Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Redox-dependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis
Korkina, L.G.; Deeva, I.B.; De Biase, A.; Iaccarino, M.; Oral, R.; Warnau, M.; Pagano, G. (2000). Redox-dependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis 21(2): 213-220. https://dx.doi.org/10.1093/carcin/21.2.213
In: Carcinogenesis. OXFORD UNIV PRESS: Oxford. ISSN 0143-3334; e-ISSN 1460-2180
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Korkina, L.G.
  • Deeva, I.B.
  • De Biase, A.
  • Iaccarino, M.
  • Oral, R.
  • Warnau, M.
  • Pagano, G.

Abstract
    The effects and mechanisms of action of diepoxybutane (DEB) and mitomycin C (MMC) were investigated on sea urchin embryogenesis, (Sphaerechinus granularis and Paracentrotus lividus). DEB- and MMC-induced toxicity was evaluated by means of selected end-points, including developmental defects, cytogenetic abnormalities and alterations in the redox status [oxygen-dependent toxicity, Mn-superoxide dismutase (MnSOD) and catalase activities and glutathione (GSH) levels]. Both DEB and MMC exhibited developmental toxicity (at concentrations ranging from 3 × 10–5 to 3 × 10–4 M and 3 × 10–6 to 3 × 10–5 M, respectively) expressed as larval abnormalities, developmental arrest and mortality. The developmental effects of both compounds were significantly affected by oxygen at levels ranging from 5 to 40%. These results confirmed previous evidence oxygen-dependent MMC toxicity and are the first report of oxygen dependence for DEB toxicity. Both DEB and MMC exerted significant cytogenetic abnormalities, including mitotoxicity and mitotic aberrations, but with different trends between the two chemicals, at the same concentrations as exerted developmental toxicity. The formation of reactive oxygen species was evaluated using: (i) luminol-dependent chemiluminescence (LDCL); (ii) reactions of the main antioxidant systems, such as GSH content and MnSOD and catalase activities. The results point to clear-cut differences in the effects induced by DEB and MMC. Thus, DEB suppressed GSH content within the concentration range 10–7–3 × 10–5 M. The activity of catalase was stimulated at lower DEB levels (10–7–10–6 M) and then decreased at higher DEB concentrations (≥10–5 M). Increasing MMC concentrations induced LDCL and MnSOD activity (≥10–6 M) greatly and modulated catalase activity (10–7 – 10–6 M). GSH levels were unaffected by MMC. The results suggest that oxidative stress contributes to the developmental and genotoxic effects of both toxins studied, although through different mechanisms.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org