Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light
Dimier, C.; Brunet, C.; Geider, R.J.; Raven, J. (2009). Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54(3): 823-836. https://dx.doi.org/10.4319/lo.2009.54.3.0823
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Dimier, C., more
  • Brunet, C., more
  • Geider, R.J.
  • Raven, J.

Abstract
    Growth, photosynthesis, and photoacclimation properties of batch cultures of Pelagomonas calceolata (Pelagophyceae) were compared for 1 week under three different fluctuating light regimes with the same total daily amount of light. Treatments consisted of a sinusoidal diurnal light cycle or a high-frequency fluctuating light simulating two different regimes of vertical mixing (highly fluctuating light [HFL] or fluctuating light [FL]). Three to five samples were taken every day for analysis of pigments, absorption spectrum, variable fluorescence, nonphotochemical quenching (NPQ), electron transport rate vs. light curves, and cell concentration. Pelagomonas achieved the same growth rate during the exponential growth phase under all three light conditions, revealing a high degree of acclimation to light and also suggesting that the daily light dose is the main factor regulating growth and division. Photophysiological adjustments occurred in the cells in response to the three light regimes. Pelagomonas seems to adopt the n-type photoacclimation in HFL, whereas the s-type photoacclimation is applied in FL. The cells rapidly trigger photoprotective mechanisms such as the xanthophyll cycle and NPQ, even though these do not appear to be able to fully prevent photoinhibition. The enhanced costs for maintenance and repair associated with HFL may have limited the allocation of energy to growth, thus explaining the shorter duration of the exponential growth phase in this regime with respect to the two others.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org