Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [66693]
Gene flow and dipersal in deep-sea hydrothermal vent animals
Vrijenhoek, R.C.; Shank, T.; Lutz, R.A. (1998). Gene flow and dipersal in deep-sea hydrothermal vent animals. Cah. Biol. Mar. 39(3-4): 363-366. https://dx.doi.org/10.21411/CBM.A.7C6C05BF
In: Cahiers de Biologie Marine. Station Biologique de Roscoff: Paris. ISSN 0007-9723; e-ISSN 2262-3094
Also appears in:
(1998). Proceedings of the First International Symposium on Deep-Sea Hydrothermal Vent Biology: Funchal, Madeira, Portugal 20-24 October 1997. Cahiers de Biologie Marine, 39(3-4). Station Biologique de Roscoff: Roscoff. 219-392 pp., more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Vrijenhoek, R.C.
  • Shank, T.
  • Lutz, R.A.

Abstract
    The fragmented and ephemeral nature of hydrothermal vents in the eastern Pacific suggests that endemic organisms should possess well-developed dispersal capabilities. Early attempts to infer dispersal rates of vent species focused on mollusks, because egg sizes and larval shell-remnants reflect larval life-span and feeding mode (Lutz et al., 1986). Reservations exist, however, about such indirect methods to infer dispersal "potential"; consequently, a number of investigators have begun to examine larval development, growth, and longevity more directly, with the goal of determining the limits to dispersal potential (Young, 1994). Recently researchers have applied genetic approaches to infer dispersal modes and estimate rates of gene flow among populations of hydrothermal vent organisms (reviewed by Vrijenhoek, 1997). Herein, we relate these genetic studies to a parallel study of colonization of a nascent vent habitat (9i50'N latitude on the East Pacific Rise; Shank et al., 1998). We used the FST method to estimate migration rates (i.e., Nm values) from gene frequency data (see Vrijenhoek, 1997, for a discussion of methods and the "island" and "stepping-stone" models of population structure). Nm is the virtual number of migrants per generation required to explain the observed degree of diversification (FST values) among colonies.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org