Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Salinity and growth effects on dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas of Skeletonema costatum, Phaeocystis globosa and Heterocapsa triquetra
Speeckaert, G.; Borges, A.V.; Gypens, N. (2019). Salinity and growth effects on dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas of Skeletonema costatum, Phaeocystis globosa and Heterocapsa triquetra. Est., Coast. and Shelf Sci. 226: 106275. https://dx.doi.org/10.1016/j.ecss.2019.106275
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714; e-ISSN 1096-0015
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Speeckaert, G.
  • Borges, A.V.
  • Gypens, N.

Abstract
    The effects of growth stage and salinity on dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cellular content were investigated in laboratory batch cultures of three phytoplankton species (Skeletonema costatum, Phaeocystis globosa and Heterocapsa triquetra). DMSP and DMSO cell quotas of the three microalgae were measured at three salinities (20, 27, 35) and in three growth phases at salinity 35. DMSP and DMSO cell quotas varied along the growth for all species with an increase of DMSP for S. costatum and a decrease of the DMSP to DMSO ratio (DMSP/DMSO) for P. globosa and H. triquetra in late exponential-stationary phase. We hypothesized that the oxidative stress caused by light and/or nutrients limitation induced the oxidation of DMS or DMSP to DMSO. DMSP cell quotas increased with salinity, mostly in S. costatum and H. triquetra, for which DMSP is supposed to be an osmoregulator. In H. triquetra, DMSO cell quotas stayed constant with increasing salinity. DMSO was near detection limits in S. costatum experiments. In P. globosa, DMSP and DMSO concentrations increased at low and high salinity. DMSO showed higher increase at low salinity presumably as the result of a salinity-induced oxidative stress which caused DMSP oxidation into DMSO in hyposaline conditions. We concluded that DMSP acts as an osmoregulator for the three studied species and DMSO acts as an antioxidant for P. globosa at low salinity. In P. globosa and H. triquetra, DMSP/DMSO increase with salinity in response to salinity stress.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org