Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Low vulnerability of the Mediterranean antipatharian Antipathella subpinnata (Ellis & Solander, 1786) to ocean warming
Godefroid, M.; Zeimes, T.; Bramanti, L.; Romans, P.; Bo, M.; Toma, M.; Danis, B.; Dubois, P.; Guillaumot, C. (2023). Low vulnerability of the Mediterranean antipatharian Antipathella subpinnata (Ellis & Solander, 1786) to ocean warming. Ecol. Model. 475: 110209. https://dx.doi.org/10.1016/j.ecolmodel.2022.110209
In: Ecological Modelling. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0304-3800; e-ISSN 1872-7026
Peer reviewed article  

Available in  Authors 

Keywords
Author keywords
    Thermotolerance; Mesophotic; Mediterranean Sea; Niche modelling

Authors  Top 
  • Godefroid, M.
  • Zeimes, T.
  • Bramanti, L.
  • Romans, P.
  • Bo, M.
  • Toma, M.
  • Danis, B., more
  • Dubois, P.
  • Guillaumot, C.

Abstract
    Antipatharians (black corals) are major components of mesophotic ecosystems in the Mediterranean Sea. The arborescent species Antipathella subpinnata has received particular attention as it is the most abundant and forms dense forests harbouring high levels of biodiversity. This species is currently categorized as “Near Threatened” in the IUCN Red List, due to increasing fishing pressure and bottom-trawling activities. Yet, the effects of ocean warming have never been investigated for this species, nor for any other antipatharians from temperate regions. Our study aimed at evaluating the effects of increasing seawater temperatures on A. subpinnata, by combining predictive distribution modelling with a physiological tolerance experiment. During the latter, we exposed A. subpinnata for 15 days to different temperature conditions spanning the current seasonal range to forecasted temperatures for 2100, while measuring biological endpoints such as oxygen consumption rates and different signs of stress (tissue necrosis, total antioxidant capacity). Unexpectedly, no stress was found at organism nor cellular level (wide thermal breadth) suggesting low susceptibility of this species to mid-term temperature increase. If the response to the 15-days heat stress is representative of the response to longer-term warming, ocean warming is unlikely to affect A. subpinnata. The species distribution model predicted the presence of A. subpinnata at depths that correspond to temperatures colder than its maximum thermal tolerance (as determined by the physiology experiment). This suggests that the presence of A. subpinnata at shallower depths is not limited by physiological constraints but by other ecological factors including interspecific competition.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org