Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Comparison of mechanical disturbance in soft sediments due to tickler-chain SumWing trawl vs. electro-fitted PulseWing trawl
Depestele, J.; Degrendele, K.; Esmaeili, M.; Ivanovic, A.; Kröger, S.; O’Neill, F.G.; Parker, R.; Polet, H.; Roche, M.; Teal, L.R.; Vanelslander, B.; Rijnsdorp, D. (2019). Comparison of mechanical disturbance in soft sediments due to tickler-chain SumWing trawl vs. electro-fitted PulseWing trawl. ICES J. Mar. Sci./J. Cons. int. Explor. Mer 76(1): 312-329. https://dx.doi.org/10.1093/icesjms/fsy124
In: ICES Journal of Marine Science. Academic Press: London. ISSN 1054-3139; e-ISSN 1095-9289
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Biogeochemistry; beam trawl; habitat impacts; particle size distribution; penetration depth; pulse trawl; seafloor integrity; sediment resuspension

Authors  Top 
  • Depestele, J.
  • Degrendele, K.
  • Esmaeili, M.
  • Ivanovic, A.
  • Kröger, S.
  • O’Neill, F.G.
  • Parker, R., more
  • Polet, H.
  • Roche, M.
  • Teal, L.R.
  • Vanelslander, B., more
  • Rijnsdorp, D., more

Abstract
    Tickler-chain SumWing and electrode-fitted PulseWing trawls were compared to assess seabed impacts. Multi-beam echo sounder (MBES) bathymetry confirmed that the SumWing trawl tracks were consistently and uniformly deepened to 1.5 cm depth in contrast to 0.7 cm following PulseWing trawling. MBES backscatter strength analysis showed that SumWing trawls (3.11 dB) flattened seabed roughness significantly more than PulseWing trawls (2.37 dB). Sediment Profile Imagery (SPI) showed that SumWing trawls (mean, SD) homogenised the sediment deeper (3.4 cm, 0.9 cm) and removed more of the oxidised layer than PulseWing trawls (1 cm, 0.8 cm). The reduced PulseWing trawling impacts allowed a faster re-establishment of the oxidised layer and micro-topography. Particle size analysis suggested that SumWing trawls injected finer particles into the deeper sediment layers (∼4 cm depth), while PulseWing trawling only caused coarsening of the top layers (winnowing effect). Total penetration depth (mean, SD) of the SumWing trawls (4.1 cm, 0.9 cm) and PulseWing trawls (1.8 cm, 0.8 cm) was estimated by the depth of the disturbance layer and the layer of mobilized sediment (SumWing = 0.7 cm; PulseWing trawl = 0.8 cm). PulseWing trawls reduced most of the mechanical seabed impacts compared to SumWing trawls for this substrate and area characteristics.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org