Optical properties of algal blooms in an eutrophicated coastal area and its relevance to remote sensing
Astoreca, R.; Rousseau, V.; Ruddick, K.; Van Mol, B.; Parent, J.-Y.; Lancelot, C. (2005). Optical properties of algal blooms in an eutrophicated coastal area and its relevance to remote sensing, in: Frouin, R.J. et al. (Ed.) Proceedings of the SPIE International Symposium on 'Optics and Photonics: Remote sensing of the coastal oceanic environment' held in San Diego, USA, 31st July-1st August 2005. Proceedings of SPIE, the International Society for Optical Engineering, 5885: pp. 1-11
In: Frouin, R.J.; Babin, M.; Sathyendranath, S. (Ed.) (2005). Proceedings of the SPIE International Symposium on 'Optics and Photonics: Remote sensing of the coastal oceanic environment' held in San Diego, USA, 31st July-1st August 2005. Proceedings of SPIE, the International Society for Optical Engineering, 5885. SPIE: Bellingham.
In: Proceedings of SPIE, the International Society for Optical Engineering. SPIE: Bellingham, WA. ISSN 0277-786X; e-ISSN 1996-756X
The Southern Bight of the North Sea is characterised by a large influence of river inputs, which results in eutrophication of the area. High concentrations of plankton biomass and suspended matter have been reported for this area, in relation with blooms of different species and resuspension of bottom sediments. In spring the haptophyte Phaeocystis globosa blooms throughout the area reaching up to 30 mg Chlorophyll m-3 or more nearshore. This event is followed in June by red tides of the dinoflagellate Noctiluca scintillans. These blooms are concurrent with different species of diatoms. The strong optical signature of these blooms is clear to human observers making them potentially detectable in satellite imagery. As a first step in this direction, sampling has been carried out in the area, during Phaeocystis and Noctiluca blooms in 2003 and 2004. Phytoplankton pigments and inherent optical properties (particle, detrital and phytoplankton absorption) have been measured spectrophotometrically, and in situ using an ac-9 for total absorption and particle scattering. Field data were compared with optical properties of pure species obtained in laboratory. In parallel, waterleaving reflectance has been also measured. In this paper we characterise the optical signatures of diatoms, Phaeocystis and Noctiluca and their contribution to total absorption. The impact on water-leaving reflectance spectra is evaluated; in order to assess the conditions in which remote sensing can provide information for monitoring the timing, extent and magnitude of blooms in this coastal area.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy