Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

A molecular mechanism of adaptation in an estuarine copepod
Bradley, B.P.; Lane, M.A.; Gonzalez, C.M. (1992). A molecular mechanism of adaptation in an estuarine copepod. Neth. J. Sea Res. 30: 3-10. https://dx.doi.org/10.1016/0077-7579(92)90040-L
In: Netherlands Journal of Sea Research. Netherlands Institute for Sea Research (NIOZ): Groningen; Den Burg. ISSN 0077-7579; e-ISSN 1873-1406
Also appears in:
Heip, C.H.R.; Nienhuis, P.H.; Pollen-Lindeboom, P.R. (Ed.) (1992). Proceedings of the 26th European Marine Biology Symposium: Biological Effects of Disturbances on Estuarine and Coastal Marine Environments, 17-21 September 1991, Yerseke, The Netherlands. Netherlands Journal of Sea Research, 30. Netherlands Institute for Sea Research: Texel. 299 pp., more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Bradley, B.P.
  • Lane, M.A.
  • Gonzalez, C.M.

Abstract
    The estuarine copepod Eurytemora affinis (Poppe) has been shown to adapt better at the individual (physiological) and population (genetic) level to rapidly cycling environments than to slowly cycling temperatures. In addition, female copepods are physiologically more flexible than males. Three questions arise from these observations. Why is the geographical and seasonal distribution of Eurytemora in estuaries so limited? Why is the genetic variance so high in an organism which is so physiologically flexible? And does the difference between sexes help to explain the maintenance of genetic variance? A mechanism of adaptation which may allow further examination of these questions is the increased synthesis of stress proteins, first identified as heat shock proteins (HSP). The HSPs in the copepod Eurytemora affinis are quantitatively and qualitatively related to stress. Temperature and osmotic stress, for example, induce different sets of proteins. Thus, better understanding the phenomenon may be useful in marine ecology.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org