differences from others, e. i., in the body length and in the number of joints of propodite. Yet, the said differences seem to me also


14
Fig. 14. Neamysis czer. niarskii Derzhavin! Lateral view of adult male. variations in the same species, as these kinds of variations in one species are equally rather common in Mysidacea according to localities and also to different seasons of the year even in the same locality. Therefore, the Samé specimens may be at greatest one variety in the species, the samples of which were collected from Kamchatka (Derzhavin) and Sikotan.

I am not quite sure yet whether the present specimens actually belong to the same species as that described by Derzhavin or not. Decision on this point can only be made by examination of fully grown specimens of $N$. czerniauskii, or, perhaps, when Schmitt's description of $N$. andersoni is available for reference. So that I reserve here to draw any conclusion on the specific identification of the present specimens for future study. However, from above said reasons and also taking into consideration the hydrographical relation of the three localities where Derzhavin's and my specimens were collected, I am rather inclined to the opinion that my present specimens from two localities are identical with each other and also with $N$. czerniaushiii at the same time. And it seems advisable in this opportunity to give a brief description of the Sikotan specimens.

Descrimtion. Front margin of the carapace produced into a wide subquadrangular plate with rounded angles, the front margin of the plate somewhat depressed at the apex, so that it appears slightly concare in outline; antero-lateral corners of the carapace acutely pointed.

Each of the free somite of the thorax and the 5 anterior abdominal somites with 2 or 3 faint trans. verse grooves on dorsal side.

Eyes glohose, eye-stalks rather long
Antennular pedunde more robust in the male
than in the female; its first joint provided with 2 long plumose setae, one on the outer distal corner and the other near the inner distal corner ; male sexual appendage slender, about as long as the third joint.

Antennal scale narrowly lanceolate in shape with a pointed apex, about 14 times as long as broad, extending far beyond the antennular peduncle, 2 $2^{1} \%$ times as long as it, 2 -jointed, the distal joint ${ }^{1 / 6}-1 /$ of the entire length of the scale; the scale somewhat longer in the female than in the male; the second joint of the antennal peduncle slightly longer than the third joint.


Fis. 15. Anterior end of a male to show rostral plate, eye. antennule and antennal scale.
Fif. 16. First maxilla
Fig. 17. Third thoracic limb
Fig. 1s. Distal joints of eighth thoracic limb to show the peculiar transformation of the setar along the inner margin of propodite.

Mouth parts, first and second thoracic limbs show no very marked diference from those in other species of the genus.

Third to the eighth thoracic limbs slender: propodite divided into 9-12 joints, the number of the joints increases posteriorly. In the last thoracic limbs setae on the inner margin of distal $5-6$ joints of propodite transformed into trong spines.

Fourth pleopod of the male reaching to the middle of the last abdominal
somite, exopod 2-jointed, the first joint about 5 times as long as the second joint, the latter terminated by 2 long spinous setae, about $1 \frac{1}{2}$ times as long as the joint.

Telson long and narrow-


Fig. 19. Fourth pleopod of the male
Fig. 20. Telson.
Fig. 21. Inner uropod ly triangular, about $1 \frac{1}{2}$ times as long as the last abdominal somite, and $21 / 2$ times as long as broad at the base, abruptly narrowing at a short distance from the base and then gradually narrowing to a slender truncate apex, the proximal $\therefore$ of the lateral margins armed with about 15 short, stout and uniform spines, in the distal $3 / \pi$ of the margins spines arranged in 8-10 successive sets, each set being composed of 2-4 small spines followed by a longer and stronger spine, the apex bears 4 equal ly long spines, which are about as long as the longer lateral spine

Inner uropod almost as long as the telson, and with a dense row of about 5 . spines on the ventral inner margin.

Outer uropod about $1^{1}$ : times as long as the inner.

Length. Adult specimen: of both sexes, 21 mm .
Remarks. The present species is very closely allied to N. spinosa Nakazawa, but is distinguishable from it by the shape of the rostrum, by the absence of the spiniform process on the eye-stalk and of the spines on the fifth and the sixth abdominal somites, and by the number of joints on the propodite and of the spines on the inner margin of the inner uropod.

Distriblotos. Awatschin Bay, Bay of Petropawlowsk, Kamehatka. (Derz. havin. 1913).

Genus Acanthomysis Czerniawsky, $18 \mathrm{Si}_{2}$ emend.
This genus was extabished by Czerniawsky in 1852 and has been named at various times Dasymysis by Holt and Beaumont 1900, Metamysis by Naka-
zawa 1910 and Orientomysis by Derzhavin 1913. In 1915, Zimmer in his revision of the genera of the tribe Mysini regarded all these genera as synonyms of Neomysis, mainly on the basis of the character of the pleopods which are uniform throughout their members.

Afterward numerous species have been referred to the genus Neomysis, and thus the genus became very rich in species and somewhat unwieldy. Hence, I have separated the group of species which have the antennal scale with a rounded apex from the genus Neomysis and revived the name Acanthomysis to designate group II as already discussed under the genus Neomysis.

Defintion of the genus. A genus of the tribe Mysini closely allied to Neomysis, but is distinguishable from it by the rounded apex of the antennal scale. In other respects the genus absolutely agrees with Neomysis.

Type: A. lonsicornis (Edwards).
Remarks. The present genus is distinguishable from all other genera of the tribe Mysini by the combination of the characters afforded by the antennal scale and the fourth pleopod of the male.

I found 2 species in my material, both new to science. With 13 species already described, the genus will now include 15 species altogether as are shown as follows:
A. longicornis (Edwards: 1837
$=$ Neomysis lonsicornis (Edwards)
A. sagamiensis (Naka\%awa) 1910
$=$ Neomysis sagamiensis (Nakazawa)
A. mitsukurii (Nakazawa) 1910
$=$ Neomysis mitsukurii (Nakatawa)
A. schrenchi (Crerniawsky) 1882

- Neomysis schrencki (Czerniawsky)
A. stelleri (Derzhavin) 1913
$=$ Neomysis stelleri ( $\mathrm{D}_{\mathrm{er}} \mathrm{mavin}$ )
A. costata (Holmes) 1990
$=$ Neomysis costata (Holmes)
A. dybouskii (Derzhavin) 1913
$=$ Neomysis dybouskiii (Werzhavin)
A. indica (Tattersall) 1992
-Neomysis indica Tattersall
A. hodgarti (Tattersall) 1922
$=$ Neomysis hodgarti Tattersall
A. macropsis (Tattersall) 1932
$=$ Neomysis macropsis Tattensall
A. columbiae (Tattersall) 1933
$=$ Nermysis columbiae Tattersall
A. pisudomacropsis (Tattersall) 1933
$=$ Nemmysis pseudomacomsis Tattersall
A. sculpta (Tattersall) 1933
$=$ Neomysis sculpto Tattersall
N. It
A. longirostris n . sp
A. dimorpha n. sp.

Acanthomysis longirostris n. sp.
Figures 22-32.
Localities. Port Gunzan, Tyôsen (Korea)
Type specimen. Abundant, adult males and females.
Type specimen. Abundant, adult males and
Ariake Sea, Kyûshû. 22 males, 8 females.
Description. Body smooth, without spinules or grooves on either thorax or abdomen.


Fir. 22. Dorsal view of adult female showing rostral plate
Fig. 23. Lateral view of adult male.

Front margin of the carapace produced into a long triangular rostral plate F sharply pointed apex, the apex reaches to the distal end of the second with a she antennular peduncle; antero-lateral corners of the carapace rounded.

Eyes normal in shape, pigment black; eye-stalk stout and its proximal half densely beset with spinules.

Antennular peduncle with the first joint slightly shorter than the third joint itimale sexual appendage long, triangular and about half as long as the third joint.


Figs. 2t-29. Acanthomysis longirostris n. sp.
Fig. 21. Fy.
Fig. 25. Antennal scale and peduncle.
Fig. 26. First maxilla.
Fig. 27. First thoracic lim
His. 28. Serond thoracic limb.
Yis. 29. One of the posterior thoracic limbs.
Antennal scale narrowly lanceolate in shape, about 7 times as long as broad. apex rounded. 2 -jointed, the distal joint about $1 / 1$; of the entire length of
the scale; the scale extends for ${ }^{2} / \%$ of its length bevond the antennular peduncle and its own peduncle, and slightly longer in the female than in the male.

Labrum pointed anteriorly and the spine reaching to the middle of the second joint of the palp of mandible.

First maxillae with a ridge on the outer margin of the outer plate armed with about 10 spinules; outer margin of the inner plate also armed with several spinules.

Second maxillae, first and second thoracic limbs show no features of special interest.

Remaining thoracic limbs with propodite divided into $9-11$ (mostly 10)


Figs. 30-32. Acanthomysis lonsirnstris n. sp.
Fig. 30. Fourth pleopord of the male.
Fig. 31. Telson.
Fig. 32. Inner uropod. joints; meropodite longer than carpopodite.

The sixth abdominal somite $1^{1 / 3}$ times as long as the fifth. Fourth pleopod of the male reaching almost to the posterior end of the last somite of the abdomen; endopod of usual form: exopod 2 -jointed; the first joint very long and its inner distal corner armed with a long simple seta, about $1 / 4$ of the length of the joint; the second joint very short, only ${ }^{1}$ : of the length of the first joint and terminated by 2 long spinous setae about 8 times as long as the joint.

Telson long, triangular, $1^{1}$ times as long as the last alh. dominal somite, and almost twice as long as broad at the base. abruptly narrowing at a short distance from the base short distance from the base
and then almost straightly narrowing to a slender but truncate apex: lateral margins armed with about 23 small spines, 3 of them situated near the base and the others on the distal of the margins: the last pair of lateral spines abruptly increas. ing in length. almost as long as a pair of spines on the aper which are about $1 / 1$, of the

## length of the telson.

Inner uropod slightly longer than the telson, with 2-3 spines on the lower inner margin near statocyst; statocyst rather small.

Outer uropod about $1 / 3$ longer than the telson
Length. Adult males and females, 11 mm .
Remarks. The present species is very closely allied to A. hodgarti (Tattersall). But it differs from $A$. hodgarti in the following points:
(1) The rostral plate is much longer than that of $A$. hodgarti, the apex sharply pointed and reaches to the distal end of the second joint of the antennular peduncle.
(2) Propodite of the third to the eighth thoracic limbs subdivided into 9-11 joints in the present species and $5-6$ joints in $A$. hodgarti.
(3) Superficially, telson is very much similar to that of $A$. hodgarti, but the apex more narrowly truncated than in $A$. hodgarti, and slightly differs in the apical armature. In $A$. hodgarti the apex bears 4 equally long spines, while in the present species the apex bears only 2 long spines, yet it looks very much alike the same part of $A$. hodgarti, if it is seen together with the last pair of the lateral spines.
(4) In this species the exopod of the fourth pleopod of the male has very short second joint, about $/ 2 / 2$ of the length of the first joint and terminated by 2 long spinous setae: while in $A$. hodgarti the second joint $\%$ of the length of the first joint and terminated by a long simple seta.

Tattersall described the fourth pleopod of the male in A. hodgarti as follows: "Fourth pleopod reaching almost to the base of the telson, endopod with well developed side lobe, exopod composed of three joints, first joint very long, three and a half times as long as the second, latter bearing a very long straight simple seta three times as long as the joint. terminal joint very minute with a single short seta at the apex." However. I camot find out the tiny third joint in his small figure. If his description is correct, I think these structures of the fourth pleopod of the male do not conform to the generic character of the genus Acanthomysis.

The present species is also closely allied to A. Iongicornis (Edwards) and $A$. sagamiensis (Nakazawa), but easily distinguishable from both of them by several features e. i.. the rostral plate. the number of joints of the propodite of the thoracic limbs. the fourth pleopod of the male and the armature of the telson.

Long rostral plate and the form of the fourth pleopod of the male will serve to distinguish the present species from any hitherto known species in the genus.

Acanthomysis dimorpha 1. si).
Fisures 3:3-46.
Locadry. Off Crusan, Korea Straits.
Type specimen. 26 males, 22 female's.

Description. Front margin of the carapace produced into a short triangular rostral plate, apex obtusely pointed; antero-lateral corners of the carapace rounded.

Eyes large, slightly depressed in lateral view, in dorsal view the whole eye is about as long as broad and the cornea about half as long as the entire length of the eye.


Figs. $33-34$. Acanthomysis dimorpha n. sp.
Fig. :33. Dorsal view of adult female. Fig. 3.t. Lateral view of adult male
Antennular peduncle short and stout, in the male the third joint almost as long as the 2 proximal joints combined, male sexual appendage well developed and triangular in shape: in the female the third joint shorter than the 2 proximal joints combined.

Antennal scale slightly longer than the antennular peduncle, in the male
the scale extends to the distal end of the male sexual appendage, about 4 times as long as broad, apex rounded, 2 -jointed, the distal joint $1 / 11$ of the entire length of the scale; basal joint, from which the scale arises, with a prominent spine on the outer distal corner. Antennal peduncle slightly shorter than the antennular peduncle.

Mouth parts, first and second thoracic limbs show no very marked difference from those in other species of the genus.


Fig. 35. Anterior end of a male to show rostral plate, eye. anternule and antennal scale.
Fig. 36. Antennal scate and peduncle.
Fig.
Fig. 38.
3s.
First maxilla.
Fig. 39. Second maxilla.

$$
\begin{aligned}
& \text { Fig. 41. First thoracic limb, } \\
& \text { Fiy. 41. Second thoracic limb. }
\end{aligned}
$$

Third to the eighth thoracic limbs slender. propodite divided into 4-5 joints. Basal plate of the exopod of all thoracic limbs with 1-6 small spines on the outer distal corner

Sixth abdominal somite about $1 \%$ times as long as the fifth.
Fourth pleopod of the male extending backwards beyond the middle of
the last abdominal somite; endopod of usual form ; exopod 2-jointed, the first joint about $11 / 2$ times as long as the endopod and 6 times as long as the second joint, terminal setae about 4 times as long as the second joint.

Telson about $1 / 2$ times as long as the last abdominal somite and about twice as long as broad at the base. In the male telson is triangular, lateral


$$
\begin{array}{ll}
\text { Fig. 4. One of the posterior thoracic limbs. } & \text { Fig. } 45 . \\
\text { Fi. Telson of the female. } \\
\text { Fi. 4. Fourth pleopod of the male. } & \text { Fig. } 46 \text {. Inner uropod. }
\end{array}
$$

margins armed throughout their whole length with about 30 short spines, rather widely spaced proximally and more crowded distally ; apex narrowly truncate and armed with 2 pairs of spines, the outer pair stout and longer than the inner and lateral spines, the inner pair equal in size to the lateral spines. In the female telson is linguiform, apex broadly rounded, spines on the lateral margins absolutely identical with those of the male, but spines around the blunt apex are short, closely set and equal in size to the lateral spines, and there can be seen no stout long spines not as in the male.

Inner uropod $11 / \mathrm{s}$ times as long as the telson, the inner margin armed with a row of about 24 slender spines extending from the statocyst almost to the $\%$ point from the base, the spines are regularly set and gradually growing longer toward the apex.

Outer uropod $1^{1 / 4}$ times as long as the inner
Length. Adult males and females, 12 mm .
Remarks. The present species is unique among the genus Acanthomysis in the fact that the male differs from the female in the shape and armature of the telson, in addition to the usual secondary sexual characters.

The present species is distinguishable from all other species of the genus by the peculiar row of spines on the ventral inner margin of the inner uropod which somewhat recalls that of the genus Doromysis.

Acanthomysis dybouskii (Derzhavin)?

## Figures $47-5.5$.

Orientomysis dybowskii, Deřhavin 1913 Locality. Off Urusan, Korea Straits. 6 males 21 females.

The present specimens are in substantial agree ment with Derzhatin's description and his figures of Orientomysis dyboushii. However, I am not sure whether they lielong actually to the same species as that described by I erahavin or not, because his lescription and figures are too imperfect to allow a full comparison with my specimens.

There is nothing in his description that can not be applied to my specimens, yet beside the characters noted by him the present specimens have 2 points of importance which may be regarded as the additional specific characters. The first point is the presence of the spiniform process on the ere-stalk and the second is the presence of the peculiar setae on the carpopodite and the pro pordite of the third to the eighth thoracic limbs Judging from his obscure figure, there may be slight difference in the form and armature of the telson As to the fourth pleopod of the male he gives no description. but in his remarks he says "Von allen andern Arten dieser Gattung unterscheidet sich Orientomysis dybous:kiu durch inre langen Pleopoden und die breit-\%ungenformige Gestalt ihres Telsons. However, in my specimens, the fourth pleopod of the male is not specially long as compared with


Fig. 47. Acanthomysis dybowskii (Derzhavin)?
Lateral view of adult male
that in other species of the genus.
Here I describe and figure my specimens for the convenience of future
Hence. reference.

Description. Front margin of the carapace produced into a triangular rostral plate, angle of the apex acute but the tip bluntly pointed; anteroEyes, including the stalk acutely pointed.
Lyes, including the stalk, about as long as broad; cornea reniform and occupying about $2 / 3$ of the entire eye in dorsal view; the stalk with a blunt Antennular on dorsal side just as in N. spinosa Nakazawa.
male sexual appendage triangular in joint almost as long as the third joint, Antennal appendage triangular in dorsal view.
narrowly rounded, 2 -jointed, narrow, about 8 times as long as broad, apex the scale in the male slightly the distal joint about $1 / 2=$ of the scale in length


Figs. 48-5\%. Acanthomysis dylmusiiz Herzhavin)?
Fig. 48. Anterior end of a male to show rostral plate, cye, antemule and
antennal scale.
Fig. 49. Antennal scale and peduncle.
Fig. 50. Endopod of the first thoracic limh,
Fig. 51.
Fig. 51. Endopod of the second thoracic limb.
Fig. 52. Distal joints of
Fig. 52. Distal joints of one of the pesterior thoracic limbs.
but in the female slightly longer than twice of the same.
Mour limbs show no marked difference "those in other species of the genus.
Third to the seventh thoracic limbs with propodite divided into 5 joints, eighth limbs always with a larger number (7) of joints than the preceding limbs; carpopodite armed with about 6 series of long setae along its inner mories consisted of $3-10$ setae arranged sideways; inner distal corner of each joint of propodite also armed with a single podite also amilar setae Basal series of similar setae. Basal plate of the exopod of all thoracic limbs with 3 or 4 small spines on the outer distal corner.

Fourth pleopod of the male extending hackwards beyond the middle of the last abdominal somite : endopod of usual form: exopod 2 -jointed, the first joint twice as long as the endopod and about 6 times the endopor ase second joint, the as long as the second of the first
outer distal corner joint armed with a plumose seta which is slightly longer than the second joint. terminal setae about 3 times as long as the second joint.

Telson lons linguiform, $1^{1 / 5}$ times as long as the last ah. dominal somite, and $21 / 5$ times as long as broad at the base. lateral margins armed throughout their whole length by many slender spines, in the proximal 1. of the margins the spines rather widely spaced but in the distal $\Rightarrow$ grouped into about 9 sets. each set composed of a large spine followed by 2 (i) small spines, apex rounded and armed with 2 pairs of spines the inner pair shorter


Fis. 53-55. Acauthomusis "tytureskii Derzhavin)" Fig. 53. Fourth plenpod of the make Fig. 51. Telson Fig. 55 . Imer urupar. spines. the inner pair ahor as long as the shoter lateral spines

Inner uropod almost as long as the telson, with about 13 spines on the inner margin near statocyst

Outer uropod $1 \%$ times as long as the telson
Length. Adult males and females, 25 mm .
Remarks. The present species is distinguishable from all other species in the genus by the combination of characters afforded by the shape and armature of the telson and by the presence of the spiniform process on the eye stalks and of the peculiar setae on the carpopodite and propodite of the thoracic limbs.

Distribution. Awatschin Bay, Bay of Petropawlowsk, Lake Kultutschnoje (Derzhavin, 1913).


## Acanthomysis mit:uhiurii (Nakazawa)

## Figures 56-66.

Metamysis mitsukurii Nakazawa 1910
Locality. Aziro, Sizuoka Prefecture. Abundant males and females.

The present specimens agree absolutely with Nakazawa's description and figures of Metamysis, mitsukurii. In my specimens. however, I found 2 points which seem apparently to be overlooked by Nakazawa. The one point is the presence of a blunt spiniform process on the eye-stalk, and the other is the presence of a pair of spines on the other is the presence of a pair of spines on the
dorsal surface of the telson. Upon questioning on dorsal surface of the telson. Upon questioning on
these two points Mr. Naka\%awa very kindly anthese two points Mr. Nakayawa rery kindly an-
swered me that he had overlooked these points. There are also some respects inadequate in his description and figures as to the abdominal somites and the fourth pleopod of the male.

Hence, here again I describe and figure the present species by my own specimens to complete the description of A. mitsuturii.

Description. Front margin of the carapace produced into a short triangular rostral plate with a pointed apex : antero-lateral corners of the carapace rounded.

Last thoracic somite with 2 or 3 transverse ridges on dorsal side.

Each of the first to the fourth abdominal somites with a transverse fold in the middle and 2 transverse rows of short spines, one in front and the other behind of the fold: in the anterior abdominal
somites the rows of spines very obscure and appear as if they were faint folds. Each of the fifth and the sixth somites armed with many short but stout spines on the dorsal and lateral surface: the spines on the fifth somite


Figs. $57-$-if)
Fix. 57. Posterior half of a male, lateral view to show the ridges and the rows of spines on the abdominal somites.
58 . The same, dorsal view
Fig. 58 . The same, dorsal view
Fiy. 59 . Eye, lateral view to
Fig. fi0. Antennal scale and peduncle spiniform process on the stalk.
are arranged in 3 transverse rows, the spincs on the sixth somite rather scattered and are not in orderly arangement and there are about 7 spines along
its dorsal median line, as are shown in the figs. 57 and 58 .
Eyes, including the stalk, about $1 \%$ times as long as broad, cornea occupy ing slightly less than half of the entire eye in dorsal view; the stalk densely beset with spinules in the proximal half and provided with a blunt spiniform process on dorsal side just as in N. spinosa Nakazawa.

Antennular peduncle stouter in the male than in the female; the third joint stightly shorter than the 2 proximal joints combined; male sexual append-

Antennal scale slightly longer than the third joint.
Antennal scale slightly longer than the antennular peduncle, about 6 times as long as broad, apex rounded, 2-jointed, the distal joint about $1 / 1$ of the entire length of the scale. Basal joint, from which the scale arises, with


Fig. 61. Firet thoracic limb.
Fig. 6i2. Second thoracic limb.
Fig. 63. One of the postering theracic limbs.

Fig. 61. Fourth plempert of the male
Fig. Gi. Trison.
a spine on the outer distal corner.
Labrum provided with a long spiniform process, the tip reaches to the end of the middle joint of the mandibular palp.

Other members of the mouth parts, and first and second thoracic limbs show no marked difference from those of other species in the genus.

Third to the eighth thoracic limbs with propodite divided into 5 joints Basal plate of the exopod of all thoracic limbs armed with many small spines along the outer margin.

Fourth pleopod of the male long, reaching almost to the posterior end of the last abdominal somite; endopod of usual form; exopod 2 -jointed, the first joint about $2^{1 / 2}$ times as long as the endopod and about 4 times as long as the second joint, terminal setae about twice as long as the second joint.

Telson long triangular, $1^{\prime}$, times as long as the last abdominal somite and $2^{\prime}$ e times as long as broad at the base: lateral margins densely armed throughout their length with many stout spines, in the first ', part of the margins the spines short and rather widely spaced, in the remaining part of the margins the spines grouped into ahout 8 sets, each set composed of a large spine followed by 1-6 small spines; apex narrowly rounded and armed with about 7 subequally long spines which are about as long as the larger spines on the lateral margins: the telson, heside the usual amature provided with a pair of spines on dorsal surface near the base.

Inner uropod almost as long as the teson. with 3 spines on the inner margin near statocyst.

Outer uropod about $1^{\prime}$, times as long as the telan.
Lensth. Adult males and females, 8 mm .
Renamks. The present peries is easily distinguishable from all other Brecies in the genus by the fact that the abdominal somites are spinulated. The blunt spiniform process on the eye-stalk and the pair of spines on the dorsal surface of the telson may be regarded as additional specific characters, eperially the latter.

Superfcially, the present species is very chosely alliad to N. spinosa Nakazawa, but it is easily distinguishable from the latter by the shape of the antennal scale.

Distribetion. Off Oarai, Ibaraki Prefecture: Off Maiaka, Sizuoka Prefecture (Nakazana. 1910).

## (ionus Proneomysis Tatersall. 19:3:3 sensu ampl.

The genus Proncomysis was originally established by Tattersall for a single species. $P$. wailesi, obtained in the waters of Western Cimada

In my collection I have found 4 species which are all new to science and closely allied to $I$. wailesi. These species. however, differ in one important point from Tattersall's definition of the genus Pronemaysis. In his Proneomysis the fifth pleopod of the male is not similar to that of the female, but well
developed and modified, consisting of a long protopod terminating in a very long seta, while in all my present species the fifth pleopod of the male is absolutely similar to that of the female as in other genera of the tribe Mysini.

Tattersall in his diagnosis of Proneomysis attaches great importance to the structure of the fifth pleopod observed in the male of $P$. wailesi and is of the opinion that the character is sufficient to separate Proneomysis from other genera of the tribe Mysini. As Tattersall pointed out, if the structure of the fifth pleopod of the male is a character of generic importance, the present 4 species cannot be referred to Proncomysis.

In other respects, however, these present species agree absolutely with the characters of Tattersall's Proneomysis, especially in the form and character of the fourth pleopod of the male.

In view of this fundamental agreement among this group of species, I naturally raise the question as to the value of the structure of the fifth pleopod of the male in P. wailesi for the character of generic importance.

Hence, as Tattersall's Proneomysis comprises only a single species, I think that in the present extent of our knowledge it is better to include other species in the genus Proneomysis, modifying Tattersall's diagnovis of the genus and defining Proneomysis as a genus characterized by the constant character of the fourth pleopod of the male, not taking the peculiar character of the fifth pleopod of the male into account of generic importance.

New Defintion of the Gents Proneomysis. First, second and third pleopods of the male rudimentary, unjointed and of the same form as in the female.

Fourth pleopod of the male biramus: inner ramus unjointed: outer ramus lons and 3 -jointed, the last joint terminated into ? strong spinous setae.

Fifth plenpod of the male either similar or not to that of the female; when not similar. well developed and modified, consisting of a lons protopod terminating in a very long seta.

Antemal scale narrowiy lanceolate in shape. 2 -jointed and setose all round ; apex rounded.

Female with 2 pairs of onstegites
Telson entire, without cleft on the distal end.
Type: P. utailesi Tattersall.
Remaks. The present genus is most closely allied to Acanthomysis, which, as already described, I have separated from the genus Ncomysis. and the only real difference between the present genus and Acanthomysis lies in the character of the fourth pleopod in the male. The 3 -jointed fourth pleopod of the male, with ? long terminal setae, will serve to distinguish the present genus from other genera in the tribe Mysini.

> Key to species of the qenus Proncomysis
I. Fifth pleopod of the male not similar to that of the female. well developed and modified. consisting of a long protopod terminating in a very long seta.
P. mailesi Tattersall
II. Fifth pleopod of the male similar to that of the female.
A. Abdominal somite with transverse fold on dorsal side.
P. misakiensis n. sp.
B. Abdominal somite smooth.
a. Propodite of the third to the eighth thoracic limbs armed with many peculiar setae in comb-like arrangement along the inner margin.
$P$. eriopedes $\mathrm{n} . \mathrm{sp}$.
b. Propodite normal and without peculiar setae.
i. Rostrum long, triangular with a sharply pointed apex, extending beyond the middle of the first joint of the antennular peduncle.
P. fusca n. sp.
ii. Rostrum short triangular with an obtusely pointed apex.
$P$. perminuta n. sp .

## Proneomysis fusca n. sp.

Figures 67-79.
Locality. Misaki, Kanagawa Prefecture.
Type specimen. Abundant. males and females.
Quite common in the vicinity of the Misaki Marine Biological Station. Most abundant in the giowth of Sargassum.

Descriptos. In the female body is stout and coloured dark yellowishbrown except outer flagellum of antennule, Hagellum of antenna, mouth parts, appendages on thorax and abdomen, and distal part of uropods. The body colour well matches that of Sargassum. But in the male, body is rather slender and transparent for the most part. and the dark yellowish-brown pigments develop only along the ventral median line of the hody.

Front margin of the carapace is produced into a long triangular rostral plate with a sharply pointed apex. the apex in the male reaching to the middle of the first joint of the antennular peduncle and in the female to the posterior end of the same j sint : antero-lateral corners of the carapace rounded.

Eyes short and stout with the stalks slightly longer than the cornea.
Antennular peduncle stout in both sexes, the first joint in the male slight Iy shorter as compared with that in the female: male sexual appendage about $\because$ of the length of the third joint.

Antennal scale in the male 6 times as long as broad. only slightly longer than the antennular peduncle and extends heyond the antennal peduncle for about '; of its own length: distal joint about ' of the entire length of the scale. In the female the antennal salo much larger than in the male, $5 \%$ times as long as broad, extending beyond the antennular peduncle for about $\%$ and the antennal peduncle for about $\%$ of its own length; distal joint about $1 / 1 ;$ of the entire length of the scale. Basal joint. from which the scale arises, with a prominent spine on the outer distal corner.

Antennal peduncle reaches to the middle of the third joint of the anten-
nular peduncle; the third joint $\%$, of the length of the second joint.
Labrum provided with a forwardly directed spiniform process.
Mouth parts, first and second thoracic limbs not showing any striking difference from those in Neomysis and Acanthomysis


Fig. 67. Dorsal wiew of adult femal. Fig. 68. Lateral vicw of adult male.
Third to the eighth thoracic limbs rather slender: propodite divided into 3 joints.

Fourth pleopod of the male reaching to the middle, of the last abdominal somite; exopod 3-jointed, the first joint about twice as long as the endopod the second and the third joints almost equal in size and about $1 / 6$ of the length of the first, the third joint terminated by 2 strong spinous setae, about $2^{1 / 2}$


Figs. 69-i.). Proneomysis /usia v. -
Fis. 69. Anterior end of a male to show rustral phate. ..ve. antennule and antennal scale.
Fig. 70 . And antennal scale.
Fig. 71. Mandible and palp.
Fig. 72. First maxilla.
Fig. 73. Endopod of the first thoracic limh
Fig. 74. Second thoracic limb.
Fig. 75. One of the posterior theracic limhs.
times as long as the joint
Telson triangular in shape, narrowing to a truncate apex which is about $1 / \mathrm{s}$ the width of the base; in the male the telson is about $1 \%$ times as long as the last abdominal somite, and about $1^{3} /$, times as long as broad at the base ; but in the female the telson is slightly longer than in the male, about $1 /$ e
times as long as the last abdominal somite and twice as long as broad at the times as long as the last abdominal somite and argith about 8 short spines, hase; proximal half of the lateral margins armed with about 8 short spines, 3 or 4 spines near the base rather long; distal half of the margins armed


76


77


78

$$
\mathrm{Fig}_{\mathrm{ig}} \text { 76-79. Prunermysis. fusca n. } \mathrm{sp} \text {. }
$$

$$
\begin{aligned}
& \text { Fig. 76. Fourth pleopod of the male. } \\
& \text { Fig. 77. Fifth pleopod of the male. }
\end{aligned}
$$

Fig. ix. Telson.
Fiz. 79 . Inner urnpad
with $\overline{5}-6$ sets of spines, each set composed of a large spine followed by 2-6 small ones, the larger spines growing larger posteriorly, the last pair of large mes arm 2 pairs of spines about $1 / 6$ of the total length of the telson; apex armed spines, the larger outer pair about of the total length of the tateral margins. smaller inner pair equal in size to the smaller spines on the lateral mange Inner uropod slightly longer than the telson. with $8-9$ strong spine
the rentral inner margin near the statocyst; the statocys in the female than the Outer uropod is longer in $9-10 \mathrm{~mm}$
elsun.
Length. Adult males and femats very closely allied to $P$. eriopedes, bu Remarks. The present species is rery closely allicd easily distinguishable from the propodite. The long rostral plat species of the genus.

## Locality. Misaki, Kanagawa Prefecture.

Type specimen. Abundant, males and females.
Common in the growth of sea-weeds in the vicinity of the Misaki Marine


80
81
Figs. sil-st. Proncomyssis "rinpedes n. sp.
Fis. si. Lateral view of adult male.
Description. Front margin of the carapace produced into a short triangular rositral plate with an ohtuse apex. just under the apex there is a tiny chitinous
projection, which is spiniform in dorsal view: antero-lateral corners of the carapace rounded

Eyes stout with the stalks slightly longer than the cornea
Antennular peduncle stout; male sexual appendage well developed and about $\overline{5} / 6$ of the length of the third joint of the antennular peduncle. In the female the antennular peduncle somewhat more slender than in the male.

Antennal scale slightly longer than the antennular peduncle and about $4-4^{1} /$ times as long as broad ; distal joint marked off by a very obscure suture and $1 / 11^{-1 / 14}$ of the entire length of the scale. Basal joint, from which the scale arises, with a prominent spine on the outer distal corner.


Fix. sid. Ante
Fis. 83.3 . Intemnal swale and pedurle.
Fig. 81. First thoraci: limb.
Fig. 85. Distal joints of the endopend of the lirat ti...tacic limath.
Fis. 88. Second thoracie limb.
Fiy 87. Distal jointe of the condopod of the seend themacic limat.

Antennal peduncle in the male slightly longer than \% of the length of the scale, but in the female about half as long as the scale.

Mouth parts exhibit no feature of special interest.
First thoracic limbs with dactylopodite armed around its distal margin with about 12 stout peculiar plumose setae; hairs on the plumose seta very fine and closely set in the distal part of the seta, but rather stout and widely spaced in the proximal part. between these two parts the seta armed with tin dentiform spines on each side.

Second thoracic limbs with well developed triangular dactylopodite, which is about twice as long as broad and whose inner margin also armed with about setae identical with those on the dactylopodite of the first thoracic limbs.
Third to the eighth thoracic limbs rather slender: propodite divided int 3 joints; the first joint almost as long as the 2 distal joints combined, its inner margin armed with many setae throughout its whole length, the setae grouped into about 9 series, each series consisted of $3-5$ setae arranged side ways: anterior 1 or 2 limbs always with a less number of such series of setat than the other limbs: the second joint of prododite armed with a single serie of similar setae on the inner distal corner

Fourth pleopod of the male reaching to the middle of the last abdomina somite : exopod 3 -jointed, the first juint about 1 , times as long as the endopod.


Fis. $x$ se. One of the penterior theracic: limin
Fig. s9. Distil joint of the endopol of one of the ponterion theramio limbs
Fig. so. Fourth plawed of the noll.
Fis. 96. Fourth plewed of the malt.
Fis. 92. Innar urow
the second and the third joints almost equal in size and about $1 /$ : of the first the third joint terminated by 2 strong spinous setae, about 3 times as long as the joint.

Telson slightly shorter than the last abdominal somite, linguiform, somewhat abruptly narrowing in the first $1 / 3$ part, then gradually narrowing to a broadly rounded apex; proximal half of the lateral nargins armed with about 10 short spines, $3-4$ spines near the base rather stout and long; distal half of the margins armed with $4-5$ sets of spines, each set composed of a large spine followed by $1-5$ small spines; the larger spines rapidly grow larger posteriorly, the ultimate and the penultimate pairs of them especially long and about $1 / 4$ of the length of the telson, the shorter spines increase in number about 1 of the length of the telson, the shorter spines increase in number
posteriorly; on the middle of the apex there are 2 short spines between the ultimate pair of the longer spines.

Inner uropod $1 \%$ times as long as the telson, with about 13 spines on the ventral inner margin near the statocyst.

Outer uropod $1 \%$ times as long as the telson.
Length. Adult males and females, $9-10 \mathrm{~mm}$.
Remarks. The present species is very closely allied to $P$. fusca but differs from it in having peculiar setae on the thoracic limbs and in the shape of the rostrum and the telson.

It is distinguishable from all other species of the genus by the presence of the peculiar setae on the thoracic limbs.

Proncomysis misakiensis n. sp.
Figure: 93-105.
Locality. - Mouth of Aburatubo Inlet, Kanagawa Prefecture.
Type specimen. Abundant, adult males and females.
Common in the growth of sea-weeds in the vicinity of the Misaki Marine Biological Station.

Description. Front margin of the carapace proluced into a triangular rostral plate, the apex extending as far forward as the base of the antennular rostral plate, the apex extending as far forward as the base of the antennular
peduncle, angle of the apex acute. but the tip bluntly rounded: antero-lateral corners of the carapace rounded.

The last thoracic somite with 2 or 3 transverse grooves on dorsal side.
Each of the five anterior abdominal somites with a transverse fold on dorsal side. The fifth abdominal somite always with brown pigments developing along the fold and the distal end of the joint.

Eyes stout and about as long as broad; cornea large and reniform in dorsal view; eyestalk slightly shorter than the cornea and minutely hispid in the proximal half.

Antennular peduncle rather stout; the third joint almost as long as the 2 proximal joints combined: male sexual appendage about half as long as the third joint.

Antennal scale about 5 times as long as broad; distal joint marded off by an obscure suture and about ' $n$. of the scale in length. In the male the anten-
nal scale extending as far forward as to the distal end of the male sexual appendage and beyond the antennal peduncle for about $\%$ of its own length. In the female the scale slightly larger than in the male, about $1 \frac{1}{2}$ times as

long as the antennular peduncle and about twice as long as the antennal peduncle. Basal joint, from which the scale arises. with a prominent spine on the outer distal corner.

First maxillae with ridge on the outer margin of the outer plate armed with about 5 spinules.

Third to the eighth thoracic limbs with propodite divided into 3 joints.

Basal plate of the exopod of the thoracic limbs with a small spine on the outer distal corner.

Fourth pleopod of the male reaching to the posterior end of the last abdominal somite; exopod 3-jointed, the first joint about 3 times as long as


> Fiys. 95-99. Proncomysis misakiensis n. sp.

Fis. An. Anterior end of a male to show rostral plate, eye, antennule and anten nal scale.
Fig. 96. Antennal scale and peduncle. Fig. 98. First maxilla.
Fig. 97. Mandible and paly. peduncle
Fig. 99. Second maxilla
the endopod, the second and the third joints almost equal in size and ${ }^{1 / 6}-1 / \%$ of the first joint, the third joint teminated by 2 strong spinous setae, about $1^{\prime \prime}$ : times as long as the joint.

Telson long triangular, slightly shorter than the twice of the length of the last andominal somite and $2^{\prime}$ times as long as broad at the base; lateral margins concave in the first $1 /$ part. convex in the second $\%$ part and then
gradually narrowing to a narrowly rounded apex; the lateral margins densely armed throughout their length with many spines, the proximal $1 / 3$ of the margins with about 10 short stout spines rather widely spaced, the remaining


## Fig. 100. First thoracie limb. <br> Fig. 111. Second thoracic iiml)

Fig. 102. One of the posterior thoracia limbs. Fig. 10.5. Inner uropod.
part of the margins with the spines grouped into $12-15$ sets, each set composed of a large spine followed by $1-5$ small ones: the apex armed with 2 pairs of spines, the longer outer pair about ', of the length of the telson and the foner pair equal in size to the shorter spimes on the lateral margins

Imer uropod about as lonss as the telson, with 30-35 spines on the ventral mer margin near the statocyst

Outer uropod $/ 1$ longer than the telson.

Length. Adult males and females, $9-10 \mathrm{~mm}$.
Remarks. The present species is closely allied to both $P$. fusca and $P$ eriopedes but the fold on the abdominal $P$ will serve to distinguish it from both of them Superficially this species is bery of them.
(Nakazawa), but is distinguishable from it allied to Acanthomysis mitsukuri fourth pleopod of the male and by the absence the number of joints on the somites.

Proneomysis perminuta n. sp.


In. 106: Dors
Fig. 107. Lateral view of adult male.

Locality. Aziro, Sizuoka Prefecture.
Type specimen. Abundant, adult males and females.
Description. Front margin of the carapace produced into a short triangular rostral plate with an obtusely pointed apex; antero-lateral corners of the carapace rounded.

Eyes slightly depressed in lateral view, in dorsal view the whole eye is about as long as broad and cornea is about half as long as the entire length of the eye.

Antennular peduncle short and stout, the third joint about as long as the 2 proximal joints combined, male sexual appendage short and triangular.

Antennal scale slightly longer than the antennular peduncle, in the male extending as far forward as the tip of the male sexual appendage, about 4 times as long as broad, apex rounded, 2 -jointed, the distal joint about $1 / 1$, of the entire length of the scale. Basal joint, from which the scale arises, with a prominent spine on the outer distal corner.


> Figs. 10s-110. Proneomysis perminuto n. sp.

Fig. 108. Anterior end of a make to show rostral plat: . $\times$ an ant mule and antennal scale.
Fig. 109. Antemal scale and peduncle.
Fig. 110. First maxilla.
Antennal peduncle stout and slightly shorter than the antennular peduncle. Mouth parts, first and second thoracic limbs showing no very marked difference from those in other species of the genus except for the outer margin of the outer plate of the first maxillae provided with several small spines.

Third to the eighth thoracic limbs with propodite divided into 3 joints. Basal plate of the exopod of all thoracic limbs provided with a spine on the outer distal corner.

Last thoracic somite with one or two faint transverse grooves on the dorsal side.

Fourth pleopod of the male very long, reaching to the posterior end of the statocyst; endopod small ; exopod 3 -jointed, the first joint very long, the second and the third joints equal in size and about $1 /$ of the first joint, terminal setae slightly longer than the third joint.

$-2$.
Fiss. 111-l1ti. Pramocmysis porminuta n. v.

$$
\begin{aligned}
& \text { His. } 112 \text { Second thoracic limbl. } \\
& \begin{array}{l}
\text { Fig. } \\
\text { Fig. } \\
\text { 115. } \\
\text { R }
\end{array}
\end{aligned}
$$

Telson triangular. $1 /$ ames as long as the last abdominal somite and about twice as long as broad at the base: lateral margins tapering to a narrow hut
distinctly truncate apex which is about '; the width of the base; the lateral margins armed throughout their entire length with about 11 strong spines which increase in length toward the apes, on the distal half of the margins the spaces between the strong spines are occupied by 1-t small spines; the aper with four spines, the outer spines about as long as the larger apen and about thrice as long as the inner
spines on the lateral margins and about thrice as long as the inner.
Inner uropod slightly longer than the telson, with a row of 16-20 strong spines on the ventral inner margin near the statocyst.

Outer uropod about $1^{1}$, times as long as the telson
Length. Adult males and females, .5 mm .
Remarks. The present species is very closely allied to $P$. fusca but differs from it in the body length and in the shape of the rostrum and the telson. This species also shows many points of resemblance to $P$. misakiensis, but is distinguishable by the body length and ley the alsence of the fold on the abdominal somites.

Litemetire:
 13, Mr. 5 pe 197~20t.
 Zeitseh., Bd 2, pr. 1*0-191.
 Wh. Marine Laborat. R. Dublin Soc. Ser. I. Part I. Dublin.


 1. pr. 1-s.

 261
 from Hlaska. Proc. U. S. Nat. Mus., Vol. :3. pp. 10.
Gattrsall, W: M. 1921. Zoolosical Results of a Terur in the Far Eat. Part VII. Mysidacea


of the Musidmea of California. I. On a (onlortion of Mysidar from lat Jolla. Californat. II. The Musidarea Collected during the

Tattreall, W. M. 1983. Euphausiacea and Mrsdarea from Wentem Canada. Contributions to

 Waters, with an Arount of the 1



 Smmer. C. 1915. Die Systematih der Tribuc Mysini H. J. Hansen. Zowl. An_.. Bd. 16, pp. 202216.

