Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [132295]
Ecology of bottom ice algae: I. Environmental controls and variability
Cota, G.F.; Legendre, L.; Gosselin, M.; Ingram, R.G. (1991). Ecology of bottom ice algae: I. Environmental controls and variability. J. Mar. Syst. 2(3-4): 257-277. https://dx.doi.org/10.1016/0924-7963(91)90036-T
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573
Also appears in:
Nihoul, J.C.J.; Djenidi, S. (1991). Ice covered seas and ice edges: Physical, chemical and biological processes and interactions - Proceedings of the 22th International Liège Colloquium on Ocean Hydrodynamics. Journal of Marine Systems, 2. Elsevier Science Publishers: Amsterdam. 520 pp., more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Cota, G.F.
  • Legendre, L.
  • Gosselin, M.
  • Ingram, R.G.

Abstract
    Over large ocean areas of the Arctic, Subarctic and Antarctic, which are covered by landfast sea ice during springtime, high concentrations of microalgae have been observed in the interstices of the lower margin of sea ice floes and, in some cases, in a thin layer of surface water immediately under the ice cover or associated with semi-consolidated frazil ice. Ice algal blooms enhance and extend biological production in polar waters by at least 1-3 months. Biomass accumulation of sea ice algal populations ultimately depends upon the duration of the growth season, which is largely a function of climatic and environmental variability. Growth seasons are shorter at lower latitudes because of abbreviated photoperiods, warmer air temperatures and earlier ablation and break up. Environmental factors, which regulate ice algal distributions and dynamics, display characteristic scales of time/space variance. Sea ice habitats are much more stable than planktonic environments, because ice is not subject to large vertical displacements in the irradiance field. Temperature and salinity are relatively constant over most of the growth period. However, nutrients must be supplied to relatively thin, dense layers of cells and fluxes are variable depending on ice growth and hydrodynamics. Although the occurrence of prolonged blooms of ice algae at the ice-water interface is a widespread phenomenon, there are important differences between the growth habits and environments of several well-studied sites. Recent observations from seasonal studies of these sites are compared and contrasted with an emphasis on how the dominant scales of environmental variability influence ice algal populations.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org