Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Temporal dynamics in the diet of two marine polychaetes as inferred from fatty acid biomarkers
Braeckman, U.; Provoost, P.; Sabbe, K.; Soetaert, K.; Middelburg, J.J.; Vincx, M.; Vanaverbeke, J. (2012). Temporal dynamics in the diet of two marine polychaetes as inferred from fatty acid biomarkers. J. Sea Res. 68: 6-19. dx.doi.org/10.1016/j.seares.2011.11.003
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101; e-ISSN 1873-1414
Peer reviewed article  

Available in  Authors 

Keywords
    Algal blooms
    Aquatic communities > Plankton > Phytoplankton
    Biomarkers
    Blooms
    Chemical compounds > Organic compounds > Lipids
    Macrobenthos
    Lanice conchilega (Pallas, 1766) [WoRMS]; Nephtys hombergii Savigny in Lamarck, 1818 [WoRMS]
    Marine/Coastal
Author keywords
    Macrobenthos; Phytoplankton Bloom; Lipid Biomarker; Lanice conchilega;Nephtys hombergii

Authors  Top 
  • Braeckman, U., more
  • Provoost, P.
  • Sabbe, K.
  • Soetaert, K., more
  • Middelburg, J.J., more
  • Vincx, M., more
  • Vanaverbeke, J., more

Abstract
    We investigated the temporal variation of pelagic and benthic food sources in the diet of two marine polychaetes: a macrobenthic omnivore (Nephtys hombergii) and a suspension-deposit feeder (Lanice conchilega) by means of fatty acid (FA) biomarkers and compound-specific stable isotope analysis (CSIA). FA biomarkers in the suspended particulate matter roughly mirrored phytoplankton dynamics in the water column, consisting of a small diatom dominance early spring, succeeded by a mass Phaeocystis peak followed by a mixed diatom-dinoflagellate bloom. Deposition and subsequent bacterial degradation of the phytoplankton bloom were also reflected in sediment FA biomarkers. The main distinction in FA biomarker concentration within macrobenthic tissue was observed at the species level (48% of variation), the diet of L. conchilega consisting of bacteria and diatoms and that of N. hombergii also of diatoms, but including more dinoflagellates and invertebrates. Temporal variation explained 17%: the two species retained more bacterial and Phaeocystis markers before the bloom, while they accumulated more poly-unsaturated FA after the bloom. CSIA revealed increased accumulation or biosynthesis of poly-unsaturated FA from the suspended matter in L. conchilega upon bloom deposition, which is probably related to energy storage for gametogenesis. In contrast, bloom-dependent accumulation or biosynthesis of FA was not detected in N. hombergii, probably because of its reliance on invertebrate prey.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org