Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Meridional circulation across the Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap
Rutgers van der Loeff, M.; Venchiarutti, C.; Stimac, I.; van Ooijen, J.; Huhn, O.; Rohardt, G.; Strass, V.H. (2016). Meridional circulation across the Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap. Earth Planet. Sci. Lett. 455: 73-84. https://dx.doi.org/10.1016/j.epsl.2016.07.027
In: Earth and Planetary Science Letters. Elsevier: Amsterdam. ISSN 0012-821X; e-ISSN 1385-013X
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    231PA; 230Th; Weddell Sea; Antarctic Bottom Water; GEOTRACES; scavenging

Authors  Top 
  • Rutgers van der Loeff, M.
  • Venchiarutti, C.
  • Stimac, I.
  • van Ooijen, J.
  • Huhn, O.
  • Rohardt, G.
  • Strass, V.H.

Abstract
    Upwelling of Circumpolar Deep Water in the Weddell Gyre and low scavenging rates south of the Antarctic Circumpolar Current (ACC) cause an accumulation of particle reactive nuclides in the Weddell Gyre. A ventilation/reversible scavenging model that successfully described the accumulation of 230Th in this area was tested with other particle reactive nuclides and failed to adequately describe the depth-distributions of 231Pa and 210Pb. We present here a modified model that includes a nutrient-like accumulation south of the Antarctic Polar Front in an upper meridional circulation cell, as well as transport to a deep circulation cell in the Weddell Gyre by scavenging and subsequent release at depth. The model also explains depletion of 231Pa and 230Th in Weddell Sea Bottom Water (WSBW) by ventilation of newly formed deep water on a timescale of 10 years, but this water mass is too dense to leave the Weddell Gyre.In order to quantify the processes responsible for the 231Pa-and 230Th-composition of newly formed Antarctic Bottom Water (AABW) we present a mass balance of 231Pa and 230Th in the Atlantic sector of the Southern Ocean based on new data from the GEOTRACES program. The ACC receives 6.0 ±1.5 ×106dpms−1of 230Th from the Weddell Sea, similar in magnitude to the net input of 4.2 ±3.0 ×106dpms−1from the north. For 231Pa, the relative contribution from the Weddell Sea is much smaller, only 0.3 ±0.1 ×106, compared to 2.7 ±1.4 ×106dpms−1from the north. Weddell Sea Deep Water (WSDW) leaving the Weddell Gyre northward to form AABW is exposed in the ACC to resuspended opal-rich sediments that act as efficient scavengers with a Th/Pa fractionation factor F ≤1. Hydrothermal inputs may provide additional removal with low F. Scavenging in the full meridional circulation acros

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org