Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Evaluation of uncertainty of damage results in experimental modelling of monopile foundation scour protection
Wu, M.; Arnout, J.; Ruiz, J.M.; Chavez, C.A.; Stratigaki, V.; Troch, P. (2019). Evaluation of uncertainty of damage results in experimental modelling of monopile foundation scour protection, in: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering - Volume 1: Offshore Technology; Offshore Geotechnics. pp. 10. https://dx.doi.org/10.1115/OMAE2019-95793
In: (2019). ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering - Volume 1: Offshore Technology; Offshore Geotechnics. ASME: [s.l.]. ISBN 978-0-7918-5876-9.

Available in  Authors 
Document type: Conference paper

Keyword
    Marine/Coastal
Author keywords
    monopile; scour protection; wave flume experiment; uncertainty analysis

Authors  Top 
  • Wu, M.
  • Arnout, J.
  • Ruiz, J.M.
  • Chavez, C.A.
  • Stratigaki, V.
  • Troch, P.

Abstract
    The waves and currents acting near a monopile foundation will potentially lead to scour, which may affect the stability of the wind turbine. The design of scour protection against the seabed lowering around a wind turbine monopile foundation is an important issue for wind energy industries. Many laboratory tests have been carried out to investigate the relationship between the hydrodynamic conditions and the monopile foundation scour protection layer damage, and various design criteria have been proposed. However, the experimental uncertainty of the underlying test results has not been discussed in detail. In the present research, small scale waveflume experiments of a 5m diameter monopile foundation scour protection under waves combined with currents in shallow water are described. Two groups of repetitive experiments are completed under the same wave and current conditions. The erosion development of the scour protection armor layer is measured by using a laser profiler and is evaluated based on three dimensional damage numbers. Together with visualization of the damage pattern, the damage analysis discusses the erosion in different subareas and the variances of the subarea damage number. The analysis of the uncertainty of the erosion results based on two sets of repetitive tests has been carried out. Using the uncertainty analysis methodology stated in ISO GUM standard: JCGM 100-2008, the Type A uncertainty, calibration uncertainty and combined uncertainty of the experiment are evaluated separately. The Type A uncertainty gives an overall uncertainty level and it shows that higher uncertainty occurs in the regions where stronger vortices exist. The combined uncertainty is analyzed based on scour protection dynamic stability design formula. Analysis result shows that the uncertainty due to modelling is a major source of the total uncertainty. The study gives a preliminary result of uncertainty level in wave flume test of monopile scour protection and provides a reference for future experimental research.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org