Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Responses of ecological indicators to fishing pressure under environmental change: exploring non-linearity and thresholds
Fu, C.; Xu, Y.; Grüss, A.; Bundy, A.; Shannon, L.; Heymans, J.J.; Halouani, G.; Akoglu, E.; Lynam, C.P.; Coll, M.; Fulton, E.A.; Velez, L.; Shin, Y.-J. (2020). Responses of ecological indicators to fishing pressure under environmental change: exploring non-linearity and thresholds. ICES J. Mar. Sci./J. Cons. int. Explor. Mer 77(4): 1516-1531. https://hdl.handle.net/10.1093/icesjms/fsz182
In: ICES Journal of Marine Science. Academic Press: London. ISSN 1054-3139; e-ISSN 1095-9289
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    ecosystem-based fisheries management; generalized additive model; marine ecosystem model; non-linear response; primary productivity

Authors  Top 
  • Fu, C.
  • Xu, Y.
  • Grüss, A.
  • Bundy, A.
  • Shannon, L.
  • Heymans, J.J.
  • Halouani, G.
  • Akoglu, E.
  • Lynam, C.P.
  • Coll, M.
  • Fulton, E.A.
  • Velez, L.
  • Shin, Y.-J.

Abstract
    Marine ecosystems are influenced by multiple stressors in both linear and non-linear ways. Using generalized additive models (GAMs) fitted to outputs from a multi-ecosystem, multi-model simulation experiment, we investigated 14 major ecological indicators across ten marine ecosystems about their responses to fishing pressure under: (i) three different fishing strategies (focusing on low-, high-, or all-trophic-level taxa); and (ii) four different scenarios of directional or random primary productivity change, a proxy for environmental change. From this work, we draw four major conclusions: (i) responses of indicators to fishing mortality in shapes, directions, and thresholds depend on the fishing strategies considered; (ii) most of the indicators demonstrate decreasing trends with increasing fishing mortality, with a few exceptions depending on the type of fishing strategy; (iii) most of the indicators respond to fishing mortality in a linear way, particularly for community and biomass-based indicators; and (iv) occurrence of threshold for non-linear-mixed type (i.e. non-linear with inflection points) is not prevalent within the fishing mortality rates explored. The conclusions drawn from the present study provide a knowledge base in indicators’ dynamics under different fishing and primary productivity levels, thereby facilitating the application of ecosystem-based fisheries management worldwide.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org