Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Increasing temperature counteracts the negative effects of ultraviolet radiation on Microcystis aeruginosa under future climate scenarios in relation to physiological processes
de la Rosa, F.; Piloni, N.E.; De Troch, M.; Malanga, G.; Hernando, M. (2025). Increasing temperature counteracts the negative effects of ultraviolet radiation on Microcystis aeruginosa under future climate scenarios in relation to physiological processes. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 290: 110124. https://dx.doi.org/10.1016/j.cbpc.2025.110124
In: Comparative Biochemistry and Physiology. Part C. Toxicology and Pharmacology. Elsevier: New York. ISSN 1532-0456; e-ISSN 1878-1659
Peer reviewed article  

Available in  Authors 

Keywords
    Damage
    Fatty acids
    High temperature
    Protection
    Microcystis aeruginosa (Kützing) Kützing, 1846 [WoRMS]
    Marine/Coastal
Author keywords
    UVR; Reactive species

Authors  Top 
  • de la Rosa, F.
  • Piloni, N.E.
  • De Troch, M., more
  • Malanga, G.
  • Hernando, M.

Abstract
    Heat waves, are a major concern related to climate change, and are projected to increase in frequency and severity. This temperature rise causes thermal stratification, exposing surface-dwelling organisms to higher levels of ultraviolet radiation (UVR). This study aims to understand how the toxic bloom-forming cyanobacterium Microcystis aeruginosa adapts to changing climatic conditions. The effects of increased temperature and UVR were evaluated in terms of cell abundance, reactive oxygen and nitrogen species (ROS/RNS), the antioxidant activity of catalase (CAT), superoxide dismutase (SOD), glutathione S transferase (GST), fatty acid (FA) content, and lipid damage. Negative UVR effects on biomass, lipid damage, and polyunsaturated fatty acids (PUFAs) were more pronounced at 26 °C compared to 29 °C. However, antioxidant responses were higher at 29 °C. The relative abundance of ω6 FAs was less affected by UVA, while ω3 FAs were highly sensitive at 29 °C but unsaturated fatty acids (UFA) did not experience peroxidation. The differential response in FA to high temperature and UVR results in differences in lipid damage and antioxidants. Changes in membrane FA may suggest an adaptation strategy at high UVR conditions. The exposure to environmental changes can alter membrane fluidity, affecting cell physiology. Thus, to survive UVR exposure, M. aeruginosa maintains a balance between damage and stress adaptation, increasing the protection of selected PUFAs at high temperatures, allowing them to effectively cope with the harmful effects of elevated temperature and UVR.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org