Eastern North Atlantic deep-sea corals: tracing upper intermediate water d14C during the Holocene
Frank, N.; Paterne, M.; Ayliffe, L.; van Weering, T.; Henriet, J.P.; Blamart, D. (2004). Eastern North Atlantic deep-sea corals: tracing upper intermediate water d14C during the Holocene. Earth Planet. Sci. Lett. 219(3-4): 297-309. dx.doi.org/10.1016/S0012-821X(03)00721-0
Paired 230Th/U and 14C dating were performed on deep-sea corals (Lophelia pertusa and Madrepora oculata) from the northeastern North Atlantic at 730 m bsl to investigate past changes of the thermohaline circulation. These were estimated using the ?14C value of the upper intermediate waters, based on the 14C ages of the top and base of each coral, where possible, and the 230Th/U dating. The reliability of these estimates was checked by dating two very young corals of the species L. pertusa. One of these corals, collected alive in 1999 AD, gave a 230Th/U age of 1995±4 AD after correction for non-radiogenic 230Th. Another coral, the top of which dated to 1969±6 AD, recorded the atmospheric 14C/12C increase due to the nuclear tests in the early 1960s. The calculated ?14C values from these two corals agree with those measured at GEOSECS Station 23 in 1972–1973 [Östlund et al., Earth Planet. Sci. Lett. 23 (1974) 69–86] and 1991–1992 [Nydal and Gisfelos, Radiocarbon 38 (1996) 389–406]. This, together with the 100% aragonite content and the d234U and 230Th/232Th values of all the dated corals, indicates that none of the corals behaved as open systems with respect to their U-series nuclides and that they closely represent the water mass properties in which they lived. The pre-anthropogenic ?14C value of the North Atlantic intermediate waters was estimated at -69±4‰. The reservoir age varies from 400 years to 600 years, and this variation is due to atmospheric 14C/12C changes. A reservoir age of 610±80 years, close to the pre-anthropogenic value, was determined from one coral dated at 10 430±120 cal yr BP, when the global sea level was approximately at -35 m [Bard et al., Nature 382 (1996) 241–244]. This suggests a modern-like pattern of the oceanic circulation prevailed in the Northeast Atlantic Ocean at this time although the deglaciation was not completely achieved.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy