Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Optimized screening methods for investigation of the larval settlement of Lanice conchilega on artificial substrates
D’Hurlaborde, A.; Semeraro, A.; Sterckx, T.; Van Hoey, G. (2022). Optimized screening methods for investigation of the larval settlement of Lanice conchilega on artificial substrates. J. Mar. Sci. Eng. 10(10): 1443. https://dx.doi.org/10.3390/jmse10101443
In: Journal of Marine Science and Engineering. MDPI: Basel. ISSN 2077-1312; e-ISSN 2077-1312
Peer reviewed article  

Available in  Authors 

Keywords
    Lanice conchilega (Pallas, 1766) [WoRMS]
    Marine/Coastal
Author keywords
    coastal erosion; restoration; ecosystem engineer; Aulophora; recirculation aquaculture system; acoustic velocity metre; artificial substrate; geotextiles; distribution of particles

Authors  Top 
  • D’Hurlaborde, A.
  • Semeraro, A.
  • Sterckx, T.
  • Van Hoey, G., more

Abstract
    The Belgium sandy coastline is very vulnerable to erosion; therefore, development of sustainable and nature-based coastal protection solutions is important. Enhancing the settlement of the ecosystem engineer Lanice conchilega (Pallas, 1766) which stabilises the sediment bed, is a possible solution. In order to enhance larval settlement by artificial substrates in the field, efficient methodologies are required to screen a wide range of artificial substrates and measure how they influence currents and larval settlement. Therefore, in this study, we describe the development of innovative artificial substrate screening methodologies using an optimised recirculating aquaculture system (RAS) by: (1) analysing the capture rate of passively floating plastic particles, (2) measuring current velocity by means of an acoustic doppler velocimeter and (3) monitoring settlement of living L. conchilega larvae. Of the eight substrates evaluated, one was proven to significantly enhance the settlement of L. conchilega, namely Geotextile 3D knitted fabric with PES knit, PA spacers and wood sticks mounted at a density of 680 sticks/m2. The results of this study show that controlled lab conditions, in conjunction with innovative methods, allowed for successful screening of a number of substrates in a short time in terms of their ability to enhance larvae settlement.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org