Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Remote sensing of coastal vegetation: dealing with high species turnover by mapping multiple floristic gradients
Unberath, I.; Vanierschot, L.; Somers, B.; Van De Kerchove, R.; Vanden Borre, J.; Unberath, M.; Feilhauer, H. (2019). Remote sensing of coastal vegetation: dealing with high species turnover by mapping multiple floristic gradients. Applied Vegetation Science 22(4): 534-546. https://dx.doi.org/10.1111/avsc.12446
In: Applied Vegetation Science. Opulus Press: Uppsala. ISSN 1402-2001; e-ISSN 1654-109X
Peer reviewed article  

Available in  Authors 

Author keywords
    airborne; detrended correspondence analysis; dune; grassland; highspecies turnover; hyperspectral; imaging spectroscopy; isopam; PartialLeast Squares Regression; salt marsh

Authors  Top 
  • Unberath, I.
  • Vanierschot, L.
  • Somers, B.
  • Van De Kerchove, R.
  • Vanden Borre, J.
  • Unberath, M.
  • Feilhauer, H.

Abstract
    Aims

    Mapping gradual transitions in plant species composition via a combination of ordination and regression from remote sensing data is becoming an established approach. However, straightforward analysis of areas with high species turnover rates may result in a loss of information since a high level of generalization is required. In this study, we investigate whether analysis of more homogeneous subsets, in contrast to processing of the complete dataset, is a viable approach to mapping multiple floristic gradients.

    Location

    The coastal nature reserve “Zwin” (Belgium).

    Methods

    The measured dataset is partitioned into more homogeneous subsets based upon species composition using hierarchical classification. The dataset and subsets are then processed separately. First, ordination is performed to extract floristic gradients in plant species composition; second, these gradients are related to airborne hyperspectral remote sensing data through regression models and mapped by projecting these models on image data. Regression validation and Mantel tests are used to compare the results within the study and to other studies.

    Results

    Hierarchical classification resulted in two homogeneous vegetation subsets. Ordination yielded four gradients in the area and all regression models compared favorably to similar studies in other areas with R² values ranging from 0.47 to 0.74. The Mantel test showed that by dividing the dataset into subsets, higher resemblance to the original vegetation data can be achieved.

    Conclusion

    We showed that mapping gradual transitions in plant species composition across multiple subsets sampled from one measured vegetation dataset is a promising approach for retrospective analysis of areas with high species turnover rates. In addition to potential improvements in performance, this complementary analysis enables mapping of additional gradients, suggesting that all conventionally predicted maps remain available, valuable, and necessary for thorough understanding of plant species composition.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org