Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Seabed microplastics in the European continental shelf: Unravelling physical and biological transport pathways and reciprocal fauna–Polymer relationships
Pantó, G.; Vanreusel, A.; Vercauteren, M.; Asselman, J.; Van Colen, C. (2025). Seabed microplastics in the European continental shelf: Unravelling physical and biological transport pathways and reciprocal fauna–Polymer relationships. Environ. Pollut. 365: 125392. https://dx.doi.org/10.1016/j.envpol.2024.125392
In: Environmental Pollution. Elsevier: Barking. ISSN 0269-7491; e-ISSN 1873-6424
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Pantó, G.
  • Vanreusel, A., more
  • Vercauteren, M.
  • Asselman, J.
  • Van Colen, C., more

Abstract
    Marine sediments are recognized as major sinks for microplastics, including remote areas which were previously considered “plastic-free”. The understanding of microplastic dynamics in marine sediments is however limited due to the numerous pelagic and benthic pathways involved, and how these are influenced by physico-chemical interactions with the particles. European continental shelves border densely populated areas and face a high risk of microplastic contamination. In this study we quantified microplastics in soft-sediments of European coastal seas and characterized their polymer composition separating surface sediments from deeper layers. We then analyzed the influence of water column and sediment properties on spatial variability of seabed microplastics and investigated the relationship with macrofauna communities. A higher proportion of negatively buoyant polymers in surface sediments (0–1 cm) across stations was explained by seawater salinity and sediment microalgal detritus, highlighting the role of riverine input and possibly the formation of hetero-aggregates in defining polymer deposition. Additionally, we found that seawater temperature influenced polymer composition in deeper sediment layers (0–3 cm), likely together with biological activities performed by macrobenthos such as ingestion and burial. Finally, we demonstrate that seabed microplastics contribute to the spatial variability in macrobenthos, highlighting that marine ecosystem functioning effects of microplastic pollution are likely mediated via the benthos.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org