Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Summer heatwaves affect coastal Antarctic plankton metabolism and community structure
Latorre, M.P.; Iachetti, C.M.; Schloss, I.R.; Antoni, J.; Malits, A.; de la Rosa, F.; De Troch, M.; Garcia, M.D.; Flores-Melo, X.; Romero, S.I.; Gil, M.N.; Hernando, M. (2023). Summer heatwaves affect coastal Antarctic plankton metabolism and community structure. J. Exp. Mar. Biol. Ecol. 567: 151926. https://dx.doi.org/10.1016/j.jembe.2023.151926
In: Journal of Experimental Marine Biology and Ecology. Elsevier: New York. ISSN 0022-0981; e-ISSN 1879-1697
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Latorre, M.P.
  • Iachetti, C.M.
  • Schloss, I.R.
  • Antoni, J.
  • Malits, A.
  • de la Rosa, F.
  • De Troch, M., more
  • Garcia, M.D.
  • Flores-Melo, X.
  • Romero, S.I.
  • Gil, M.N.
  • Hernando, M.

Abstract
    In the austral summer of 2020, record high temperatures were registered in the Western Antarctic Peninsula. This offered a unique opportunity to evaluate the effect of extreme sea surface temperature and natural heatwaves on the metabolic balance (i.e. the balance between production and respiration), lipid damage and the possible change in lipid composition of coastal Antarctic (Potter Cove, King George/25 de Mayo Island, South Shetlands) microbial communities. Two marine heatwaves, one in January and a second one in February 2020 showed mean temperatures of 1.8 °C above the 20-year climatology values. During the first heatwave, a rapid and strong (60%) decrease in microbial community biomass was observed, Criptophyceae were replaced by unidentified nanophytoflagellates and other heterotrophic groups. The community experienced an increase in heterotrophic metabolism via an increase in community respiration (CR, 12.79 mmolO2 m−3d−1) and a negative net community production (NCP, −14.9 ± 0.31 mmolO2 m−3d−1), leading to a production:respiration (P:R) rate < 1. Additionally, the most representative fatty acids (FAs: 14:0, 16:0, 18:0, 16:1ω9, 18:1ω9, 18:2ω6 and 18:3ω3) decreased, except for the monounsaturated FAs (MUFA) 16:1ω9 and 18:1 ω9, which increased during this first heatwave. In the second marine heatwave, total biomass dropped to the minimum values reported during the entire study. Here, CR was at its maximum (25.09 mmolO2 m−3d−1), but NCP was also positive (1.96 mmolO2 m−3d−1) and P:R > 1, associated with an active autotrophic community. Again, significant lipid damage, a decrease in saturated FAs and ⍵6 polyunsaturated FAs, and an increase in MUFAs occurred. This field study validates previous experimental results on changes in natural plankton composition and physiology under global warming scenarios.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org