Marine Biodiversity and Ecosystem Functioning
EU Network of Excellence

 
Main Menu

· Home
· Contacts
· Data Systems
· Documents
· FAQ
· Links
· MarBEF Open Archive
· Network Description
· Outreach
· Photo Gallery
· Quality Assurance
· Register of Resources
· Research Projects
· Rules and Guidelines
· Training
· Wiki
· Worldconference

 

Register of Resources (RoR)

 People  |  Datasets  |  Literature  |  Institutes  |  Projects 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [251068]
Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving
Debusschere, E.; Hostens, K.; Adriaens, D.; Ampe, B.; Botteldooren, D.; De Boeck, G.; De Muynck, A.; Sinha, A.K.; Vandendriessche, S.; Van Hoorebeke, L.; Vincx, M.; Degraer, S. (2016). Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving. Environ. Pollut. 208(Part B): 747-757. https://dx.doi.org/10.1016/j.envpol.2015.10.055
In: Environmental Pollution. Elsevier: Barking. ISSN 0269-7491; e-ISSN 1873-6424
Peer reviewed article  

Available in  Authors 

Keywords
    Fitness
    Marine/Coastal
Author keywords
    Impulsive sound; In situ experiments; Juvenile fish; Acute stress responses

Authors  Top 
  • Debusschere, E.
  • Hostens, K.
  • Adriaens, D.
  • Ampe, B.
  • Botteldooren, D.
  • De Boeck, G.
  • De Muynck, A.
  • Sinha, A.K.
  • Vandendriessche, S., more
  • Van Hoorebeke, L.
  • Vincx, M., more
  • Degraer, S., more

Abstract
    Underwater sound generated by pile driving during construction of offshore wind farms is a major concern in many countries. This paper reports on the acoustic stress responses in young European sea bass Dicentrarchus labrax (68 and 115 days old), based on four in situ experiments as close as 45 m from a pile driving activity. As a primary stress response, whole-body cortisol seemed to be too sensitive to ‘handling’ bias. On the other hand, measured secondary stress responses to pile driving showed significant reductions in oxygen consumption rate and low whole-body lactate concentrations. Furthermore, repeated exposure to impulsive sound significantly affected both primary and secondary stress responses. Under laboratory conditions, no tertiary stress responses (no changes in specific growth rate or Fulton's condition factor) were noted in young sea bass 30 days after the treatment. Still, the demonstrated acute stress responses and potentially repeated exposure to impulsive sound in the field will inevitably lead to less fit fish in the wild.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 


If any information here appears to be incorrect, please contact us
Back to Register of Resources
 
Quick links

MarBEF WIKI

Erasmus Mundus Master of Science in Marine Biodiversity and Conservation (EMBC)
Outreach

Science
Responsive Mode Programme (RMP) - Marie Nordstrom, copyright Aspden Rebecca

WoRMS
part of WoRMS logo

ERMS 2.0
Epinephelus marginatus Picture: JG Harmelin

EurOBIS

Geographic System

Datasets

 


Web site hosted and maintained by Flanders Marine Institute (VLIZ) - Contact data-at-marbef.org