Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus
Lorrain, A.; Gillikin, D.P.; Paulet, Y.-M.; Chauvaud, L.; Le Mercier, A.; Navez, J.; André, L. (2005). Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology (Boulder Colo.) 33(12): 965-968. http://dx.doi.org/10.1130/G22048.1
In: Geology. Geological Society of America: Boulder. ISSN 0091-7613; e-ISSN 1943-2682
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    mollusc; calcite; strontium; magnesium; daily growth; temperature proxy

Project Top | Authors 
  • Validation of alternative marine calcareous skeletons as recorders of global climate change, more

Authors  Top 
  • Lorrain, A.
  • Gillikin, D.P.
  • Paulet, Y.-M.
  • Chauvaud, L.
  • Le Mercier, A.
  • Navez, J.
  • André, L.

Abstract
    Although Sr/Ca ratios in abiogenic calcite are strongly controlled by precipitation rates, such a kinetic effect has never been demonstrated in calcitic bivalve shells. Therefore, we report Sr/Ca ratios together with daily growth rates in the calcitic shells of four individuals of the bivalve Pecten maximus (age class I). Ratios of Sr/Ca were found to be variable among individuals that grew at the same location, illustrating that vital effects dominate over environmental controls. Although daily growth rate was correlated with shell Sr/Ca ratios, it explained only half of the Sr/Ca variations. However, daily shell surface area increment, an estimation of the total quantity of carbonate precipitated for a given time, explained 74% of the Sr/Ca variability in the shells of P. maximus. This proves, for the first time in a calcitic bivalve, that shell Sr/Ca partitioning is mainly controlled by kinetic effects. The Sr/Ca ratio should therefore be tested as a potential proxy of calcification rate in modern or fossil calcitic biocarbonates.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org