Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

An inter-order comparison of copepod fatty acid composition and biosynthesis in response to a long-chain PUFA deficient diet along a temperature gradient
Sahota, R.; Boyen, J.; Semmouri, I.; Bodé, S.; De Troch, M. (2022). An inter-order comparison of copepod fatty acid composition and biosynthesis in response to a long-chain PUFA deficient diet along a temperature gradient. Mar. Biol. (Berl.) 169: 133. https://dx.doi.org/10.1007/s00227-022-04121-z
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keywords
    Calanoida [WoRMS]; Harpacticoida [WoRMS]
    Marine/Coastal
Author keywords
    Biosynthesis · Calanoid copepod · Carbon assimilation · Climate change · Fatty acids · Harpacticoid copepod

Authors  Top 
  • Sahota, R.
  • Boyen, J.
  • Semmouri, I.
  • Bodé, S.
  • De Troch, M., more

Abstract
    Copepods serve as a major link in marine food webs, bridging the energy transfer from primary producers to higher trophic levels. Oceanic warming is linked to reduced concentrations of essential fatty acids (FA) in phytoplankton, namely eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3), and it remains largely unknown if copepods have the capacity to endure. The calanoid Temora longicornis and the harpacticoid Platychelipus littoralis were chosen to analyse their FA and biosynthesis activity in response to a long-chain polyunsaturated FA (LC-PUFA) deficient diet (Dunaliella tertiolecta) along a temperature gradient. Copepods were fed D. tertiolecta labelled with the stable isotope carbon-13 (13C) to quantify carbon assimilation into their total FA and de novo EPA and DHA biosynthesis after 6 days incubated at 11, 14, 17, 20 and 23 °C. The calanoid had increased mortality with warming, whereas the harpacticoid exhibited high survival across the thermal gradient. After the incubation, P. littoralis assimilated minimal amounts of dietary carbon into its total FA in comparison to T. longicornis. T. longicornis depleted their field EPA and DHA stores more rapidly, whereas P. littoralis maintained its relative storage of EPA and DHA and absolute concentrations of DHA. T. longicornis displayed higher fractions of de novo EPA and DHA biosynthesis than P. littoralis at all temperatures, with the exception of DHA at 23 °C. Within our experimental incubation period both species were unable to meaningfully upgrade the LC-PUFA deficient algae to biosynthesize de novo EPA and DHA as a relevant source for higher trophic levels.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org