Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Forces on a vertical wall on a dike crest due to overtopping flow
Chen, X.; Hofland, B.; Altomare, C.; Suzuki, T.; Uijttewaal, W. (2015). Forces on a vertical wall on a dike crest due to overtopping flow. Coast. Eng. 95: 94-104. https://dx.doi.org/10.1016/j.coastaleng.2014.10.002
In: Coastal Engineering: An International Journal for Coastal, Harbour and Offshore Engineers. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0378-3839; e-ISSN 1872-7379
Peer reviewed article  

Available in  Authors 
  • VLIZ: Non-open access 274894 [ request ]
  • Waterbouwkundig Laboratorium: Non-open access 266325 [ request ]

Keywords
    Impact loads
    Overtopping
    Marine/Coastal
Author keywords
    Broken wave; Wide crest dike; Vertical wall

Authors  Top 
  • Chen, X.
  • Hofland, B.
  • Altomare, C.
  • Suzuki, T.
  • Uijttewaal, W.

Abstract
    Wave overtopping a sea dike may pose a threat to people and property. However, knowledge of the overtopping features, in particular overtopping flow loads, are not well understood. The aim of this study was to understand the overtopping process on a dike crest and to develop an empirical formula for the resulting overtopping flow impact loads on a wall as a function of the property of the incoming waves and dike geometry characteristics. In this paper, we propose a new descriptor (the overtopping momentum flux) in order to predict the impact loads. To validate the proposed empirical function, a series of physical scale model tests was conducted. In these experiments, we measured the overtopping flow loads on a vertical wall at different locations on a dike, which were induced by broken waves. A correction coefficient for the wall effect on the initial flow depth, and an empirical initial flow depth coefficient for a broken wave were determined. These empirical coefficients allowed for an interpretation of the overtopping process of a broken wave from dike toe up to the front of the wall on the dike.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org