Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

An integrated investigation of the effects of ocean acidification on adult abalone (Haliotis tuberculata)
Avignon, S.; Auzoux-Bordenavel, S.; Martin, S.; Dubois, P.; Badou, A.; Coheleach, M.; Richard, N.; Di Giglio, S.; Malet, L.; Servili, A.; Gaillard, F.; Huchette, S.; Roussel, S. (2020). An integrated investigation of the effects of ocean acidification on adult abalone (Haliotis tuberculata). ICES J. Mar. Sci./J. Cons. int. Explor. Mer 77(2): 757-772. https://hdl.handle.net/10.1093/icesjms/fsz257
In: ICES Journal of Marine Science. Academic Press: London. ISSN 1054-3139; e-ISSN 1095-9289
Peer reviewed article  

Available in  Authors 

Keywords
    Haliotis tuberculata Linnaeus, 1758 [WoRMS]
    Marine/Coastal
Author keywords
    abalone; calcification; gene expression; growth; mechanical properties; ocean acidification; physiology; shell microstructure

Authors  Top 
  • Avignon, S.
  • Auzoux-Bordenavel, S.
  • Martin, S.
  • Dubois, P.
  • Badou, A.
  • Coheleach, M.
  • Richard, N.
  • Di Giglio, S.
  • Malet, L.
  • Servili, A.
  • Gaillard, F.
  • Huchette, S.
  • Roussel, S.

Abstract
    Ocean acidification (OA) and its subsequent changes in seawater carbonate chemistry are threatening the survival of calcifying organisms. Due to their use of calcium carbonate to build their shells, marine molluscs are particularly vulnerable. This study investigated the effect of CO2-induced OA on adult European abalone (Haliotis tuberculata) using a multi-parameter approach. Biological (survival, growth), physiological (pHT of haemolymph, phagocytosis, metabolism, gene expression), and structural responses (shell strength, nano-indentation measurements, Scanning electron microscopy imaging of microstructure) were evaluated throughout a 5-month exposure to ambient (8.0) and low (7.7) pH conditions. During the first 2 months, the haemolymph pH was reduced, indicating that abalone do not compensate for the pH decrease of their internal fluid. Overall metabolism and immune status were not affected, suggesting that abalone maintain their vital functions when facing OA. However, after 4 months of exposure, adverse effects on shell growth, calcification, microstructure, and resistance were highlighted, whereas the haemolymph pH was compensated. Significant reduction in shell mechanical properties was revealed at pH 7.7, suggesting that OA altered the biomineral architecture leading to a more fragile shell. It is concluded that under lower pH, abalone metabolism is maintained at a cost to growth and shell integrity. This may impact both abalone ecology and aquaculture.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org