Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [249939]
A review of oceanographic and meteorological controls on the North Sea circulation and hydrodynamics with a view to the fate of North Sea methane from well site 22/4b and other seabed sources
Nauw, J.; de Haas, H.; Rehder, G. (2015). A review of oceanographic and meteorological controls on the North Sea circulation and hydrodynamics with a view to the fate of North Sea methane from well site 22/4b and other seabed sources. Mar. Pet. Geol. 68(Part B): 861-882. dx.doi.org/10.1016/j.marpetgeo.2015.08.007
In: Marine and Petroleum Geology. Elsevier: Guildford. ISSN 0264-8172; e-ISSN 1873-4073
Peer reviewed article  

Available in  Authors 

Author keywords
    North Sea circulation; Seasonal stratification; Methane dispersion; Hydrodynamic and methane oxidation time scale

Authors  Top 
  • Nauw, J.
  • de Haas, H.
  • Rehder, G.

Abstract
    The North Sea hydrodynamics are key to the redistribution of methane released at the 22/4b Site, locatedat (57?550N, 1?380E) in the UK Central North Sea, 200 km east of the Scottish mainland. This reviewsummarizes the current state of knowledge on the North Sea circulation, stratification, and variabilitytherein and briefly discusses the potential consequences for the distribution and fate of methanereleased from site 22/4b or other seabed sources.Astronomical tidal waves follow a counter-clockwise path and tide-topography interaction generates aresidual circulation in the same direction. Wind-stress forcing can enhance, reduce, or even reverse thiscirculation. Variations in the strength of the Fair Isle Current (FIC) are important. The FIC enters the NorthSea between The Orkneys and Shetland, follows approximately the 100-m isobath, passes along site 22/4b, and ends up in the Norwegian Trench. The North Atlantic Oscillation (NAO) also causes variability. Apositive (negative) NAO index is associated with stronger (weaker) than normal westerly winds.NAO þ situations strengthen the circulation in the North Sea, whereas it weakens during NAO- conditionsand is directed northeastward. High positive correlations exist between the SST at site 22/4b andthe NAO index. Climate change can have a long-term effect on the hydrodynamics of the North Sea.Seasonal stratification has potentially the most important imprint on methane derived from the well22/4b Site. Summertime heating stratifies the northern part of the North Sea. In autumn, loss of heat tothe atmosphere causes the stratification to breakdown until tides and storms mix the entire watercolumn. During the period of stratification, the bulk of (dissolved) methane released from site 22/4b getstrapped below the thermocline. The loss of methane to the atmosphere thus becomes a function of therelative time scales of transport and horizontal and vertical mixing processes versus the time scale ofmicrobial degradation (oxidation) in the water column.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org