Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species
Schaafsma, F.L.; David, C.L.; Kohlbach, D.; Ehrlich, J.; Castellani, G.; Lange, B.A.; Vortkamp, M.; Meijboom, A.; Fortuna-Wünsch, A.; Immerz, A.; Cantzler, H.; Klasmeier, A.; Zakharova, N.; Schmidt, K.; Van de Putte, A.; van Franeker, J.A.; Flores, H. (2022). Allometric relationships of ecologically important Antarctic and Arctic zooplankton and fish species. Polar Biol. 45(2): 203-224. https://dx.doi.org/10.1007/s00300-021-02984-4
In: Polar Biology. Springer-Verlag: Berlin; Heidelberg. ISSN 0722-4060; e-ISSN 1432-2056
Peer reviewed article  

Available in  Authors 

Keywords
    Aquatic communities > Plankton > Zooplankton
    Pisces [WoRMS]
    Marine/Coastal
Author keywords
    Arctic Ocean · Southern Ocean · Length · Mass · Fish · Regression models

Authors  Top 
  • Schaafsma, F.L.
  • David, C.L.
  • Kohlbach, D.
  • Ehrlich, J.
  • Castellani, G.
  • Lange, B.A.
  • Vortkamp, M.
  • Meijboom, A.
  • Fortuna-Wünsch, A.
  • Immerz, A.
  • Cantzler, H.
  • Klasmeier, A.
  • Zakharova, N.
  • Schmidt, K.
  • Van de Putte, A.
  • van Franeker, J.A.
  • Flores, H.

Abstract
    Allometric relationships between body properties of animals are useful for a wide variety of purposes, such as estimation of biomass, growth, population structure, bioenergetic modelling and carbon flux studies. This study summarizes allometric relationships of zooplankton and nekton species that play major roles in polar marine food webs. Measurements were performed on 639 individuals of 15 species sampled during three expeditions in the Southern Ocean (winter and summer) and 2374 individuals of 14 species sampled during three expeditions in the Arctic Ocean (spring and summer). The information provided by this study fills current knowledge gaps on relationships between length and wet/dry mass of understudied animals, such as various gelatinous zooplankton, and of animals from understudied seasons and maturity stages, for example, for the krill Thysanoessa macrura and larval Euphausia superba caught in winter. Comparisons show that there is intra-specific variation in length–mass relationships of several species depending on season, e.g. for the amphipod Themisto libellula. To investigate the potential use of generalized regression models, comparisons between sexes, maturity stages or age classes were performed and are discussed, such as for the several krill species and T. libellula. Regression model comparisons on age classes of the fish E. antarctica were inconclusive about their general use. Other allometric measurements performed on carapaces, eyes, heads, telsons, tails and otoliths provided models that proved to be useful for estimating length or mass in, e.g. diet studies. In some cases, the suitability of these models may depend on species or developmental stages.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org