Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Environmental filtering along a bathymetric gradient: A metabarcoding meta‐analysis of free‐living nematodes
Macheriotou, L.; Derycke, S.; Vanreusel, A. (2023). Environmental filtering along a bathymetric gradient: A metabarcoding meta‐analysis of free‐living nematodes. Mol. Ecol. 32(23): 6177-6189. https://dx.doi.org/10.1111/mec.17201
In: Molecular Ecology. Blackwell: Oxford. ISSN 0962-1083; e-ISSN 1365-294X
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Macheriotou, L.
  • Derycke, S., more
  • Vanreusel, A., more

Abstract

    Identifying and understanding patterns of biological diversity is crucial at a time when even the most remote and pristine marine ecosystems are threatened by resource exploitation such as deep-seabed mining. Metabarcoding provides the means through which one can perform comprehensive investigations of diversity by examining entire assemblages simultaneously. Nematodes commonly represent the most abundant infaunal metazoan group in marine soft sediments. In this meta-analysis, we compiled all publicly available metabarcoding datasets targeting the 18S rRNA v1-v2 region from sediment samples to conduct a global-scale examination of nematode amplicon sequence variant (ASV) alpha diversity patterns and phylogenetic community structure at different depths and habitats. We found that nematode ASV richness followed a parabolic trend, increasing from the intertidal to the shelf, reaching a maximum in the bathyal and decreasing in the abyssal zone. No depth- or habitat-specific assemblages were identified as a large fraction of genera were shared. Contrastingly, the vast majority of ASVs were unique to each habitat and/or depth zone; genetic diversity was thus highly localized. Overwhelmingly, nematode ASVs in all habitats exhibited phylogenetic clustering, pointing to environmental filtering as the primary force defining community assembly rather than competitive interactions. This finding stresses the importance of habitat preservation for the maintenance of marine nematode diversity.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org