Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (0): add | show Print this page

Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya)
De Troch, M.; Gurdebeke, S.; Fiers, F.; Vincx, M. (2001). Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). J. Sea Res. 45(1): 45-61. dx.doi.org/10.1016/S1385-1101(00)00055-1
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101; e-ISSN 1873-1414
Peer reviewed article  

Available in  Authors 

Keywords
    Aquatic communities > Benthos > Meiobenthos
    Aquatic communities > Benthos > Zoobenthos
    Ecological zonation
    Flora > Weeds > Marine organisms > Seaweeds > Sea grass
    Halodule wrightii Ascherson, 1868 [WoRMS]; Halophila ovalis (R.Brown) J.D.Hooker, 1858 [WoRMS]; Halophila stipulacea (Forsskål) Ascherson, 1867 [WoRMS]; Thalassia hemprichii (Ehrenberg) Ascherson, 1871 [WoRMS]
    ISW, Kenya, Gazi Bay [Marine Regions]; Kenya [Marine Regions]
    Marine/Coastal
Author keywords
    meiofauna; zonation; seagrass; Kenya

Authors  Top 
  • De Troch, M., more
  • Gurdebeke, S.
  • Fiers, F.
  • Vincx, M., more

Abstract
    This study deals with the relation between tropical meiofauna and environmental variables by comparing the 'benthic' (i.e. in the bare sediment adjacent to seagrass plants) and the 'epiphytic' (i.e. in samples including seagrass plants) meiofauna associated with five seagrass species from the high intertidal to the high subtidal zone in Gazi Bay (Kenya). Ordination and variance analysis revealed three distinct 'benthic' and two 'epiphytic' meiofauna assemblages. These assemblages corresponded entirely with those identified for the seagrass species: a high intertidal pioneer association (Halophila ovalis/Halodule wrightii), an intertidal climax assemblage (Thalassia hemprichii) and a high subtidal pioneer association (Halophila stipulacea/Syringodium isoetifolium). These data support the hypothesis that meiofaunal communities correspond to the characteristic zonation of the seagrass vegetation in Gazi Bay. In beds of the pioneer seagrass species, the close relationship between sediment characteristics and both 'benthic' and 'epiphytic' meiofauna communities suggests that these pioneer communities were mainly driven by physical factors. The 'benthic' communities adjacent to the climax seagrass species T. hemprichii were more structured by biogenic factors, e.g. % TOM, chlorophyll a and c, fucoxanthin, habitat complexity and growth form of the seagrass species. For its associated 'epiphytic' meiofauna the latter conclusion was even more striking. These data corroborate the importance of physical factors in disturbed environments (intertidal zone, near pioneer seagrasses) and of biotic factors in more stable conditions (subtidal zone, near climax seagrasses).

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org