Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [246280]
Beak microstructure analysis as a tool to identify potential rearing stress for Octopus vulgaris paralarvae
Franco-Santos, R.M.; Perales-Raya, C.; Almansa, E.; De Troch, M.; Garrido, D. (2016). Beak microstructure analysis as a tool to identify potential rearing stress for Octopus vulgaris paralarvae. Aquac. Res. 47(9): 3001-3015. http://dx.doi.org/10.1111/are.12753
In: Aquaculture Research. Blackwell: Oxford. ISSN 1355-557X; e-ISSN 1365-2109
Peer reviewed article  

Available in  Authors 

Keywords
    Biomarkers
    Rearing
    Stress
    Octopus Cuvier, 1798 [WoRMS]
    Marine/Coastal
Author keywords
    Beak; Growth increments

Authors  Top 
  • Franco-Santos, R.M.
  • Perales-Raya, C.
  • Almansa, E.
  • De Troch, M., more
  • Garrido, D.

Abstract
    Octopus vulgaris is a viable candidate for commercial aquaculture, but rearing procedures might stress individuals and result in diminished growth and survival. This study investigated the relationship between possible stress sources (tank transposition and syphoning) when rearing O. vulgaris paralarvae and the deposition pattern of growth increments in their beak microstructure. Light intensity at the facility was heterogeneous, and accounted for with an experimental design consisting of blocks without replicates. Growth and survival were estimated and possible effects of handling were tested for both parameters. Increments and stress marks were counted in 120 paralarval upper jaws (UJ), and the number of UJs with a mark on the day of stress application (day 8) was quantified. Differences in light intensity, diet quantity and total number of marks in the UJ were also compared between treatments. Growth and survival were statistically similar between treatments, although the control treatment showed a tendency for higher survival rates. Age at first increment deposition coincided with day 1 of experiment, and a 1 increment day-1 deposition rate was validated for the experiment duration. The number of stress marks was significantly different between the control and other treatments, indicating that handling might cause stress and that marks can be used as a biomarker for stress, although the occurrence of stress marks on day 8 was not significantly different. Light intensity and diet might have also been relevant stressors and confounded the results. The results herein presented are important for improving rearing conditions for O. vulgaris paralarvae.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org