Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Hydrodynamic interaction between ships and restricted waterways
Lataire, E.; Vantorre, M. (2017). Hydrodynamic interaction between ships and restricted waterways. International Journal of Maritime Engineering 159: 77-87. https://dx.doi.org/10.3940/rina.ijme.2017.a1.391
In: International Journal of Maritime Engineering. ROYAL INST NAVAL ARCHITECTS. ISSN 1479-8751; e-ISSN 1740-0716
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Lataire, E.
  • Vantorre, M.

Abstract
    In open and unrestricted waters the water displaced by a forward sailing vessel can travel without major obstruction underneath and along the ship. In restricted and shallow sailing conditions, the displaced water is squeezed between the hull and the bottom and/or the bank. This results in higher flow velocities and as a consequence a pressure drop around the same hull. In the vicinity of a bank this pressure drop generates a combination of forces and moments on the vessel, known as bank effects. The major achievement of the presented research is the development of a realistic and robust formulation for these bank effects. This knowledge is acquired with an extensive literature study on one hand and with dedicated model tests carried out in different towing tanks on the other. The majority of the utilised model tests were carried out in the shallow water towing tank at Flanders Hydraulics Research in Antwerp, Belgium. The data set on bank effects consists of more than 8 000 unique model test setups (which is by far the most elaborate research ever carried out on this subject). These model tests provide the input for the analysis of bank effects and the creation of the mathematical model. Overall the magnitude of the bank induced forces increase with: A higher forward speed of the ship A higher propeller load A lower under keel clearance A more confined navigation area: steeper banks, smaller channel width A smaller distance between ship and bank The mathematical model copes with a wide range of ship types and bank configurations and is suitable for implementation (and has been implemented) in full mission bridge simulators which can be used for training purposes as well as for research to support the admittance policy or exploitation of ports and waterways.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org