Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [212875]
Observation of microbial carbonate build-ups growing at methane seeps near the upper boundary of the gas-hydrate stability zone in the Black Sea
Gulin, S. B.; Greinert, J.; Egorov, V.N.; De Batist, M.; Artemov, Yu. G. (2005). Observation of microbial carbonate build-ups growing at methane seeps near the upper boundary of the gas-hydrate stability zone in the Black Sea. Mar. Ecol. J. 4(3): 5-14
In: Marine Ecological Journal = Mors'kyj ehkologichnyj zhurnal. National Academy of Sciences of Ukraine: Sevastopol'. ISSN 1684-1557
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Black Sea; methane seepage; gas hydrates

Authors  Top 
  • Gulin, S. B.
  • Greinert, J.
  • Egorov, V.N.
  • De Batist, M.
  • Artemov, Yu. G.

Abstract
    Extensive dredge sampling carried out in May-June 2004 in the deeper part of the Dnepr paleo-delta area (NW Black Sea) yielded for the first time chimney-shaped carbonate microbial build-ups, which occur at methane seeps close to upper boundary of the gas-hydrate stability zone (~ 700 m). Carbonate samples taken with a benthic trawl represent fragments of the uppermost, middle and lowest parts of the build-up; they are similar morphologically to those found previously at the shallower and deeper methane seeps in the Black Sea. At the same time, the perforated, plate-like carbonates in the lowest parts of the build-up provide first indications that gas channels are formed during the earliest growth phase of these microbial structures. Stable carbon isotope analyses of the carbonates from the uppermost fragments gave the 5I3C values ranging from -33.7 to -36.6 %o, while the 813C values of the lowest fragments are significantly lighter, varying between -42.0 and -44.6 %o. Oxygen isotopic values also show differences between the samples from the uppermost part of the build-ups, which are composed of a mixture of aragonite and Mg-calcite (5180 = 0.7 to 0.94 %o), and the only Mg-calcite cemented thin slabs of lowest carbonates (5180 = 1.35 to 1.57 96o). The isotope data for carbon and oxygen suggests that carbonates formed as a result of anaerobic microbiological oxi¬dation of methane supplied as a shallower-sourced fluid component from below. The difference in 513C and 5I80 values found in the upper and lowest parts of the build-ups may indicate that more carbon derived from seawater and less hydrate water are involved to the chimney formation during its growth, but this may be also a record of the long-term changes in the near-bottom environments related to evolution of salinity, temperature and anoxic conditions in the Black Sea.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org