Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [238508]
Biologically controlled mineralization in the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea)
Gilis, M.; Baronnet, A.; Dubois, P.; Legras, L.; Grauby, O.; Willenz, P. (2012). Biologically controlled mineralization in the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea). J. Struct. Biol. 178(3): 279-289. dx.doi.org/10.1016/j.jsb.2012.04.004
In: Journal of structural biology. ACADEMIC PRESS INC ELSEVIER SCIENCE: San Diego, Calif.. ISSN 1047-8477; e-ISSN 1095-8657
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Biomineralization; Coralline sponge; Organic matrix; Basopinacocyte;Calcium carbonate

Authors  Top 
  • Gilis, M.
  • Baronnet, A.
  • Dubois, P.
  • Legras, L.
  • Grauby, O.
  • Willenz, P.

Abstract
    Hypercalcified sponges, endowed with a calcium carbonate basal skeleton in addition to their spicules, form one of the most basal metazoan group engaged in extensive biomineralization. The Mediterranean species Petrobiona massiliana was used to investigate biological controls exerted on the biomineralization of its basal skeleton. Scanning and transmission electron microscopy (SEM, TEM) confirmed that basopinacocytes form a discontinuous layer of flattened cells covering the skeleton and display ultrastructural features attesting intense secretory activity. The production of a highly structured fibrillar organic matrix framework by basopinacocytes toward the growing skeleton was highlighted both by potassium pyroantimonate and ruthenium red protocols, the latter further suggesting the presence of sulfated glycosaminoglycans in the matrix. Furthermore organic material incorporated into the basal skeleton was shown by SEM and TEM at different structural levels while its response to alcian blue and acridine orange staining might suggest a similar acidic and sulfated chemical composition in light microscopy. Potassium pyroantimonate revealed in TEM and energy electron loss spectroscopy (EELS) analysis, heavy linear precipitates 100–300 nm wide containing Ca2+ and Mg2+ ions, either along the basal cell membrane of basopinacocytes located toward the decalcified basal skeleton or around decalcified spicules in the mesohyl. Based on the results of the previous mineralogical characterization and the present work, an hypothetical model of biomineralization is proposed for P. massiliana: basopinacocytes would produce an extracellular organic framework that might guide the assemblage of submicronic amorphous Ca- and Mg-bearing grains into higher structural units.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org