Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [66658]
A tale of two clams: differing chemosynthetic life styles among vesicomyds in Monterey Bay cold seeps
Barry, J.P.; Kochevar, R.E. (1998). A tale of two clams: differing chemosynthetic life styles among vesicomyds in Monterey Bay cold seeps. Cah. Biol. Mar. 39(3-4): 329-331. https://dx.doi.org/10.21411/CBM.A.247A877E
In: Cahiers de Biologie Marine. Station Biologique de Roscoff: Paris. ISSN 0007-9723; e-ISSN 2262-3094
Also appears in:
(1998). Proceedings of the First International Symposium on Deep-Sea Hydrothermal Vent Biology: Funchal, Madeira, Portugal 20-24 October 1997. Cahiers de Biologie Marine, 39(3-4). Station Biologique de Roscoff: Roscoff. 219-392 pp., more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Barry, J.P.
  • Kochevar, R.E.

Abstract
    Vesicomyid clams are a dominant or common component of the megafauna inhabiting most cold seep and hydrothermal vent communities. The species composition of vesicomyids can vary considerably both between and within seep sites. As many as five vesicomyid species inhabit individual fluid seeps in Monterey Bay, but their relative abundance varies greatly between seep locations (Barry et al., 1995, 1997). Species dominance among seep locations is related to the average sulphide concentration of interstitial fluids among sites. The distribution of vesicomyids within individual seeps is stratified along a sulphide gradient from the centre to the margins of seeps. Species that are apparently sulphide tolerant such as Calyptogena kilmeri dominate sites with high sulphide levels and are present in central portions of low sulphide seeps. In contrast, Calyptogena pacifica is the principal species inhabiting low sulphide seeps and the margins of high sulphide seeps. In this paper, we investigate aspects of the physiology of Calyptogena pacifica and C. kilmeri that influence their habitat distribution, including results of growth rate studies that suggest potential metabolic constraints imposed by differences in sulphide physiology.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org