Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes
Höckelmann, C.; Moens, T.; Jüttner, F. (2004). Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes. Limnol. Oceanogr. 49(5): 1809-1819. dx.doi.org/10.4319/lo.2004.49.5.1809
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590
Peer reviewed article  

Available in  Authors 

Keywords
    Biofilms
    Properties > Organoleptic properties > Odour
    Nematoda [WoRMS]
    Marine/Coastal; Brackish water; Fresh water

Authors  Top 
  • Höckelmann, C.
  • Moens, T., more
  • Jüttner, F.

Abstract
    Nematodes can both taste and smell an array of compounds, but whether and how these senses affect their capacity to locate microhabitats in aquatic environments is not known. Cyanobacterial biofilms may offer structure, shelter, and food for nematodes and are known to produce a variety of odor compounds. We studied the chemotaxis response of the freshwater nematode Bursilla monhystera (Rhabditidae) and the terrestrial model organism Caenorhabditis elegans (Rhabditidae) to odors of cyanobacterial biofilms. We used gas chromatography-mass spectometry ultra-trace analysis to identify odor compounds produced by two epilithic cyanobacterial biofilms of Lake Zurich. We also studied artificial, axenic biofilms of Plectonema sp., Calothrix sp., and Calothrix parietina, to assign these compounds to the metabolism of the cyanobacteria. The axenic cyanobacteria and epilithic biofilms had many odor compounds in common B. monhystera was significantly attracted to Plectonema sp. and C. parietina but not to Calothrix sp. C. elegans, in contrast, was not attracted to any of these cyanobacterial biofilms. Furthermore, we applied a multicomponent mixture of odor compounds and found significant attraction for both nematodes. Although C. elegans was also attracted by a variety of single odor compounds, B. monhystera was not attracted to any of the volatiles tested. ß-ionone even repelled this species. Our experiments demonstrate that aquatic nematodes are attracted to cyanobacterial biofilms using odor compounds as chemical cues. In contrast to the model organism, C. elegans, the chemotaxis of the aquatic nematode is elicited by a multicomponent odor rather than by single compounds.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org