Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [218225]
The taste of diatoms: the role of diatom growth phase characteristics and associated bacteria for benthic copepod grazing
De Troch, M.; Vergaerde, I.; Cnudde, C.; Vanormelingen, P.; Vyverman, W.; Vincx, M. (2012). The taste of diatoms: the role of diatom growth phase characteristics and associated bacteria for benthic copepod grazing. Aquat. Microb. Ecol. 67(1): 47-58. http://dx.doi.org/10.3354/ame01587
In: Aquatic Microbial Ecology. Inter-Research: Oldendorf/Luhe. ISSN 0948-3055; e-ISSN 1616-1564
Peer reviewed article  

Available in  Authors 

Keywords
    Algae > Diatoms
    Behaviour > Feeding behaviour > Grazing
    Harpacticoida [WoRMS]
    Marine/Coastal
Author keywords
    Harpacticoid copepods

Authors  Top 
  • De Troch, M., more
  • Vergaerde, I.
  • Cnudde, C.
  • Vanormelingen, P.
  • Vyverman, W.
  • Vincx, M., more

Abstract
    The interactions between primary producers and their consumers are of particular interest for the overall functioning of marine ecosystems. The biochemical composition of the organisms involved affects the efficiency of energy transfer in marine food webs. In addition to top-down control by grazers, bottom-up control of these interactions by primary producers and associated bacteria has recently received more attention. Planktonic copepods selectively feed on older diatom cells, a behaviour regulated by changes in exometabolites around diatoms. To test whether this also applies to benthic copepods, Seminavis robusta cells in lag, exponential and stationary growth phases were biochemically screened, and the diversity of associated bacteria was assessed. The diatoms were subsequently 13C prelabelled and offered to the harpacticoid copepod Microarthridion littorale in a grazing experiment. Harpacticoid copepods incorporated more carbon from younger diatom cells in the lag growth phase, which might be based on (1) biochemical differences of diatom cells in different growth phases and (2) the bacteria associated with the diatoms. The younger diatom cells were characterised by a higher C:N ratio and more extracellular polymer secretions but a lower fatty acid content. The bacterial community on these cells differed from those on cells in the later growth phases. Our results thus suggest that the feeding strategies of benthic harpacticoid copepods differ from those of calanoid copepods. This outcome can be explained by the tight contact between benthic copepods and the typical carbon and bacteria-rich biofilm on sediments.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org