Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [244337]
Consecutive earthquakes temporarily restructured the zooplankton community in an Alpine Lake
Brancelj, A.; Zibrat, U.; Mezek, T.; Brancelj, I.R.; Dumont, H.J. (2012). Consecutive earthquakes temporarily restructured the zooplankton community in an Alpine Lake. Ann. Limnol. 48(1): 113-123. http://dx.doi.org/10.1051/limn/2012001
In: Annales de Limnologie = International Journal of Limnology. Masson et Cie/EDP Sciences: Paris. ISSN 0003-4088; e-ISSN 2100-000X
Peer reviewed article  

Available in  Authors 

Author keywords
    Competition / earthquake / high-mountain lake / invasion / zooplankton community

Authors  Top 
  • Brancelj, A.
  • Zibrat, U.
  • Mezek, T.
  • Brancelj, I.R.
  • Dumont, H.J.

Abstract
    Two consecutive earthquakes temporary changed a zooplankton community in a high-mountain Lake Krn (altitude 1383 m a.s.l.). It was dominated by the eurytherm copepod, Cyclops vicinus, until 1998, when the first earthquake hit the lake (EMS=5.6). After the earthquake, the population of C. vicinus collapsed and the thermophilic cladoceran, Ceriodaphnia quadrangula, took over. After the second earthquake in 2004 (EMS=4.0), C. vicinus became untraceable. In 2008, few copepods reappeared and by 2010 they became the sole dominant again. Only Secchi-disc depth showed a statistically significant increase over time, while Ntot, Ptot and temperature showed an increasing trend, yet the relationship was insignificant. To compare multi-parameter properties of the water column, the studied period was divided into Period 1 (before the first earthquake), Period 2 (between earthquakes) and Period 3 (after the second earthquake). A Hotteling T2 test confirmed a statistically significant difference between Periods 1 and 2 & 3 (P<0.01), but not between Periods 2 and 3 (P>0.1). During simple laboratory experiment, specimens of C. vicinus were covered with a thin layer of sediment, to mimic the earthquake's effect on their survival. A hypothesis was that the timing of both earthquakes had been crucial for decimation of C. vicinus population as they re-suspended sediment with hibernating copepodites. As these became subsequently buried they were deprived of a re-activation signal and exposed prolonged anoxic conditions there. C. quadrangula temporary filled the void left by the copepod, which needed 6 years to regain its dominance.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org