Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Mitogenomics reveals high synteny and long evolutionary histories of sympatric cryptic nematode species
Grosemans, T.; Morris, K.; Thomas, W.; Rigaux, A.; Moens, T.; Derycke, S. (2016). Mitogenomics reveals high synteny and long evolutionary histories of sympatric cryptic nematode species. Ecol. Evol. 6(6): 1854-1870. dx.doi.org/10.1002/ece3.1975
In: Ecology and Evolution. John Wiley & Sons: Chichester. ISSN 2045-7758; e-ISSN 2045-7758
Peer reviewed article  

Available in  Authors 

Keywords
    Litoditis marina (Bastian, 1865) Sudhaus, 2011 [WoRMS]
    Marine/Coastal
Author keywords
    Adaptation; cryptic speciation; Litoditis marina; Miocene; Wolbachia

Authors  Top 
  • Grosemans, T.
  • Morris, K.
  • Thomas, W.
  • Rigaux, A.
  • Moens, T., more
  • Derycke, S., more

Abstract
    Species with seemingly identical morphology but with distinct genetic differences are abundant in the marine environment and frequently co-occur in the same habitat. Such cryptic species are typically delineated using a limited number of mitochondrial and/or nuclear marker genes, which do not yield information on gene order and gene content of the genomes under consideration. We used next-generation sequencing to study the composition of the mitochondrial genomes of four sympatrically distributed cryptic species of the Litoditis marina species complex (PmI, PmII, PmIII, and PmIV). The ecology, biology, and natural occurrence of these four species are well known, but the evolutionary processes behind this cryptic speciation remain largely unknown. The gene order of the mitochondrial genomes of the four species was conserved, but differences in genome length, gene length, and codon usage were observed. The atp8 gene was lacking in all four species. Phylogenetic analyses confirm that PmI and PmIV are sister species and that PmIII diverged earliest. The most recent common ancestor of the four cryptic species was estimated to have diverged 16 MYA. Synonymous mutations outnumbered nonsynonymous changes in all protein-encoding genes, with the Complex IV genes (coxI-III) experiencing the strongest purifying selection. Our mitogenomic results show that morphologically similar species can have long evolutionary histories and that PmIII has several differences in genetic makeup compared to the three other species, which may explain why it is better adapted to higher temperatures than the other species.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org