Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Physical properties of methane-enriched plumes along the Hikurangi margin of New Zealand: Thoughts on sources and life spans of water column methane anomalies
McGinnis, D. F.; Faure, K.; Schneider von Deimling, J.; Greinert, J. (2008). Physical properties of methane-enriched plumes along the Hikurangi margin of New Zealand: Thoughts on sources and life spans of water column methane anomalies. Geophys. Res. Abstr. 10(EGU2008-A-09398)
In: Geophysical Research Abstracts. Copernicus: Katlenburg-Lindau. ISSN 1029-7006; e-ISSN 1607-7962
Peer reviewed article  

Available in  Authors 
Document type: Summary

Keyword
    Marine/Coastal

Authors  Top 
  • McGinnis, D. F.
  • Faure, K.
  • Schneider von Deimling, J.
  • Greinert, J.

Abstract
    We explored methane distribution and physical mixing processes at active areas with CTD measurements utilizing a methane sensor combined with discrete water samples collected in Niskin bottles (24 bottle carrousel). Evidence of a methane plume injection was obtained during a CTD cast. The plume injection is thought to be the result of a vertical advective flow driven by a source of buoyancy (e.g., heat flux, bubbles, high dissolved methane concentration). Thorpe scale analyses on the high-resolution temperature data allow us to locate turbulent overturns and the associated small- to large-scale temperature inversions. Thorpe displacement analysis shows substantial overturns of ca. 30 m at around 720 m depth that perfectly correspond with a large peak (ca. 600 nM) of methane. This is likely the final intrusion depth of a methane plume originating from the sea floor. However, it is inconclusive which buoyancy source(s) are driving the plume (e.g. heat flux, bubbles, etc.). In the corresponding profiles, a completely well-mixed ca. 35 m thick layer (in T and Sal) is observed at this location. This further suggests a local buoyancy source. Substantial energy input is required to maintain such a well-mixed structure. In absence of a supporting energy source, this signal would be vertically diffusively smeared within several days (t = z/Kz), and much faster horizontally. Energy balances suggest that the source and resulting upwelling are a dissolved methane-enriched thermal plume, as the number of bubbles required to produce such a plume and maintain the deep-mixed layer is too substantial.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org