Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

The impact of land use and spatial mediated processes on the water quality in a river system
Vrebos, D.; Beauchard, O.; Meire, P. (2017). The impact of land use and spatial mediated processes on the water quality in a river system. Sci. Total Environ. 601-602: 365-373. https://dx.doi.org/10.1016/j.scitotenv.2017.05.217
In: Science of the Total Environment. Elsevier: Amsterdam. ISSN 0048-9697; e-ISSN 1879-1026
Peer reviewed article  

Available in  Authors 

Keyword
    Fresh water
Author keywords
    Water quality; Land use; River management; Spatial process; Asymmetric Eigenvector Maps (AEM); Moran's Eigenvector Maps (MEM)

Authors  Top 
  • Vrebos, D.
  • Beauchard, O.
  • Meire, P.

Abstract
    River systems are highly complex, hierarchical and patchy systems which are greatly influenced by both catchment surroundings and in-stream processes. Natural and anthropogenic land uses and processes affect water quality (WQ) through different pathways and scales. Understanding under which conditions these different river and catchment properties become dominant towards water chemistry remains a challenge. In this study we analyzed the impact of land use and spatial scales on a range of WQ variables within the Kleine Nete catchment in Belgium. Multivariate statistics and spatial descriptors (Moran's and Asymmetric Eigenvector Maps) were used to assess changes in water chemistry throughout the catchment. Both land use and complex mixes of spatial descriptors of different scales were found to be significantly associated to WQ parameters. However, unidirectional, upstream-downstream changes in water chemistry, often described in river systems, were not found within the Kleine Nete catchment. As different sources and processes obscure and interact with each other, it is generally difficult to understand the correct impact of different pollution sources and the predominant pathways. Our results advocate for WQ management interventions on large and small scales where needed, taking the predominate pathways in to account.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org