Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [247114]
PCR survey of 50 introns in animals: cross-amplification of homologous EPIC loci in eight non-bilaterian, protostome and deuterostome phyla
Gerard, K; Guilloton, E; Arnaud-Haond, S; Aurelle, D; Bastrop, R; Chevaldonne, P; Derycke, S.; Hanel, R; Lapegue, S; Lejeusne, C; Mousset, S; Ramsak, A; Remerie, T.; Viard, F; Feral, P; Chenuil, A (2013). PCR survey of 50 introns in animals: cross-amplification of homologous EPIC loci in eight non-bilaterian, protostome and deuterostome phyla. Marine Genomics 12: 1-8. dx.doi.org/10.1016/j.margen.2013.10.001
In: Marine Genomics. Elsevier: Amsterdam. ISSN 1874-7787; e-ISSN 1876-7478
Peer reviewed article  

Available in  Authors 

Keywords
    Acanthaster Gervais, 1841 [WoRMS]; Alvinocaris Williams & Chace, 1982 [WoRMS]; Annelida [WoRMS]; Aplysina Nardo, 1834 [WoRMS]; Arthropoda [WoRMS]; Aurelia Lamarck, 1816 [WoRMS]; Cnidaria [WoRMS]; Crepidula fornicata (Linnaeus, 1758) [WoRMS]; Echinodermata [WoRMS]; Eunicella Verrill, 1869 [WoRMS]; Eunicidae Berthold, 1827 [WoRMS]; Hediste Malmgren, 1867 [WoRMS]; Hemimysis G.O. Sars, 1869 [WoRMS]; Litoditis Sudhaus, 2011 [WoRMS]; Lophelia Milne Edwards & Haime, 1849 [WoRMS]; Mesopodopsis Czerniavsky, 1882 [WoRMS]; Mollusca [WoRMS]; Mya Linnaeus, 1758 [WoRMS]; Nematoda [WoRMS]; Ophiocten Lütken, 1855 [WoRMS]; Ophioderma Müller & Troschel, 1840 [WoRMS]; Pelagia Péron & Lesueur, 1810 [WoRMS]; Platynereis Kinberg, 1865 [WoRMS]; Porifera [WoRMS]; Rhizostoma Cuvier, 1800 [WoRMS]; Rimicaris Williams & Rona, 1986 [WoRMS]; Tunicata [WoRMS]
    Marine/Coastal
Author keywords
    Universal primers; Alternative barcoding; Non-model species; Geneticmarker; Intron

Authors  Top 
  • Gerard, K
  • Guilloton, E
  • Arnaud-Haond, S
  • Aurelle, D
  • Bastrop, R
  • Chevaldonne, P
  • Derycke, S., more
  • Hanel, R
  • Lapegue, S
  • Lejeusne, C
  • Mousset, S
  • Ramsak, A
  • Remerie, T., more
  • Viard, F
  • Feral, P
  • Chenuil, A

Abstract
    Exon Primed Intron Crossing (EPIC) markers provide molecular tools that are susceptible to be variable within species while remaining amplifiable by PCR using potentially universal primers. In this study we tested the possibility of obtaining PCR products from 50 EPIC markers on 23 species belonging to seven different phyla (Porifera, Cnidaria, Arthropoda, Nematoda, Mollusca, Annelida, Echinodermata) using 70 new primer pairs. A previous study had identified and tested those loci in a dozen species, including another phylum, Urochordata (Chenuil et al., 2010). Results were contrasted among species. The best results were achieved with the oyster (Mollusca) where 28 loci provided amplicons susceptible to contain an intron according to their size. This was however not the case with the other mollusk Crepidula fornicata, which seems to have undergone a reduction in intron number or intron size. In the Porifera, 13 loci appeared susceptible to contain an intron, a surprisingly high number for this phylum considering its phylogenetic distance with genomic data used to design the primers. For two cnidarian species, numerous loci (24) were obtained. Ecdysozoan phyla (arthropods and nematodes) proved less successful than others as expected considering reports of their rapid rate of genome evolution and the worst results were obtained for several arthropods. Some general patterns among phyla arose, and we discuss how the results of this EPIC survey may give new insights into genome evolution of the study species. This work confirms that this set of EPIC loci provides an easy-to-use toolbox to identify genetic markers potentially useful for population genetics, phylogeography or phylogenetic studies for a large panel of metazoan species. We then argue that obtaining diploid sequence genotypes for these loci became simple and affordable owing to Next-Generation Sequencing development. Species surveyed in this study belong to several genera (Acanthaster, Alvinocaris, Aplysina, Aurelia, Crepidula, Eunicella, Hediste, Hemimysis, Litoditis, Lophelia, Mesopodopsis, Mya, Ophiocten, Ophioderma, Ostrea, Pelagia, Platynereis, Rhizostoma, Rimicaris), two of them, belonging to the family Vesicomydae and Eunicidae, could not be determined at the genus level.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org