Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [247717]
Feeding ecology study of the fate of poly-ß-hydroxybutyrate (PHB) as potential biological antibiotic for marine crustaceans
Farhana, A. (2014). Feeding ecology study of the fate of poly-ß-hydroxybutyrate (PHB) as potential biological antibiotic for marine crustaceans. MSc Thesis. Universiteit Antwerpen/Universiteit Gent/VUB: Antwerpen, Gent, Brussel. 24, 45 pp.

Thesis info:

Available in  Author 
Document type: Dissertation

Keywords
    Crustacea [WoRMS]
    Marine/Coastal
Author keywords
    Poly-ß-hydroxybutyrate, marine Crustacea, biological control, assimilation, assimilation efficiency, isotope tracer analysis, transgenerational immune transfer

Author  Top 
  • Ahmed, F.

Abstract
    The natural polymer, poly-ß-hydroxybutyrate (PHB) has antimicrobial and growth promoting activities. It can be degraded through biological and enzymatic activities into a water soluble short chain fatty acid monomer and is thought to be a potential biological control for diseases in aquaculture. In the present study, the marine crustacean, Artemia franciscana was used as aquaculture model organism to study how PHB works in the animal body. To trace the PHB in the body, 13C prelabeled PHB bacteria were supplied to the animals and 13C stable isotope tracer analysis was done. By means of 13C prelabelled PHB, it was observed that PHB is significantly assimilated in the tissue of Artemia franciscana nauplii. Assimilation of 13C of prelabeled PHB was measured from 2h after supplying with prelabeled PHB onwards and the assimilation of 13C increased over time. Differences in assimilation in terms of isotopic abundance, assimilation efficiency and uptake per unit biomass carbon were observed for different food types (only labeled PHB, Aeromonas hydrophila (LVS3) + labeled PHB, Dunaliella tertiolecta + labeled PHB, and Tetraselmis suecica + labeled PHB), though the differences were not significant (p>0.05). Transgenerational transfer of carbon originating from PHB was observed in the F1 generation offspring from the F0 generation parents of PHB treatment. This suggests an influence of PHB on the gonadal development and reproduction activities in the F0 generation parents of PHB treatment. However, the assimilated PHB did not provide significant protection to the F1 generation offspring against Vibrio harveyi and Vibrio campbellii infection. No significant differences of Hsp70 gene expression and Hsp70 quantity was observed in the F0 generation parents of PHB treatment but the Hsp70 gene expression in the F1 generation offspring of PHB treatment was reduced significantly as compared to the F1 generation offspring of non-PHB treatment. Overall, the present study indicates that PHB is being assimilated in animal tissue and showed for the first time that PHB is used as a carbon and energy source in marine crustaceans.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org