Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [240827]
Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow
Rugenstein, M.; Stocchi, P.; van der Heydt, A.; Brinkhuis, H. (2014). Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow. Global Planet. Change 118: 16-24. http://dx.doi.org/10.1016/j.gloplacha.2014.03.011
In: Global and Planetary Change. Elsevier: Amsterdam; New York; Oxford; Tokyo. ISSN 0921-8181; e-ISSN 1872-6364
Peer reviewed article  

Available in  Authors 

Author keywords
    Antarctic ice sheet; Ice load; Southern Ocean; Eocene–Oligocene; Frontal shifts

Authors  Top 
  • Rugenstein, M.
  • Stocchi, P.
  • van der Heydt, A.
  • Brinkhuis, H.

Abstract
    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~ 34 Myr) by combining solid Earth and ocean dynamic modeling. A newly compiled global early Oligocene topography is used to run a solid Earth model forced by a growing Antarctic ice sheet. A regional Southern Ocean zonal isopycnal adiabatic ocean model is run under ice-free and fully glaciated (GIA) conditions. We find that GIA-induced deformations of the sea bottom on the order of 50 m are large enough to affect the pressure and density variations driving the ocean flow around Antarctica. Throughout the Southern Ocean, frontal patterns are shifted several degrees, velocity changes are regionally more than 100%, and the zonal transport decreases in mean and variability. The model analysis suggests that GIA induced ocean flow variations alone could impact local nutrient variability, erosion and sedimentation rates, or ocean heat transport. These effects may be large enough to require consideration when interpreting the results of Southern Ocean sediment cores.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org