Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikōura earthquake
Howarth, J.D.; Orpin, A.R.; Kaneko, Y.; Strachan, L.J.; Nodder, S.D.; Mountjoy, J.J.; Barnes, P. M.; Bostock, H.C.; Holden, C.; Jones, K.; Çagatay, M.N. (2021). Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikōura earthquake. Nature Geoscience 14(3): 161-167. https://dx.doi.org/10.1038/s41561-021-00692-6
In: Nature Geoscience. Nature Publishing Group: London. ISSN 1752-0894; e-ISSN 1752-0908
Related to:
Talling, P.J. (2021). Fidelity of turbidites as earthquake records. Nature Geoscience 14(3): 113-116. https://dx.doi.org/10.1038/s41561-021-00707-2, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Howarth, J.D.
  • Orpin, A.R.
  • Kaneko, Y.
  • Strachan, L.J.
  • Nodder, S.D.
  • Mountjoy, J.J.
  • Barnes, P. M.
  • Bostock, H.C.
  • Holden, C.
  • Jones, K.
  • Çagatay, M.N.

Abstract
    Turbidite palaeoseismology has produced arguably the most comprehensive multimillennial scale records of subduction-zone earthquakes but is underpinned by techniques that are vigorously debated in earthquake science. Resolving this argument requires new direct observations that test the approach’s essential assumptions. Here we present measurements from turbidites triggered by the 2016 Mw 7.8 Kaikōura earthquake in New Zealand, one of the most well-instrumented earthquakes in history. This natural experiment provides an ideal test for turbidite palaeoseismology because fault source, ground motions and turbidite deposition in discrete canyons are well-resolved by analysis of sediment cores combined with physics-based ground-motion modelling. We find that the Kaikōura earthquake triggered flows in ten consecutive canyon–distributary systems along a 200 km segment of the Hikurangi subduction margin where long-period (>2 s) peak ground velocities exceeded turbidity-current-triggering thresholds between 16–25 cm s−1. Comparison between ground motions and turbidite deposition confirm that there is a predictable relationship between earthquake source, ground motions and deposition of coseismic turbidites. We demonstrate that the patterns of triggering and resultant turbidite character may preserve evidence of fault-rupture direction along with the radiating patterns and amplification of earthquake ground motions.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org