Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

The food web of Potter Cove (Antarctica): complexity, structure and function
Marina, T.I.; Salinas, V.; Cordone, G.; Campana, G.; Deregibus, D.; Torre, L.; Sahade, R.; Tatián, M.; Barrera Oro, E.; De Troch, M.; Doyle, S.; Quartino, M.L.; Saravia, L.A.; Momo, F.R. (2018). The food web of Potter Cove (Antarctica): complexity, structure and function. Est., Coast. and Shelf Sci. 200: 141-151. https://dx.doi.org/10.1016/j.ecss.2017.10.015
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714; e-ISSN 1096-0015
Peer reviewed article  

Available in  Authors 

Keyword
Author keywords
    Ecological networks; Structure; Degree distribution; Marine ecosystem

Authors  Top 
  • Marina, T.I.
  • Salinas, V.
  • Cordone, G.
  • Campana, G.
  • Deregibus, D.
  • Torre, L.
  • Sahade, R.
  • Tatián, M.
  • Barrera Oro, E.
  • De Troch, M., more
  • Doyle, S.
  • Quartino, M.L.
  • Saravia, L.A.
  • Momo, F.R.

Abstract
    Knowledge of the food web structure and complexity are central to better understand ecosystem functioning. A food-web approach includes both species and energy flows among them, providing a natural framework for characterizing species’ ecological roles and the mechanisms through which biodiversity influences ecosystem dynamics. Here we present for the first time a high-resolution food web for a marine ecosystem at Potter Cove (northern Antarctic Peninsula). Eleven food web properties were analyzed in order to document network complexity, structure and topology. We found a low linkage density (3.4), connectance (0.04) and omnivory percentage (45), as well as a short path length (1.8) and a low clustering coefficient (0.08). Furthermore, relating the structure of the food web to its dynamics, an exponential degree distribution (in- and out-links) was found. This suggests that the Potter Cove food web may be vulnerable if the most connected species became locally extinct. For two of the three more connected functional groups, competition overlap graphs imply high trophic interaction between demersal fish and niche specialization according to feeding strategies in amphipods. On the other hand, the prey overlap graph shows also that multiple energy pathways of carbon flux exist across benthic and pelagic habitats in the Potter Cove ecosystem. Although alternative food sources might add robustness to the web, network properties (low linkage density, connectance and omnivory) suggest fragility and potential trophic cascade effects.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org