Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Accumulation, loss and molecular distribution of cadmium in Mytilus edulis
Scholz, N. (1980). Accumulation, loss and molecular distribution of cadmium in Mytilus edulis. Helgol. Meeresunters. 33(1-4): 68-78. https://dx.doi.org/10.1007/BF02414736
In: Helgoländer Meeresuntersuchungen. Biologische Anstalt Helgoland: Hamburg. ISSN 0174-3597
Also appears in:
Kinne, O.; Bulnheim, H.-P. (Ed.) (1980). Protection of life in the sea: 14th European Marine Biology Symposium, 23-29 September 1979, Helgoland. European Marine Biology Symposia, 14. Helgoländer Meeresuntersuchungen, 33(1-4). 772 pp., more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal

Author  Top 
  • Scholz, N.

Abstract
    In Mytilus edulis, accumulation and loss of Cd were analyzed under experimental conditions. Cd uptake by the whole soft body is linear, increasing significantly with increasing Cd concentrations in the uptake medium. Until 100 µg Cd l-1, neither limitation of uptake nor any saturation process can be observed. Loss of Cd, measured after transfer of experimentally contaminated mussels to natural sea water, is exponential; biological half lives vary between 14 and 29 days. Gills are the primary sites of Cd uptake from the water, whereas in mid-gut gland, kidney, and mantle the uptake is retarded during the first few days. The mid-gut gland not only bears the main body load of Cd, but also shows the highest Cd concentrations. Gel chromatographic studies of mid-gut gland proteins reveal that Cd is eluated over the whole molecular weight range. Three metallothionein-like proteins with molecular weights of 6,600, 13,200, and 21,000 Dalton could be established. However, they cannot be taken as effective detoxification proteins, because more than 50% of the accumulated metal is bound to high molecular weight proteins.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org