Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [238476]
Diversity and evolution of endosymbiotic bacteria in the siphonous green alga Bryopsis (Bryopsidales, Chlorophyta)
Leliaert, F.; Hollants, J.; Verbruggen, H.; Willems, A.; De Clerck, O. (2012). Diversity and evolution of endosymbiotic bacteria in the siphonous green alga Bryopsis (Bryopsidales, Chlorophyta). J. Phycol. 48: S10-S10
In: Journal of Phycology. Blackwell Science: New York. ISSN 0022-3646; e-ISSN 1529-8817
Peer reviewed article  

Available in  Authors 
Document type: Summary

Authors  Top 
  • Leliaert, F.
  • Hollants, J.
  • Verbruggen, H.
  • Willems, A.
  • De Clerck, O.

Abstract
    Many algae maintain close associations with bacteria that are linked with various metabolic functions and influence the shape and life cycle of the host. Siphonous green algae frequently contain bacteria within their giant cells, which form interesting biotic environments for bacterial communities. We examined the diversity and evolution of endosymbiotic bacteria in the genus Bryopsis. Using algal cultures and molecular methods (fluorescence in situ hybridization, denaturing gradient gel electrophoresis and 16S rRNA gene clone libraries), we show that Bryopsis species harbor well-defined and rather stable bacterial communities composed of Labrenzia, Mycoplasma, Rickettsia, Rhizobiaceae, Phyllobacteriaceae, Bacteroidetes and Flavobacteriaceae. These mixed communities of generalists and specialists are differently influenced by host phylogenetic relationships, geographic and environmental factors. The presence of Flavobacteriaceae is strictly determined by host phylogeny, indicating an obligate symbiotic association and vertical transmission of these bacteria. Comparative phylogenetic analyses of symbiont and host indicate a complex pattern of coevolution that is obscured by factors such as host-switching and incomplete sorting of symbionts within host lineages.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org